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Abstract

We present pointwise space-time decay estimates for the velocity part of solutions
to the time-dependent Oseen system in 3D, with Dirichlet boundary conditions and
vanishing velocity at infinity. In addition, similar estimates are derived for solutions
to the time-dependent incompressible Navier-Stokes system with Oseen term, and
for solutions to the stability problem associated with the stationary incompressible
Navier-Stokes system with Oseen term.
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1. Introduction

Consider the incompressible time-dependent Navier-Stokes system

∂tv −∆xv + τ ∂1v + τ (v · ∇x)v +∇xπ = f, divxv = 0 (1.1)

for t ∈ (0,∞), x ∈ Ω
c
:= R

3\Ω,

with the boundary conditions

v(t)|∂Ω = b(t), v(x, t) → (1, 0, 0) (|x| → ∞) for t ∈ (0,∞), (1.2)

and the initial condition

v(0) = v0, (1.3)

where Ω is an open bounded set in R
3 with connected Lipschitz boundary. Problem (1.1) –

(1.3) is a mathematical model for the flow of a viscous incompressible fluid around a rigid
body that moves steadily and without rotation, under the assumption that the underlying
reference frame adheres to the body, represented by the set Ω. The “exterior domain” Ω

c

is supposed to be filled with the fluid. The function v stands for the unknown velocity
field and the function π for the unknown pressure field of the fluid. The real number τ > 0
(Reynolds number) and the functions f (volume force), v0 (initial velocity) and b (velocity
of the fluid particles on the surface of the body) are given.

Problem (1.1) – (1.3) is already normalized in the sense that the flow is characterized by
a single parameter – the Reynolds number – and the rigid body moves with the constant
velocity (−1, 0, 0) with respect to an observer at rest. This latter feature of the motion
of the body, expressed by the boundary condition at infinity stated in (1.2), means in
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particular that the negative part of the x1-axis corresponds to the upstream and the
positive part to the downstream direction of the flow.

We will study the asymptotic behaviour of the fluid far from the rigid body. These
asymptotics are of interest because they may be interpreted as features of the flow that
may actually be observed. In this respect, particular attention is directed at the wake
extending behind the rigid body, in our situation around the positive x1-axis. This wake
should emerge in the asymptotics provided by theory.

Since nonzero boundary conditions at infinity are inconvenient from a mathematical point
of view, we will not deal with equations (1.1) – (1.3) directly, but with an equivalent
problem. To this end, we introduce the new velocity u := v − (1, 0, 0), which satisfies the
Navier-Stokes system with Oseen term,

∂tu−∆xu+ τ ∂1u+ τ (u · ∇x)u+∇xπ = f, divxu = 0 in Ω
c × (0,∞), (1.4)

as well as the side conditions

u(t)|∂Ω = (−1, 0, 0) + b(t), u(x, t) → 0 (|x| → ∞) for t ∈ (0,∞), (1.5)

u(0) = a, (1.6)

with a := v0 − (1, 0, 0). In the work at hand, we are interested in temporal and spatial
asymptotics of the velocity part u of solutions to (1.4), (1.5), (1.6). But due to the
stationary component (−1, 0, 0) of the Dirichlet boundary data in (1.5), the velocity u
cannot be expected to decay for t → ∞, even if b(t) tends to zero. Therefore we modify
our problem a second time. To this end, we take a solution (U,Π) of the stationary
Navier-Stokes system with Oseen term,

−∆U + τ ∂1U + τ (U · ∇)U +∇Π = F, divU = 0 in Ω
c
, (1.7)

under Dirichlet boundary conditions

U |∂Ω = (−1, 0, 0) +B, U(x) → 0 (|x| → ∞), (1.8)

with given functions F : Ω
c 7→ R

3, B : ∂Ω 7→ R
3, and then introduce the new unknowns

u(x, t) := u(x, t) − U(x), π(x, t) − Π(x), and the new given functions f(x, t) := f(x, t) −
F (x), b(x, t) := b(x, t)−B(x) and a := a−U . For simplicity denoting these new quantities
again by u, π, f, b, a, instead of u, π, f , b, a, respectively, we then arrive at the system

∂tu−∆xu+ τ ∂1u+ τ (u · ∇x)u+ τ (U · ∇x)u+ τ (u · ∇)U +∇xπ = f, (1.9)

divxu = 0 in Ω
c × (0,∞),

with the boundary conditions

u(t)|∂Ω = b(t), u(x, t) → 0 (|x| → ∞) for t ∈ (0,∞), (1.10)

and initial condition (1.6) (stability problem associated with (1.7), (1.8)). According to
[14, Theorem 1.2], under suitable conditions on the data, the velocity part u of a solution
to (1.9), (1.10), (1.6) exhibits an asymptotic behaviour in space described by the estimate

|∂αxu(x, t)| ≤ C
(
|x| ν(x)

)−1−|α|/2
for x ∈ R

3 with |x| ≥ R, t ∈ (0,∞), (1.11)
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α ∈ N
3
0 with |α| := α1 +α2 +α3 ≤ 1, where R is some positive real so large that Ω ⊂ BR.

The same estimate is shown in previous papers [10], [13] for solutions to the linear system
(”Oseen system”)

∂tu−∆xu+ τ ∂1u+∇xπ = f, divxu = 0 in Ω
c × (0,∞), (1.12)

again under side conditions (1.10) and (1.6). The fact that inequality (1.11) holds for
α ∈ N

3
0 with |α| ≤ 1 means that u and the spatial gradient ∇xu of u are evaluated. The

factor ν(x) in (1.11) is defined by

ν(x) := 1 + |x| − x1 for x ∈ R
3. (1.13)

Due to this factor, the right-hand side of (1.11) decays less fast in the wake region around
the positive x1-axis than it does elsewhere; see [20, section VII.3] for more details. For
this reason the presence of the factor ν(x) in (1.11) may be interpreted as a mathematical
manifestation of the wake.

Inequality (1.11) deals only with spatial decay of the velocity. However, for suitable data,
the velocity far from the body should decay in space as well as in time. It is the aim of the
work at hand to make this idea more precise by determining upper bounds of |u(x, t)| and
|∇xu(x, t)| reflecting this type of asymptotics. In certain special situations, such estimates
may be deduced immediately from (1.11) and estimates of ‖u(t)‖∞ available in literature,
where ‖ ‖∞ denotes the norm of L∞(Ω

c
)3. With respect to the linear problem (1.12),

(1.10), (1.6), Enomoto, Shibata [17] showed that if f = 0, b = 0, Ω smoothly bounded
and a ∈ Lp(Ω

c
)3 for some p ∈ [1,∞), then ‖u(t)‖∞ ≤ C ‖a‖p t−3/(2p)−|α|/2 for t ∈ (0,∞)

([17, Theorem 1.1]). This result combined with (1.11) and the equation d = d1−ǫ dǫ (d ≥
0, ǫ ∈ [0, 1]) yields the pointwise space-time estimate

|∂αxu(x, t)| ≤ C
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
(1 + t)(−3/(2p)−|α|/2) ǫ

for x, t, α as in (1.11) and for ǫ ∈ [0, 1]. In particular, the highest rate of temporal decay
that may be attained is (1 + t)−3/2−|α|/2, arising if p = 1.

The theory of the linear problem (1.12), (1.10), (1.6) we present here does not require
f or b to vanish, nor Ω to be more regular than Lipschitz bounded. The estimates we
derive reflect the asymptotics of the data f, a and b in a rather precise way (Corollary
8.1). In the best possible case, occuring when f and a are both bounded and with compact
support and b decays sufficiently rapidly, we show that for ζ ∈ (0, 1) arbitrary but fixed,
the inequality

|∂αxu(x, t)| (1.14)

≤ C
[ (

|x| ν(x)
)−1−|α|/2

(1 + t)−ζ +
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
(1 + t)(−1−|α|/2) ǫ

]

holds for x, t, α as in (1.11) and for ǫ ∈ [0, 1] (Corollary 8.2). Further below, when we
sketch our method of proof, we will indicate why we do not achieve the rate (1+t)−3/2−|α|/2

of temporal decay.

Concerning the nonlinear problem (1.9), (1.10), (1.6), decay estimates of ‖u(t)‖∞ were
provided by Masuda [26], Heywood [23], Shibata [32] and Enomoto, Shibata [17] for a
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non-normalized version of this problem, with [26], [17] and [32] requiring that the viscosity
equals 1. Masuda chose initial data in L2 and assumed b = 0, ∂Ω smooth and U small in
a suitable sense. Constructing L2-weak solutions that become strong after a certain time,
he obtained ‖u(t)‖∞ ≤ C t−1/8 for large t, or instead ‖u(t)‖∞ → 0 (t → ∞), depending
on the asymptotics of f ([26, p. 297, Theorem; p.298, Remark 1.3]). Heywood [23, p.
674-675], [22, Theorem 4] admitted nonvanishing f and b, improving the decay rate of
‖u(t)‖∞ to t−1/4 under various smallness conditions on a, f and b. Enomoto, Shibata [17]
worked with initial data in L3, constructing mild solutions under the assumptions that f
and b vanish, Ω is smoothly bounded and the initial data a and the data of the stationary
problem (1.7), (1.8), and hence U , are small. Within this framework, they showed that
‖u(t)‖∞ ≤ C t−1/2 for t ∈ (0,∞) ([17, Theorem 1.3]). In a previous article by Shibata [32],
a similar but slightly weaker result is derived ([32, Theorem 1.4]).

As in the linear case, these decay estimates of ‖u(t)‖∞ combined with (1.11) yield pointwise
space-time decay estimates of u, although not of ∇xu because the quantity ‖∇xu(t)‖∞
is not considered in the references in question. It is perhaps not astonishing that the
assumptions in these references are restrictive. After all, an algebraic rate of decay of
‖u(t)‖∞ is a rather strong stability result. Too strong for our purposes, we think, because
it describes the behaviour of |u(x, t)| for t → ∞ at any point x ∈ Ω

c
, whereas we are

interested in the asymptotics of u(x, t) only at points x with |x| large.
We will show that any L2-strong solution (see (8.11), (8.12)) to (1.9), (1.10), (1.6) satisfies
the estimate

|∂αxu(x, t)| ≤ C
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
X(t)ǫ (1.15)

for x, t, α as in (1.11) and for ǫ ∈ [0, 1], where X : (0,∞) 7→ (0,∞) is a bounded function
with X(t) ↓ 0 for t ↑ ∞ (Theorem 8.4). References on existence of L2-strong solutions
to (1.9), (1.10), (1.6) are listed in the passage following (8.12). We will take the point of
view that such a solution is given. Under this assumption, (1.15) may be shown without
any smallness condition. A key role in our proofs will be played by the property ∇xu ∈
L2

(
Ω
c × (0,∞)

)3
verified by the solutions under consideration.

Concerning algebraic decay of |∂αxu(x, t)| with respect to t, we consider the somewhat sim-
pler system (1.4) (Navier-Stokes system with Oseen term), again with the side conditions
(1.10) and (1.6). L2-strong solutions to this problem fulfilling the additional assumption

‖∇xu(t)‖2 ≤ c t−κ1 (t ∈ (1,∞)) (1.16)

for some constants c, κ1 > 0 will be shown to satisfy an inequality that in the best possible
case, arising if f and a are bounded and with compact support and b decays sufficiently
fast, takes the form

|∂αxu(x, t)| ≤ C
[ (

|x| ν(x)
)−1−|α|/2

(1 + t)−ζ +
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
(1 + t)ζ̃ ǫ

]
(1.17)

for x, t, α as in (1.11) and ǫ ∈ [0, 1], where ζ and ζ̃ are constants determined by the
data and the exponent κ1 in (1.16) (Theorem 8.4). As in the case of (1.15), no smallness
condition is involved in the proof of this estimate.

The interest of our theory may be illustrated by an existence result due to Neustupa [30].
According to [30, Theorem 4.1] (also see [29, Theorem 1]), if f and b vanish, Ω is smoothly
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bounded, a is small with respect to the norm of H1(Ω
c
)3, and all eigenvalues of a certain

linear operator have negative real part and stay away from the imaginary axis, then an
L2-strong solution to (1.9), (1.10), (1.6) in the sense of (8.11), (8.12) exists. Since no
smallness of U (velocity part of a solution to (1.7), (1.8)) is required and the viscosity is
arbitrary, the results in [26], [23] or [17] cannot be applied to this solution. The theory
presented here, however, yields that Neustupa’s solution satisfies (1.15) (see Theorem 8.4),
provided, of course, that the spatial asymptotics of a are compatible with our assumptions,
listed at the beginning of section 8.

Property (1.16) is fulfilled by the solutions to (1.9), (1.10), (1.6) constructed in [26] and
[23]; see [26, inequality (7)], [23, p. 675]. It it true that as mentioned above, these
references additionally provide algebraic decay of the L∞-norm of u(t). However, this
latter property is suspended on H2-regularity of the Stokes operator ([26, p. 323; p. 299,
Proposition 1], [23, p. 675]), and thus on smoothness of ∂Ω. Therefore the L∞-estimates
of u(t) from [26] or [23] cannot be used in the proof of (1.17) if Ω is supposed to be only
Lipschitz bounded. And in any case, they do not yield an access to (1.17) if |α| = 1. So,
as far as we know, inequality (1.17) is new at least in the case |α| = 1, even though it only
relates to (1.4) instead of (1.9).

In order to prove our results, we will start from a representation formula established in
[11] for solutions to the linear problem (1.12), (1.10), (1.6), and stated as equation (4.9)
below, in Theorem 4.10. This formula consists of a sum involving two volume potentials
– one on R

3 × (0,∞) and related to f , the other one on R
3 and linked to the initial data

a –, as well as a single layer potential on S∞ := ∂Ω× (0,∞) whose weight function solves
an integral equation on S∞ (equation (4.8)). We refer to section 4 for the definition of
these potential functions.

In order to solve the integral equation (4.8), we use an L2-theory developed by Shen [31]
for the Stokes system, and extended to the Oseen system in [9]. In the framework of
this theory, the right-hand side of (4.8) must belong to a space whose definition is rather
complicated and thus gives rise to much of the technicalities we have to grapple with in
what follows. This space, denoted by H∞ in this work, is introduced in section 3. It is
involved in the crucial part of our argument, that is, in determining how the L2-norm
on ST,∞ := ∂Ω × (T,∞) of the solution to (4.8) is bounded in terms of T . This point is
settled in Theorem 7.1.

In each of the sections 5, 6 and 7, we consider one of the three potential functions appearing
in the representation formula (4.9), deriving a pointwise decay estimate in space and in
time for the function in question, among other results. Theorem 7.1 is applied in this
context in order to deal with the single layer potential from (4.9) (Corollary 7.2). Once
upper bounds of these potentials are available, the formula in (4.9) yields an estimate of
the solution to (1.12), (1.10), (1.6) (Theorem 8.1).

As concerns the nonlinear problems (1.9), (1.10), (1.6) and (1.4), (1.10), (1.6), the idea is,
of course, to replace f by f − τ (u · ∇x)u− τ (U · ∇x)u − τ (u · ∇)U and f − τ (u · ∇x)u,
respectively, and then apply our estimates of solutions to the linear problem (1.12), (1.10),
(1.6). However, we were not able to shift all difficulties into the theory of this linear
problem. In fact, we will need an intermediate result from [14] – stated as the first
estimate in Theorem 8.3 – whose proof exploits the interaction between the nonlinearity
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and the kernel function of one of the potentials in (4.9).

It is mainly due to the integral equation (4.8) that we cannot deal with weak solutions
to (1.9) or (1.4). For this type of solution, we are not able to show that the right-hand
side of (4.8) with f replaced in the way just mentioned belongs to the function space H∞,
as required by Theorem 4.8, on which the resolution theory of (4.8) is based. There are
other aspects of our results whose scope is limited by this resolution theory. For example,
since we may solve this equation only in an L2-framework, but not in Lp with p 6= 2, we
cannot admit values ζ ≥ 1 in (1.14), nor can we obtain an algebraic decay rate of the time
variable in (1.15).

Let us mention some further papers related to the work at hand. Knightly [24] considered
pointwise decay in space of strong solutions to the nonlinear system (1.9), detecting the
wake phenomen, but he required various smallness conditions on the data and restric-
tive assumptions on the asymptotics of the solution. Mizumachi [28] studied the spatial
asymptotics of strong solutions of (1.4), (1.10), (1.6), but still under rather restrictive
assumptions. The results of these two authors were improved in the articles [10], [13]
(linear case) and [14] (nonlinear problem (1.9), (1.10), (1.6)), with predecessor papers [6],
[7], [8], [9], [11], [12]. As concerns temporal decay of spatial Lp-norms of solutions to the
Oseen system (1.12) under side conditions (1.10), (1.6) and with f = 0 and b = 0, a basic
study is due to Kobayashi, Shibata [25]. Their theory was extended in various respects
in [16] and [17]. The L∞-estimate from [17] mentioned above is an example of such an
extension. A different approach was used by Bae, Jin [3], who considered temporal decay
of weighted Lp-norms of solutions to (1.12), (1.10), (1.6) with b = 0, f = 0, where the
weight functions take account of the wake phenomenon. This type of result was extended
to the nonlinear problem (1.9), (1.10), (1.6) with b = 0, f = 0 by Bae, Roh [4].

2. Notation. Various auxiliary results.

As we may recall, the bounded open set Ω ⊂ R
3 with connected Lipschitz boundary ∂Ω

and the parameter τ ∈ (0,∞) were fixed at the beginning of section 1. We will write n(Ω)

for the outward unit normal to Ω. The notations S∞ := ∂Ω × (0,∞) for T ∈ (0,∞] and
ST,∞ := ∂Ω× (T,∞) for T ∈ [0,∞) were also already introduced in section 1, as was the
function ν (see (1.13)), as well as the abbreviation |α| for the length α1 + α2 + α3 of a
multiindex α ∈ N

3
0. The symbol | | additionally denotes the Euclidean norm in R

3.

For A ⊂ R
3, we set Ac := R

3\A. Moreover we abbreviate e1 := (1, 0, 0), and we put
Br(x) := {y ∈ R

3 : |y − x| < r} for x ∈ R
3, and Br := Br(0), where r ∈ (0,∞). Let A

be a nonempty set. If ϕ : A 7→ R is a function, we define |ϕ|∞ := sup{|ϕ(x)| : x ∈ A}.
Let n ∈ N and B a vector space consisting of functions f : A 7→ R. Suppose B is equipped
with a norm, denoted by ‖ ‖B . Then we put Bn := {F : A 7→ R

n : Fj ∈ B for 1 ≤ j ≤ n},
and we equip Bn with the norm ‖F‖(n)B := (

∑n
j=1 ‖Fj‖2B)1/2 (F ∈ Bn). But instead of

‖ ‖(n)B , we will write ‖ ‖B again.

Next we introduce a fractional derivative. Let A ⊂ R
3, T ∈ (0,∞] and ψ : A× (0, T ) 7→ R

a function such that ψ(x, · ) is measurable and
∫ t
0 (t − r)−1/2 |ψ(x, r)| dr < ∞ for x ∈

A, t ∈ (0, T ). Define W (x, t) :=
∫ t
0 (t − r)−1/2 ψ(x, r) dr for these x and t. If the
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derivative ∂tW (x, t) exists for some such x and t, we put ∂
1/2
t V (x, t) := Γ(1/2)−1 ∂tW (x, t).

Here Γ denotes the usual Gamma function. In the case that ∂tW (x, t) exists for any

x ∈ A, t ∈ (0, T ), we define ∂
1/2
4 V := Γ(1/2)−1 ∂4W.

Let A ⊂ R
3 be open. For p ∈ [1,∞], the norm of the Lebesgue space Lp(A), defined with

respect to the Lebesgue measure on R3, is denoted by ‖ ‖p. The same notation is used for
the norm of Lp-spaces on ∂Ω or on subsets of S∞. If T ∈ (0,∞], put

L2
n(ST ) := {ψ ∈ L2(ST )

3 :

∫

∂Ω
n(Ω)(x) · ψ(x, t) dox = 0 for a. e. t ∈ (0, T )}. (2.1)

For a, b ∈ R ∪ {∞}, a < b, let L1
loc

(
[a, b)

)
stand for the set of all functions g : (a, b) 7→ R

such that g|(a, c) ∈ L1
(
(a, c)

)
for c ∈ (a, b). For p ∈ [1,∞), we writeW 1,p(A) for the usual

Sobolev space of order 1 and exponent p. If p = 2, we use the notation H1(A) instead
of W 1,2(A). For s ∈ (0, 1), let Hs(A) be the Sobolev space defined via the intrinsic norm
with exponent 2 introduced in [1, section 7.51]. The symbol Hs

σ(A) stands for the closure
of the set {V ∈ C∞

0 (A)3 : divV = 0} with respect to the norm of Hs(A)3 (s ∈ (0, 1]).
Moreover, if A is again an open set in R

3, then W 1,1
loc (A) designates the set of all functions

V : A 7→ R such that V |K ∈ W 1,1(K) for any open, bounded set K ⊂ R
3 with K ⊂ A.

The Sobolev space H1(∂Ω) is to be defined in the standard way (see [19, section III.6],
for example). We write ‖ ‖H1(∂Ω)3 for the norm of H1(∂Ω)3, and ‖ ‖H1(∂Ω)′ for the usual
norm of the canonical dual space H1(∂Ω)′ of H1(∂Ω). Frequently we will use the fact
that there is c > 0 such that for functions V ∈ C1(R3)3, the inequality ‖V |∂Ω‖H1(∂Ω)3 ≤
c (‖V |∂Ω‖2 +

∑3
j=1 ‖∂jV |∂Ω‖2) holds.

If J ⊂ R is an interval, A ⊂ R
3 is open and v : A × J 7→ R is a function with suitable

smoothness, then the notation ∆xv, ∇xv, divxv indicates that the differential operators
in question refer to v(x, t) as a function of x ∈ A. It will be convenient to denote this
function by v(t), for t ∈ J . For a function V : A 7→ R, we write ∆V, ∇V and divV ,
respectively.

Let B be a Banach space, a, b ∈ R ∪ {∞} with a < b, and p ∈ [1,∞]. Then the
norm of the space Lp(a, b,B) is denoted by ‖ ‖Lp(a,b,B). If B = Lq(A)n for some q ∈
[1,∞], n ∈ {1, 3}, A ⊂ R

3 open or A = ∂Ω, then we use the notation ‖ ‖q,p;b instead of
‖ ‖

Lp
(
a,b, Lq(A)n

). We consider the spaces Lp(a, b, Lp(A)n) and Lp
(
A × (a, b)

)n
as iden-

tical, and denote their norm by ‖ ‖p. The term Lp
(
[a, b), B

)
stands for the set of all

functions F : (a, b) 7→ R such that F |(a, c) ∈ Lp(a, c,B) for any c ∈ (a, b).

Let T ∈ (0,∞]. For any w ∈ ST , we introduce a mapping Fw ∈ L2
(
0, T, H1(∂Ω)′

)

by setting Fw(t)(V ) :=
∫
∂Ω w(x, t)V (x) dox for V ∈ H1(∂Ω) and for a. e. t ∈ (0, T ).

However, we will again write w instead of Fw.

We write C for numerical constants, and C(γ1, ..., γn) for constants depending exclusively
on parameters γ1, ..., γn ∈ [0,∞), for some n ∈ N. However, it will not be possible to
specify all our constants in such a precise way. So in most cases we will use a different
symbol, namely C, for generic constants, assuming that their dependencies become clear
from context. Occasionally we will use expressions of the form C(γ1, ..., γn) in order to
insist that the constant under consideration depends on γ1, ..., γn ∈ [0,∞), but it may
additionally be a function of other quantities.

7



We will frequently use Minkowski’s inequality for integrals. For the convenience of the
reader, we state a suitable version as

Theorem 2.1 ([35, p. 271, Appendix A1]) Let A1, A2 be nonempty sets, Aj a mea-
sure space on Aj and mj a σ-finite measure on Aj , for j ∈ {1, 2}. Let F : A1 × A2 7→ R

be an A1 ⊗ A2-measurable function, and take p ∈ [1,∞). Then

(∫

A1

(∫

A2

|F (x, y)| dm2(y)
)p
dm1(x)

)1/p
≤

∫

A2

(∫

A1

|F (x, y)|p dm1(x)
)1/p

dm2(y).

Next we state a Sobolev inequality for certain functions in exterior domains.

Theorem 2.2 Let V ∈ W 1,1
loc (Ω

c
) with V ∈ Lκ(Ω

c
) for some κ ∈ [1,∞) and ∇V ∈

L2(Ω
c
)3. Then V ∈ L6(Ω

c
) and ‖V ‖6 ≤ C ‖∇V ‖2.

Proof: [13, Lemma 2.4], which is a consequence of [20, Theorem II.5.1]. �

We note some technical details whose sense will become clear later on.

Lemma 2.1 Let ǫ ∈ (0, 1). Put ϕ(ǫ) := ǫ − 1/2 if ǫ > 1/2, and ϕ(ǫ) := min{1/12, ǫ/4}
if ǫ ≤ 1/2. Let k ∈ N with k ǫ ≤ 1 < (k + 1) ǫ, and let j ∈ {0, ..., k − 1}. Then

Z(j) := −1/2 + j/(2 k) + 1/k − (j + 1) ǫ/k ≤ −ϕ(ǫ).

Proof: Suppose that ǫ > 1/2. Then k = 1 so that j = 0. It follows that Z(j) =
−1/2 + 1 − ǫ ≤ −ϕ(ǫ). Next suppose that ǫ ∈ (1/3, 1/2], so k = 2 and j ∈ {0, 1}. If
j = 0, we have Z(j) = −ǫ/2 ≤ −ϕ(ǫ), and if j = 1, Z(j) = 1/4 − ǫ ≤ −1/12 ≤ −ϕ(ǫ).
Next consider the case ǫ ∈ (1/4, 1/3], so that k = 3 and j ∈ {0, 1, 2}. If j = 0, we find
Z(j) = −1/6 − ǫ/3 ≤ −1/6 ≤ −ϕ(ǫ). For j = 1, we get Z(j) = −2 ǫ/3 ≤ −1/6 ≤ −ϕ(ǫ),
and for j = 2, Z(j) = 1/6− ǫ ≤ −1/12 ≤ −ϕ(ǫ).
Now we turn to the case ǫ ≤ 1/4, which means that k ≥ 4. If j ∈ [k/2, k − 2], then
Z(j) ≤ −1/2 + (k − 2)/(2 k) + 1/k − ǫ/2 = −ǫ/2 ≤ −ϕ(ǫ). The value j = k − 1 leads to
the equation Z(j) = 1/(2 k) − ǫ, hence by the choice of k,

Z(j) =
[
(k + 1)/k

] (
2 (k + 1)

)−1 − ǫ ≤
[
(k + 1)/k

]
ǫ/2− ǫ = −ǫ/2 + ǫ/(2 k) ≤ −3 ǫ/8,

so that Z(j) ≤ −ϕ(ǫ). Next suppose that k/4 ≤ j ≤ k/2 so that

Z(j) ≤ −1/2 + 1/4 + 1/k − j ǫ/k ≤ −1/4 + 1/k − ǫ/4 ≤ −ǫ/4 ≤ −ϕ(ǫ),

where the second from last inequality holds because k ≥ 4. If j ≤ k/4, we get Z(j) ≤
−1/2 + 1/8 + 1/k ≤ −1/8 ≤ −ϕ(ǫ), with the second from last inequality being a con-
sequence of the relation k ≥ 4. Thus we have found in any case that Z(j) ≤ −ϕ(ǫ).
�

Lemma 2.2 Let T > 0, n ∈ N, n ≥ 2, φ ∈ L2
(
∂Ω × (T/2, T )

)3
. For i ∈ {0, ..., n − 1},

put Ii :=
(
T (1 + i/n)/2, T

(
1 + (i+ 1)/n

)
/2

)
.

Then there is i0 ∈ {0, ..., n− 1} such that ‖φ|∂Ω × Ii0‖2 ≤ ‖φ‖2 n−1/2.
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Proof: Suppose that ‖φ|∂Ω × Ii‖2 > ‖φ‖2 n−1/2 for any i ∈ {0, ..., n− 1}. Then

‖φ‖22 =
(n−1∑

i=0

‖φ|∂Ω × Ii‖22
)1/2

> ‖φ‖2 n−1/2
(n−1∑

i=0

1
)1/2

= ‖φ‖2.

Since this is a contradiction, the lemma is proved. �

Lemma 2.3 Let T ∈ (0,∞), φ ∈ L1
loc

(
[0,∞)

)
with φ|(T,∞) ∈ C1

(
(T,∞)

)
. Define

H(t) :=
∫ t
0 (t− r)−1/2 φ(r) dr for t ∈ (T,∞). Then H ∈ C1

(
(T,∞)

)
and

H ′(t) =
√
2 (t− T )−1/2 φ

(
(t+ T )/2

)
− (1/2)

∫ (t+T )/2

0
(t− r)−3/2 φ(r) dr (2.2)

+

∫ t

(t+T )/2
(t− r)−1/2 φ′(r) dr for t ∈ (T,∞),

with all the preceding integrals existing as Lebesgue integrals.

Proof: Let T1, T2 ∈ (T,∞) with T1 < T2, and put T0 := (T + T1)/2,

F (t) :=

∫ T0

0
(t− r)−1/2 φ(r) dr, G(t) :=

∫ t

T0

(t− r)−1/2 φ(r) dr for t ∈ [T1, T2],

hence H|[T1, T2] = F + G. Lebesgue’s theorem and the relation T0 < T1 yield that
F ∈ C1([T1, T2]). Turning to G, we choose a function φ̃ ∈ C1(R) such that φ̃|[T0,∞) =
φ|[T0,∞), and then consider

G̃(κ, t) :=

∫ κ

0
r−1/2 φ̃(t− r) dr for (κ, t) ∈ B := [T1 − T0, T2 − T0]× [T1, T2].

Again by Lebesgue’s theorem, the derivative ∂2G̃ exists and belongs to C0(B). Moreover,
since for any t ∈ [T1, T2], the function r 7→ r−1/2 φ̃(t − r), r ∈ [T1 − T0, T2 − T0], is
continuous, the derivative ∂1G̃ exists, too, and ∂1G̃ ∈ C0(B). But G̃(t− T0, t) = G(t) for
t ∈ [T1, T2], so we get H|[T1, T2] = F +G ∈ C1([T1, T2]).

Next we differentiate the function G̃(t − T0, t), t ∈ [T1, T2], write the result as a sum of
(t− T0)

−1/2 φ(T0) plus an integral from T0 to t, split off an integral from T0 to (t+ T )/2
and integrate by parts in that latter integral. Equation (2.2) follows by a differentiation
of F and because H|[T1, T2] = F +G. �

Corollary 2.1 Let T ∈ (0,∞), Ψ ∈ L1
loc

(
[0,∞), L2(∂Ω)3

)
, v ∈ C1

(
R
3 × (T,∞)

)3
with

Ψ|ST,∞ = v|ST,∞.
Then there is a set N ⊂ ∂Ω of measure zero such that for any x ∈ ∂Ω\N, t ∈ (T,∞),
we have

∫ t
0 (t− r)−1/2 |Ψ(x, r)| dr <∞. Define W (x, t) :=

∫ t
0 (t− r)−1/2 Ψ(x, r) dr for such

x and t. Then, for x ∈ ∂Ω\N , we have W (x, · ) ∈ C1
(
(T,∞)

)3
, and equation (2.2)

holds with Ψ(x, · ) in the role of φ, with all integrals existing in the Lebesgue sense. In

particular, the fractional derivative ∂
1/2
t Ψ(x, t) exists for x, t as above.

Proof: Let T0 ∈ (T,∞). Then Ψ|ST0 ∈ L1
(
0, T0, L

2(∂Ω)3
)
by our assumptions on Ψ,

so there is a set N ⊂ ∂Ω of measure zero such that Ψ(x, · )|(0, T0) ∈ L1
(
(0, T0)

)3
for

9



x ∈ ∂Ω\N . Since Ψ(x, · )|(T,∞) is a C1-function for any x ∈ ∂Ω, we thus get that

Ψ(x, · ) ∈ L1
loc

(
[0,∞)

)3
for x ∈ ∂Ω\N . Now the corollary follows from Lemma 2.3. �

In order to handle the term ν(x) defined in (1.13), we need the ensuing three lemmas, all
of them well known.

Lemma 2.4 ([15, Lemma 4.8]) ν(x− y)−1 ≤ C |y| ν(x)−1 for x, y ∈ R
3.

Lemma 2.5 ([18, Lemma 2.3]) Let β ∈ (1,∞). Then
∫
∂Br

ν(x)−β dox ≤ C(β) r for
r ∈ (0,∞).

Lemma 2.6 ([6, Lemma 2]) Let K ∈ (0,∞). Then for x ∈ R
3, t ∈ (0,∞),

|x− τ t e1|2 + t ≥ C(K, τ)
(
χ[0,K](|x|) (|x|2 + t) + χ(K,∞)(|x|) (|x| ν(x) + t)

)
.

Corollary 2.2 Let β ∈ (2,∞). Then
∫
Bc

R

(
|x| ν(x)

)−β
dox ≤ C(β)R−β+2 for R ∈ (0,∞).

Proof: By Lemma 2.5,
∫

Bc
R

(
|x| ν(x)

)−β
dox =

∫ ∞

R
r−β

∫

∂Br

ν(x)−β dox dr ≤ C(β)

∫ ∞

R
r−β+1 dr = C(β)R−β+2.

�

3. Definition of the space H∞ and its norm. Some properties

of this space.

In this section, we introduce the key function space of our theory, denoted by H∞ and
taken from [31]. We start by fixing T0 ∈ (0,∞] and defining

H̃T0 := {w|ST0 : w ∈ C∞
0 (R4)3, w|R3 × (−∞, 0) = 0}.

For Ψ ∈ H̃T0 , we set

‖Ψ‖HT0
:=

(∫ T0

0

(
‖Ψ(t)‖2H1(∂Ω)3 + ‖∂1/24 Ψ(t)‖22 + ‖n(Ω) · ∂4Ψ(t)‖2H1(∂Ω)′

)
dt

)1/2

.

The mapping ‖ ‖HT0
is a norm on H̃T0 . In the case T0 = ∞, we further put

‖Ψ|ST,∞‖HT,∞
:=

(∫ ∞

T

(
‖Ψ(t)‖2H1(∂Ω)3 + ‖∂1/24 Ψ(t)‖22 + ‖n(Ω) · ∂4Ψ(t)‖2H1(∂Ω)′

)
dt

)1/2

for T ∈ [0,∞), Ψ ∈ H̃∞. Note that the term ‖Ψ|ST,∞‖HT,∞
depends on Ψ|ST , via the

fractional derivative ∂
1/2
4 Ψ. Further note that in the case T = 0, we have ‖Ψ|ST,∞‖HT,∞

=
‖Ψ‖H∞

.

In order to construct a completion of H̃T0 , we consider sequences (Ψn) in H̃T0 which are
Cauchy sequences with respect to the norm ‖ ‖HT0

, with the additional property that
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there is Ψ ∈ L2
n(ST0) with ‖Ψn − Ψ‖2 → 0. In such a situation it is not clear a priori

how Ψ is related to the limit of (∂
1/2
4 Ψn) in L2(ST0) and to the limit of (n(Ω) · ∂4Ψn) in

L2
(
0, T0, H

1(∂Ω)′). But it turns out that if Ψ = 0, these limits vanish as well. This fact
and some other, related ones are the subject of

Lemma 3.1 Let T0 ∈ (0,∞], Ψ ∈ L2(ST0)
3, vn ∈ C∞

0 (R4)3 with vn|R3 × (−∞, 0) = 0
for n ∈ N such that ‖vn −Ψ‖2 → 0 and (vn|ST0) is a Cauchy sequence with respect to the
norm ‖ ‖HT0

on H̃T0.

Then the sequence (‖vn|ST0‖HT0
) converges.

If Ψ = 0, then lim
n→∞

‖vn|ST0‖HT0
= 0.

If T0 = ∞, T ∈ (0,∞) and Ψ|ST = 0, then lim
n→∞

‖vn|ST,∞‖HT,∞
= lim

n→∞
‖vn|S∞‖H∞

.

If T0 = ∞, T̃ , T ∈ (0,∞) with T̃ ≤ T, then lim
n→∞

‖vn|ST,∞‖HT,∞
≤ lim

n→∞
‖vn|ST̃ ,∞‖H

T̃ ,∞
.

Proof: Since (vn|ST0) is a Cauchy sequence with respect to the norm ‖ ‖HT0
, the sequence

(‖vn|ST0‖HT0
) is a Cauchy sequence in R and thus converges. It further follows there are

functions Ψ(1) ∈ L2
(
0, T0, H

1(∂Ω)3
)
, Ψ(2) ∈ L2(ST0)

3 and Ψ(3) ∈ L2
(
0, T0, H

1(∂Ω)′
)

such that

‖vn −Ψ(1)‖
L2
(
0,T0,H1(∂Ω)3

) + ‖∂1/24 vn −Ψ(2)‖2 + ‖vn −Ψ(3)‖
L2
(
0,T0,H1(∂Ω)′

) −→ 0,(3.1)

where vn(x, t) := n(Ω)(x) · vn(x, t) for n ∈ N, x ∈ ∂Ω, t ∈ (0, T0). By the definition of the
mapping ‖ ‖HT,∞

, this means in the case T0 = ∞ that

lim
n→∞

‖vn|ST̃ ,∞‖2H
T̃ ,∞

=

∫ ∞

T̃

(
‖Ψ(1)(t)‖2H1(∂Ω)3 + ‖Ψ(2)(t)‖22 + ‖Ψ(3)(t)‖2H1(∂Ω)′

)
dt (3.2)

for any T̃ ∈ [0,∞). Now suppose that T0 = ∞, T ∈ (0,∞), and Ψ|ST = 0. We will show
that the limits lim

n→∞
‖vn|ST,∞‖HT,∞

and lim
n→∞

‖vn|S∞‖H∞
coincide. Since ‖Ψ − vn‖2 → 0,

we obtain from (3.1) that Ψ = Ψ(1). But Ψ|ST = 0, so we may conclude that Ψ(1)|ST = 0.
Moreover, for V ∈ L2(∂Ω)3, φ ∈ C∞

0

(
(0, T )

)
, we get from (3.1) that

∫

∂Ω

∫ T

0
Ψ(2)(x, t) · V (x)φ(t) dt dox = lim

n→∞

∫

∂Ω

∫ T

0
∂
1/2
4 vn(x, t) · V (x)φ(t) dt dox. (3.3)

Put wn(x, t) :=
∫ t
0 (t − r)−1/2 vn(x, r) dr for n ∈ N, x ∈ ∂Ω, t ∈ (0,∞). By Lemma 2.3,

we have wn(x, · ) ∈ C1
(
(0,∞)

)3
for any x ∈ ∂Ω, n ∈ N. Since ∂

1/2
4 vn(x, t) = ∂twn(x, t)

for n, x, t as before, we get

∫

∂Ω

∫ T

0
∂
1/2
4 vn(x, t) · V (x)φ(t) dt dox = −

∫

∂Ω

∫ T

0
wn(x, t) · V (x)φ′(t) dt dox (3.4)

11



for n ∈ N. But

∣∣∣
∫

∂Ω

∫ T

0
wn(x, t) · V (x)φ′(t) dt dox

∣∣∣ (3.5)

=
∣∣∣
∫

∂Ω

∫ T

0

∫ T

r
(t− r)−1/2 φ′(t) dt vn(x, r) · V (x) dr dox

∣∣∣

≤ C(T ) |φ′|∞
∫ T

0
‖vn(r)|∂Ω‖2 dr ‖V ‖2 ≤ C(T ) |φ′|∞ ‖V ‖2 ‖vn|ST ‖2 (n ∈ N).

Since ‖vn|ST ‖2 = ‖vn−Ψ|ST ‖2 (n ∈ N) and ‖Ψ−vn‖2 → 0, we may conclude from (3.3) –
(3.5) that Ψ(2)|ST = 0. A similar reasoning based on (3.1) yields Ψ(3)|ST = 0. Now we may
conclude from (3.2) with T̃ = 0 and T̃ = T that lim

n→∞
‖vn|ST,∞‖HT,∞

= lim
n→∞

‖vn|S∞‖H∞
.

If T0 ∈ (0,∞] and Ψ = 0, the same reasoning yields Ψ(i) = 0 for i ∈ {1, 2, 3}. In this way
we deduce from (3.1) that limn→∞ ‖vn|ST0‖HT0

= 0.

The last claim of the lemma is an immediate consequence of (3.2). �

Corollary 3.1 Let T0 ∈ (0,∞], Ψ ∈ L2(ST )
3, (Ψn) and (Ψ̃n) sequences in H̃T0 with

‖Ψ−Ψn‖2 → 0, ‖Ψ− Ψ̃n‖2 → 0 and such that (Ψn) and (Ψ̃n) are Cauchy sequences with
respect to the norm ‖ ‖HT0

on H̃T0 . Then lim
n→∞

‖Ψn‖HT0
= lim

n→∞
‖Ψ̃n‖HT0

. If T0 = ∞ and

T ∈ (0,∞), it further follows that lim
n→∞

‖Ψn|ST,∞‖HT,∞
= lim

n→∞
‖Ψ̃n|ST,∞‖HT,∞

.

Proof: Lemma 3.1 �

Let T0 ∈ (0,∞]. We define the space HT0 as the set of all functions Ψ ∈ L2
n(ST0) for which

there is a sequence (Ψn) in H̃T0 such that ‖Ψ−Ψn‖2 → 0 and (Ψn) is a Cauchy sequence
with respect to the norm ‖ ‖HT0

. This means in particular that HT0 ⊂ L2
n(ST0). (See (2.1)

for the definition of L2
n(ST0).)

For Ψ ∈ HT0 and a sequence (Ψn) as above, we set ‖Ψ‖HT0
:= lim

n→∞
‖Ψn‖HT0

. Corollary

3.1 implies that the mapping ‖ ‖HT0
is well defined on HT0 . The space HT0 equipped with

this mapping is a Banach space, a fact that we will not need in the following.

Suppose that T0 = ∞. We set ‖Ψ|ST,∞‖HT,∞
:= lim

n→∞
‖Ψn|ST,∞‖HT,∞

for Ψ ∈ H∞, T ∈
(0,∞), where Ψn ∈ H̃∞ for n ∈ N with the properties that ‖Ψ − Ψn‖2 → 0 and (Ψn) is
a Cauchy sequence with respect to the norm ‖ ‖H∞

. It again follows from Corollary 3.1
that the mapping ‖ ‖HT,∞

is well defined.

Corollary 3.2 Let T ∈ (0,∞) and Ψ ∈ H∞. If Ψ|ST = 0, then ‖Ψ|ST,∞‖HT,∞
= ‖Ψ‖H∞

.

If T̃ ∈ [0, T ], then ‖Ψ|ST,∞‖HT,∞
≤ ‖Ψ|S

T̃ ,∞
‖H

T̃ ,∞
.

Proof: Lemma 3.1.

Lemma 3.2 Let T ∈ (0,∞), Ψ ∈ H∞, and suppose there is v ∈ C1
(
R
3 × (T,∞)

)3
with

Ψ|ST,∞ = v|ST,∞.

Then
∫ t
0 (t− r)−1/2 |Ψ(x, r)| dr < ∞ for t ∈ (T,∞) and for a. e. x ∈ ∂Ω. Put W (x, t) :=∫ t

0 (t−r)−1/2Ψ(x, r) dr for these t and x. ThenW (x, · ) ∈ C1
(
(T,∞)

)3
and equation (2.2)
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holds with φ replaced by Ψ(x, · ), for a. e. x ∈ ∂Ω. Therefore the fractional derivative

∂
1/2
t Ψ(x, t) is well defined and equals ∂4W (x, t) for t ∈ (T,∞) and a. e. x ∈ ∂Ω. Moreover

‖Ψ|ST,∞‖2HT,∞
=

∫ ∞

T

(
‖Ψ(t)‖2H1(∂Ω)3 + ‖∂4W (t)‖22 + ‖n(Ω) · ∂4Ψ(t)‖2H1(∂Ω)′

)
dt. (3.6)

Proof: Since Ψ ∈ H∞, we have in particular Ψ ∈ L2(S∞)3, so Ψ ∈ L1
loc

(
[0,∞)L2(∂Ω)3

)
.

In addition Ψ|ST,∞ = v|ST,∞ with v ∈ C1
(
R
3 × (T,∞)

)3
, so the claims about W are

valid according to Corollary 2.1. This leaves us to show (3.6). Again since Ψ ∈ H∞, there
are functions vn ∈ C∞(R4)3 with vn|R3× (−∞, 0) = 0 for n ∈ N such that ‖vn −Ψ‖2 → 0
and such that (vn|S∞) is a Cauchy sequence with respect to the norm ‖ ‖H∞

on H̃T0 . The
latter property implies there are mappings Ψ(1) ∈ L2

(
0,∞, H1(∂Ω)3

)
, Ψ(2) ∈ L2(S∞)3

and Ψ(3) ∈ L2
(
0,∞, H1(∂Ω)′

)
as in (3.1) with T0 = ∞. Thus (3.2) holds, so by the

definition of ‖ ‖HT,∞
,

‖Ψ|ST,∞‖2HT,∞
=

∫ ∞

T

(
‖Ψ(1)(t)‖2H1(∂Ω)3 + ‖Ψ(2)(t)‖22 + ‖Ψ(3)(t)‖2H1(∂Ω)′

)
dt (3.7)

We further conclude from (3.1) and the choice of the sequence (vn) that Ψ(1) = Ψ. Let
us show that Ψ(2)|ST,∞ = ∂4W. To this end, we proceed as in the proof of Lemma 3.1.

We take V ∈ L2(∂Ω)3, φ ∈ C∞
0

(
(T,∞)

)
, and we put wn(x, t) :=

∫ t
0 (t− r)−1/2 vn(x, r) dr

for n ∈ N, x ∈ ∂Ω, t ∈ (0,∞). By Lemma 2.3, we have wn(x, · ) ∈ C1
(
(0,∞)

)3
for any

x ∈ ∂Ω, and ∂
1/2
4 vn = ∂4wn for n ∈ N. Similarly to (3.3) and (3.4), we get

∫

∂Ω

∫ ∞

T
Ψ(2)(x, t) · V (x)φ(t) dt dox = − lim

n→∞

∫

∂Ω

∫ ∞

T
wn(x, t) · V (x)φ′(t) dt dox. (3.8)

There is T1 ∈ (T,∞) such that supp(φ) ⊂ (T, T1). Thus, withW introduced in the lemma,
∣∣∣
∫

∂Ω

∫ ∞

T
(wn −W )(x, t) · V (x)φ′(t) dt dox

∣∣∣

=
∣∣∣
∫

∂Ω

∫ T1

0

∫ t

0
(t− r)−1/2 (vn −Ψ)(x, r) · V (x)φ′(t) dr dt dox

∣∣∣

=
∣∣∣
∫

∂Ω

∫ T1

0

∫ T1

r
(t− r)−1/2 φ′(t) dt (vn −Ψ)(x, r) · V (x) dr dox

∣∣∣

≤ C(T1) |φ′|∞
∫

∂Ω
‖(vn −Ψ)(x, · )‖2 |V (x)| dox ≤ C(T1) |φ′|∞ ‖V ‖2 ‖vn −Ψ‖2

Since ‖vn −Ψ‖2 → 0, we thus get

−
∫

∂Ω

∫ ∞

T
W (x, t) · V (x)φ′(t) dt dox = − lim

n→∞

∫

∂Ω

∫ ∞

T
wn(x, t) · V (x)φ′(t) dt dox. (3.9)

On the other hand, since W (x, · ) ∈ C1
(
(t,∞)

)
for a. e. x ∈ ∂Ω,

−
∫

∂Ω

∫ ∞

T
W (x, t) · V (x)φ′(t) dt dox =

∫

∂Ω

∫ ∞

T
∂4W (x, t) · V (x)φ(t) dt dox. (3.10)

Combining (3.8) – (3.10), we may conclude that Ψ(2)|ST,∞ = ∂4W . An analogous but
simpler reasoning yields that Ψ(3)(x, t) = n(Ω)(x) · ∂4Ψ(x, t) for t ∈ (T,∞) and for a. e.
x ∈ ∂Ω. Now equation (3.6) follows from (3.7). �
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4. Some fundamental solutions and potential functions. A
representation formula for the velocity part of solutions
to the Oseen system with Dirichlet boundary conditions.

We define three potential functions, denoted by R(τ)(f), I(τ)(a) and V(τ)(φ), respectively.
The first is related to the right-hand side f in (1.12), the second to the initial data a in
(1.6), and the third to the Dirichlet boundary data b in (1.10). We begin by introducing
fundamental solutions to the heat equation, the time-dependent Stokes system and the
Oseen system (1.12), respectively. We write H for the fundamental solution of the heat
equation in R

3, that is,

H(z, t) := (4π t)−3/2 e−|z|2/(4 t) for (z, t) ∈ R
3 × (0,∞).

As a fundamental solution of the time-dependent Stokes system, we choose the same
function Γ as in [31], that is,

Γjk(z, t) := δjk H(z, t) +

∫ ∞

t
∂j∂kH(z, s) ds for (z, t) ∈ R

3 × (0,∞), 1 ≤ j, k ≤ 3.

Actually this is the velocity part of the fundamental solution in question; we will not need
the pressure part associated with. Finally we introduce the velocity part of the looked-for
fundamental solution of the time-dependent Oseen system (1.12), setting

Λjk(z, t, τ) := Γjk(z − t τ e1, t) for z, t, j, k as before.

Note that in what follows, Γ does not stand for the usual Gamma function. We state some
properties of H, Γ = (Γjk)1≤j,k≤3 and Λ = (Λjk)1≤j,k≤3.

Lemma 4.1 H ∈ C∞
(
R
3× (0,∞)

)
,
∫
R3 H(z, t) dz = 1 for t ∈ (0,∞), and |∂lt∂αz H(z, t)| ≤

C (|z|2 + t)−3/2−|α|/2−l for z ∈ R3, t ∈ (0,∞), α ∈ N3
0, l ∈ N0 with |α|+ l ≤ 1.

Proof: For a proof of the estimate at the end of the lemma, we refer to [33]. An estimate
of this kind holds for any α ∈ N

3
0, l ∈ N0, but we will need it only in the case |α|+ l ≤ 1.

�

Lemma 4.2 ([31, Proposition 2.19]) Γjk, Λjk( · , · , τ) ∈ C∞
(
R
3 × (0,∞)

)
,

|∂lt∂αz Γjk(z, t)| ≤ C (|z|2 + t)−3/2−|α|/2−l,

|∂lt∂αz Λjk(z, t)| ≤ C(τ)
[
(|z − t τ e1|2 + t)−3/2−|α|/2−l + δl1 (|z − t τ e1|2 + t)−2

]

for z ∈ R
3, t ∈ (0,∞), α ∈ N

3
0, l ∈ N0 with |α|+ l ≤ 1, j, k ∈ {1, 2, 3}.

By combining Lemma 2.6 and the preceding lemma, we get

Corollary 4.1 Let K ∈ (0,∞) and put γK(z) := |z|2 for z ∈ BK , γK(z) := |z| ν(z) for
z ∈ Bc

K . Then |∂lt∂αz Λjk(z, t)| ≤ C(τ,K)
[
(γK(z) + t)−3/2−|α|/2−l + δl1 (γK(z) + t)−2

]
for

z, t, α, l, j, k as in the preceding lemma.

The ensuing theorem provides an estimate of convolutions of Λ.
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Theorem 4.1 Let q ∈ [1,∞), ̺ ∈ (1,∞], s ∈ [1,∞] with s ≤ ̺, M ∈ (0,∞), j, k ∈
{1, 2, 3}, α ∈ N

3
0 with |α| ≤ 1. Take h ∈ Ls

(
0,∞, Lq(R3)

)
.

Then the ensuing inequality holds for W = (0,M) if 1− |α|/2 − 3/(2 q)− 1/s+ 1/̺ > 0,
and for W = (M,∞) if 1− |α|/2 − 3/(2 q) − 1/s + 1/̺ < 0:

(∫ ∞

0

(∫ ∞

0

∫

R3

χW (t− σ) |∂αxΛjk(x− y, t− σ, τ)| |h(y, σ)| dy dσ
)̺

dt
)1/̺

≤ C(τ, q, ̺, s)M1−|α|/2−3/(2 q)−1/s+1/̺ ‖h‖q,s;∞

for x ∈ R
3 if ̺ <∞, and

∫ ∞

0

∫

R3

χW (t− σ) |∂αxΛjk(x− y, t− σ, τ)| |h(y, σ)| dy dσ

≤ C(τ, q, s)M1−|α|/2−3/(2 q)−1/s ‖h‖q,s;∞
for x ∈ R

3, t ∈ (0,∞) if ̺ = ∞.

Proof: Theorem 4.1 follows from [10, Lemma 2.7] and [14, Theorem 2.8] if the parameter
p in those references is chosen as p = ∞. As becomes apparent from the proof of these
references, not only L∞-estimates are provided if p = ∞ or ̺ = ∞, but pointwise estimates
not involving any sets of measure zero. �

The ensuing lemma is the basis of the definition of our first potential function.

Lemma 4.3 Let q, s ∈ [1,∞) and h ∈ Ls
(
0,∞, Lq(R3)3

)
. Then, for a. e. (x, t) ∈

R
3 × (0,∞), α ∈ N

3
0 with |α| ≤ 1, we have

∫ t
0

∫
R3 |∂αxΛ(x− y, t− σ, τ) · h(y, σ)| dy dσ <∞.

Proof: The lemma follows from a more general version of Theorem 4.1 ([10, Lemma 2.7]);
see the remarks in [10, p. 898 below]. �

Due to the preceding lemma, we may define a function R(τ)(h) : R3× [0,∞) 7→ R
3 for any

h ∈ Ls
(
0, T, Lq(A)3

)
with q, s ∈ [1,∞), A ⊂ R

3 measurable, T ∈ (0,∞], by setting

R
(τ)(x, t) :=

∫ t

0

∫

R3

Λ(x− y, t− σ, τ) · h̃(y, σ) dy dσ for a. e. (x, t) ∈ R
3 × [0,∞),

where h̃ denotes the zero extension of h to R
3 × (0,∞).

Lemma 4.4 ([10, Lemma 2.11]) Let q, s ∈ [1,∞) and h ∈ Ls
(
0,∞, Lq(R3)3

)
. Then

the weak derivativee ∂lR
(τ)(h) exists for 1 ≤ l ≤ 3, in particular R(τ)(h)(t) ∈W 1,1

loc (R
3)3×3

for a. e. t ∈ (0,∞). Moreover ∂lR
(τ)(x, t) =

∫ t
0

∫
R3 ∂lΛ(x − y, t − σ, τ) · h(y, σ) dy dσ for

a. e. x ∈ R
3, a. e. t ∈ (0,∞), 1 ≤ l ≤ 3. In particular the trace of R(τ)(h)(t) on ∂Ω is

well defined for a. e. t ∈ (0,∞).

Lemma 4.5 ([10, Lemma 2.12, Corollary 2.13]) Let q, s ∈ [1,∞) and let h be a
function belonging to Ls

(
0,∞, Lq(R3)3

)
. Then

∫ t
0

∫
R3 |Λ(x−y, t−σ, τ)·h(y, σ)| dy dσ <∞

for a. e. (x, t) ∈ ∂Ω × (0,∞). Thus R(τ)(h) is well defined also as a function on S∞.
Moreover, R(τ)(h)(t) as a function on ∂Ω is the trace of R(τ)(h)(t) as a function on R

3,
for a. e. t ∈ (0,∞).
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Lemma 4.6 Let T ∈ (0,∞), q ∈ [1, 4], s ∈ [1,∞), f ∈ Ls
(
0, T, Lq(R3)3

)
. Then

R(τ)(f)|R3 × (T,∞) ∈ C1
(
R
3 × (T,∞)

)3
and

∂lt∂
α
xR

(τ)(f)(x, t) =

∫ T

0

∫

R3

∂lt∂
α
xΛ(x− y, t− σ, τ) · f(y, σ) dy dσ (4.1)

for x ∈ R
3, t ∈ (T,∞), l ∈ N0, α ∈ N

3
0 with l+ |α| ≤ 1, where the preceding integral exists

as a Lebesgue integral.

Proof: The lemma follows from Lebesgue’s theorem. However, since f is not required
to belong to L1

(
R
3 × (0, T )

)3
, it is perhaps not completely obvious how to apply that

theorem. In particular, the reason for the condition q ≤ 4 may not be clear. So we indicate
a proof. Let R ∈ (0,∞), T0 ∈ (T,∞). It is enough to show that R(τ)(f)|BR× (T0,∞) is a
C1-function and equation (4.1) holds for (x, t) ∈ BR × (T0,∞). Put f (1) := χBc

2R×(0,T ) f.
Then, by Corollary 4.1 with K = R and Lemma 2.4, we get

|∂lt∂αxΛ(x− y, t− σ, τ) · f (1)(y, σ)| ≤ C(R, τ) gl,α(y) |f(y, σ)| (4.2)

for x ∈ BR, y ∈ R
3, t ∈ (T0,∞), σ ∈ (0, T ), α, l as in (4.1), where

gl,α(y) := χ(2R,∞)(|y|)
[ (

|y| ν(y)
)−3/2−|α|/2−l

+ δl1
(
|y| ν(y)

)−2 ]
for y ∈ R

3.

Since q < 4, we have 3 q′/2 > 2, so by Corollary 2.2,

∫ T

0

∫

R3

gl,α(y) |f(y, σ)| dy dσ ≤
∫ T

0

(∫

R3

gl,α(y)
q′ dy

)1/p′

‖f(σ)‖q dσ

≤ C(R, q, s, τ)T 1/s′ ‖f‖q,s;T <∞,

for l, α as in (4.1). Therefore from (4.2) and Lesbesgue’s theorem, we may conclude
that R(τ)(f (1)) is a C1-function on BR × (T0,∞), and equation (4.1) is valid for x ∈
BR, t ∈ (T0,∞) and with f replaced by f (1). Put f (2) := χB2R×(0,T ) f . Then f (2) ∈
L1

(
R
3 × (0, T )

)3
, and due to Lemma 4.2, we have

|∂lt∂αxΛjk(x− y, t− σ, τ)| ≤ C(τ)
(
(T0 − T )−3/2−|α|/2−l + δ1l (T0 − T )−2

)

for x, y, t, σ as in (4.2), 1 ≤ j, k ≤ 3 and α, l as in (4.1). Therefore Lebesgue’s theorem
yields that R(τ)(f (2))|BR × (T0,∞) is a C1-function and (4.1) holds on BR × (T0,∞) if f
is replaced by f (2). Since f = f (1) + f (2), the lemma is proved. �

The next theorem presents a criterion on f implying R(τ)(f)|S∞ ∈ H∞.

Theorem 4.2 ([11, Theorem 8.1]) Let f ∈ L2
(
0,∞, L̺(R3)3

)
for ̺ = 3/2 and for

some ̺ ∈ [1, 3/2). Then R(τ)(f)|S∞ ∈ H∞ and ‖R(τ)(f)|S∞‖H∞
≤ C (‖f‖3/2,2;∞ +

‖f‖q,2;∞).

Corollary 4.2 Let T, q, f be given as in Lemma 4.6, and abbreviate Ψ := R(τ)(f)|S∞.

For a. e. x ∈ ∂Ω we then have Ψ(x, · )|(T,∞) ∈ C1
(
(T,∞)

)3
,
∫ t
0 (t−r)−1/2 |Ψ(x, r)| dr <

∞ for t ∈ (T,∞), and the function t 7→
∫ t
0 (t − r)−1/2 Ψ(x, r) dr, t ∈ (T,∞), belongs to
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C1
(
(T,∞)

)3
, so that ∂

1/2
t Ψ(x, t) exists for any t ∈ (T,∞). In addition, equation (2.2)

holds with Ψ(x, · ) in the place of φ, for a. e. x ∈ ∂Ω. Finally,

‖Ψ|ST,∞‖2HT,∞
(4.3)

=

∫ ∞

T

(
‖Ψ(t)|∂Ω‖2H1(∂Ω)3 +

∫

∂Ω
|∂1/2t Ψ(x, t)|2 dox +

∫

∂Ω
|n(Ω)(x) · ∂tΨ(x, t)|2 dox

)
dt

Proof: Theorem 4.2, Lemma 4.6 and 3.2. �

We will need the following estimate on pointwise spatial decay of R(τ)(f).

Theorem 4.3 ([13, Theorem 3.1]) Let A ∈ (2,∞), B ∈ [0, 3/2] with A+min{1, B} >
3, A + B ≥ 7/2, ̺0 ∈ (2,∞), R0 ∈ (0,∞), γ ∈ L2

(
(0,∞)

)
∩ L̺0

(
(0,∞)

)
, f : R3 ×

(0,∞) 7→ R
3 measurable with |f(y, σ)| ≤ γ(σ) |y|−A ν(y)−B for y ∈ Bc

R0
, σ ∈ (0,∞).

Further suppose that f |BR0 × (0,∞) ∈ L2
(
BR0 × (0,∞)

)3
. Let R ∈ (R0,∞).

Then, for x ∈ Bc
R, t ∈ (0,∞), α ∈ N

3
0 with |α| ≤ 1, inequality (1.11) holds.

(Note that by Lemma 4.3 and 4.4 with q = s = 2, and because γ ∈ L2
(
(0,∞)

)
and A > 2,

the term ∂αxR
(τ)(f)(x, t) in (1.11) is well defined.)

The next lemma allows to define the potential I(τ)(a) further below and yields a pointwise
temporal estimate of this potential.

Lemma 4.7 Let p ∈ [1,∞], a ∈ Lp(R3)3, l ∈ N0, α ∈ N
3
0 with l + |α| ≤ 1. Then

∫

R3

|∂lt∂αx
(
H(x− y − τ t e1, t)

)
a(y)| dy ≤ C(p) ‖a‖p (t−3/(2 p)−|α|/2−l + δ1l t

−3/(2 p)−1/2)

for x ∈ R
3, t ∈ (0,∞), where 3/(2 p) := 0 if p = ∞.

Proof: Take x, t as in the lemma, and let the left-hand side of the estimate in Lemma
4.7 be denoted by A. In the case p ∈ (1,∞), we get with Lemma 4.1 that

A =

∫

R3

|∂l4∂αxH(x− y − τ t e1, t)− δ1l τ ∂1H(x− y − τ t e1, t)| |a(y)| dy

≤ C ‖a‖p
(∫

R3

[
(|x− y − τ t e1|+ t1/2)(−3−|α|−2 l) p′

+δ1l (|x− y − τ t e1|+ t1/2)−4 p′
]
dy

)1/p′

≤ C ‖a‖p
(∫

R3

[
(|z|+ t1/2)(−3−|α|−2 l) p′ + δ1l (|z| + t1/2)−4 p′

]
dz

)1/p′

≤ C ‖a‖p (t−3/2−|α|/2−l+3/(2p′) + δ1l t
−2+3/(2p′))

≤ C ‖a‖p (t−3/(2p)−|α|/2−l + δ1l t
−3/(2p)−1/2).

If p = 1, the estimate A ≤ C ‖a‖p (t−3/(2p)−|α|/2−l + δ1l t
−3/(2p)−1/2) follows almost imme-

diately from Lemma 4.1. Suppose p = ∞. Then, in the case α = 0, l = 0,

A ≤ ‖a‖p
∫

R3

H(x− y − τ t e1, t) dy = ‖a‖p
∫

R3

H(z, t) dz = ‖a‖p
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by Lemma 4.1, and in the case |α|+ l > 0 by the same reference,

A ≤ C ‖a‖p
∫

R3

(
(|z| + t1/2)−3−|α|−2l + δl1 (|z|+ t1/2)−4

)
dz

≤ C ‖a‖p (t−|α|/2−l + δ1l t
−1/2).

This completes the proof of the lemma. �

In view of Lemma 4.7, we may define

I
(τ)(a)(x, t) :=

∫

R3

H(x− y − τ t e1, t) ã(y) dy
(
x ∈ R

3, t ∈ (0,∞)
)
,

where p ∈ [1,∞], a ∈ Lp(A)3, for some measurable subset A of R3, with ã denoting the
zero extension of a to R

3.

Lemma 4.8 Let p ∈ [1,∞] and a ∈ Lp(R3)3. Then I(τ)(a) ∈ C1
(
R
3 × (0,∞)

)3
and

∂lt∂
α
x I

(τ)(a)(x, t) =

∫

R3

∂lt∂
α
x

(
H(x− y − τ t e1, t)

)
a(y) dy (4.4)

for x ∈ R
3, t ∈ (0,∞), α ∈ N

3
0, l ∈ N0 with |α|+ l ≤ 1.

Proof: See [12, Lemma 2.3] and its proof.

Actually I(τ)(a) is a C∞-function, but we will not need this fact.

Theorem 4.4 ([10, Theorem 3.1]) Let ǫ0 ∈ (0, 1/2] and a ∈ H
1/2+ǫ0
σ (Ω

c
). Then the

function I(τ)(a)|S∞ belongs to H∞.

Corollary 4.3 Let ǫ0 and a be given as in the preceding theorem. Take T ∈ (0,∞). Then
all the conclusions stated in Corollary 4.2 for the function Ψ introduced there hold for
Ψ := I(τ)(a)|S∞ as well.

Proof: Theorem 4.4, Lemma 4.8 and 3.2. �

We will need the following pointwise spatial decay estimate of I(τ)(a).

Theorem 4.5 Let R0, δ0 ∈ (0,∞), κ0 ∈ (0, 1], a ∈ L1
loc(R

3)3 such that a|BR0

c ∈
W 1,1

loc (BR0

c
)3, |∂αa(y)| ≤ δ0

(
|y| ν(y)

)−1−|α|/2−κ0 for y ∈ BR0

c
, α ∈ N

3
0 with |α| ≤ 1.

Let R ∈ (R0,∞) and take α as before. Then, for x ∈ Bc
R and t ∈ (0,∞),

|∂αx I(τ)(a)(x, t)| ≤ C (δ0 + ‖a|BR0‖1)
(
|x| ν(x)

)−1−|α|/2
.

Proof: See [12, Theorem 1.1]. Note that in [12, inequality (1.10)], it should read |β|/2
instead of |β|. �

We turn to a single layer potential whose definition is based on the ensuing

Lemma 4.9 Let φ ∈ L2(S∞)3, α ∈ N
3
0 with |α| ≤ 1. Then, for x ∈ R

3\∂Ω, t ∈ (0,∞),
we have

∫ t
0

∫
∂Ω |∂αxΛ(x−y, t−σ, τ) ·φ(y, σ)| doy dσ <∞. In addition, the preceding relation

holds for a. e. x ∈ ∂Ω and a. e. t ∈ (0,∞).
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Proof: If x ∈ R
3\∂Ω, we have |x− y| ≥ dist(x, ∂Ω) > 0 for y ∈ ∂Ω, so Corollary 4.1 with

K = dist(x, ∂Ω)/2 yields |∂αxΛjk(x− y, t− σ, τ)| ≤ C
(
dist(x, ∂Ω)

)−3/2−|α|/2
> 0 for y as

before, t ∈ (0,∞) and σ ∈ (0, t). This estimate and Hölder’s inequality imply the first
claim of the lemma. The second holds according to [10, Lemma 2.19]. �

In view of the preceding lemma, we may define

V(τ)(φ)(x, t) :=

∫ t

0

∫

∂Ω
Λ(x− y, t− σ, τ) · φ̃(y, σ) doy dσ

for T ∈ (0,∞], φ ∈ L2(ST )
3, x ∈ R

3\∂Ω, t ∈ (0,∞), and for a. e. x ∈ ∂Ω and a. e.
t ∈ (0,∞), where φ̃ denotes the zero extension of φ to S∞.

Note that V(τ)(φ) is defined as a function on (R3\∂Ω)× (0,∞) and also as a function on
∂Ω× (0,∞). The second of these functions is the trace of the first:

Theorem 4.6 Let φ ∈ L2(S∞)3 and abbreviate v := V(τ)(φ)|Ωc × (0,∞). Then v ∈
W 1,1

loc

(
Ω
c × (0,∞)

)3 ∩ C0
(
Ω
c × [0,∞)

)3
, v(t) ∈ C∞(Ω

c
)3 and

∂lv(x, t) =

∫ t

0

∫

∂Ω
∂lΛ(x− y, t− σ, τ) · φ(y, σ) doy dσ (4.5)

for t ∈ (0,∞), x ∈ Ω
c
, 1 ≤ l ≤ 3. Moreover v ∈ L∞

(
0,∞, L2(Ω

c
)3
)
, ∇xv ∈ L2

(
Ω
c ×

(0,∞)
)9
, and for t ∈ (0,∞), the trace of v(t) coincides with V(τ)(φ)(t) considered as a

function on ∂Ω.

Proof: For the first part of the lemma, up to and including (4.5), we refer to [10, Lemma
2.21]. The second part holds according to [8, Theorem 2.3, 2.4]. �

If φ ∈ L2(ST )
3 for some T <∞, then V(τ)(φ) is smooth on R

3 × (T,∞):

Lemma 4.10 Let T ∈ (0,∞) and φ ∈ L2(ST )
3. Then V(τ)(φ)|R3 × (T,∞) belongs to

C1
(
R
3 × (T,∞)

)3
, and

∂lt∂
α
xV

(τ)(φ)(x, t) =

∫ T

0

∫

∂Ω
∂lt∂

α
xΛ(x− y, t− σ, τ) · φ(y, σ) doy dσ

for x ∈ R
3, t ∈ (T,∞), α ∈ N

3
0, l ∈ N0 with |α|+ l ≤ 1, where the preceding integral exists

as Lebesgue integral.

Proof: If x ∈ R
3, t ∈ (T,∞) in the situation of Lemma 4.10, the time integral in the

definition of V(τ)(φ)(x, t) only extends from 0 to T , and not from 0 to t. Thus the lemma
follows from Corollary 4.1 and Lebesgue’s theorem by a similar but simpler reasoning as
in the proof of Lemma 4.6, simpler in particular because L2(ST )

3 ⊂ L1(ST )
3. �

We will need the following, much more deep-lying properties of V(τ)(φ).

Theorem 4.7 The relation V(τ)(φ)|S∞ ∈ H∞ holds for φ ∈ L2(S∞)3. There is a constant
c1 > 0 such that ‖V(τ)(φ)|S∞‖H∞

≤ c1 ‖φ‖2 for such φ.

Proof: For φ ∈ L2(S∞)3, define V(0)(φ) in the same way as V(τ)(φ), but with the
term Λ(x − y, t − σ, τ) replaced by Γ(x − y, t − σ); compare [10, Lemma 2.19] and use
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Lemma 4.2. According to [31, Theorem 2.3.3] and the estimates in [31, p. 362], we have
V(0)(φ)|S∞ ∈ H∞ for φ ∈ L2(S∞)3, and there is c > 0 with ‖V(0)(φ)|S∞‖H∞

≤ c ‖φ‖2 for
φ as before. The theorem follows with [9, Theorem 4]. �

Theorem 4.8 ([9, Corollary 3]) There is c2 > 0 such that ‖φ‖2 ≤ ‖V(τ)(φ)|S∞‖H∞

for φ ∈ L2
n(S∞).

For b̃ ∈ H∞, the integral equation V(τ)(φ)|S∞ = b̃ is solved by a unique function φ ∈
L2
n(S∞). (The function space L2

n(S∞) was introduced in (2.1)).

Corollary 4.4 Let T ∈ (0,∞) and φ ∈ L2(ST )
3. Then all the conclusions listed in

Corollary 4.2 for the function Ψ introduced there are true for Ψ = V(τ)(φ)|S∞ as well.

Proof: Lemma 4.10, Theorem 4.7 and Lemma 2.3. �

Corollary 4.5 Let φ ∈ L2(S∞), T ∈ (0,∞). Then, with c1 from Theorem 4.7, we have
‖V(τ)(φ)|ST,∞‖HT,∞

≤ ‖V(τ)(φ)‖H∞
≤ c1 ‖φ‖2.

Proof: Theorem 4.7, Corollary 3.2. �

Corollary 4.6 Let T ∈ (0,∞) and φ ∈ L2
n(S∞) with φ|ST = 0. Then, with c2 from

Theorem 4.8, ‖φ‖2 ≤ c2 ‖V(τ)(φ)‖H∞
= c2 ‖V(τ)(φ)|ST,∞‖HT,∞

.

Proof: The inequality stated in the corollary holds according to Theorem 4.8, whereas
the equation follows from Corollary 3.2. �

In view of a representation formula for solutions to (1.12), (1.10), (1.6), we first state a
uniqueness theorem for such solutions.

Theorem 4.9 Let b : S∞ 7→ R
3, a ∈ L1

loc(Ω
c
)3, f ∈ L2

loc

(
[0,∞), [H1

σ(Ω
c
)]′). Then there

is at most one function u ∈ L2
loc

(
[0,∞), H1(Ω

c
)3
)
such that

u(t)|∂Ω = b(t) for t ∈ (0,∞), divxu = 0, (4.6)
∫ ∞

0

(∫

Ω
c

[
−
(
u(x, t) · V (x)

)
ϕ′(t) (4.7)

+
(
∇xu(x, t) · ∇V (x)

)
ϕ(t) + τ

(
∂1u(x, t) · V (x)

)
ϕ(t)

]
dx− f(t)(V )ϕ(t)

)
dt

=

∫

Ω
c
a(x) · V (x) dx ϕ(0)

for ϕ ∈ C∞
0

(
[0,∞)

)
, V ∈ C∞

0 (Ω
c
)3 with divV = 0.

Proof: This theorem may be shown in the same way as an analogous result for the Stokes
system. We refer to [11, Theorem 3.7] and its proof. �

Now we construct a solution to (1.12), (1.10), (1.6) in the form u = R(τ)(f) + I(τ)(a) +
V(τ)(φ), with φ being the solution to the integral equation (4.8) below. In this way we
obtain a representation formula for the velocity as a sum of three potential functions, as
announced in section 1. We consider this solution as a weak one in the sense of Theorem
4.9 because we want to range it in a uniqueness class which is as large as possible. If
f and a are smooth, then u is the velocity part of a solution satisfying (1.12) and (1.6)
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pointwise; see [10, Lemma 2.14, Theorem 2.16, Lemma 2.21]. (In [10, Theorem 2.16], there
is a misprint: R(τ)(f) is only a C∞- and not a C∞

0 -function.) The boundary condition on
∂Ω holds according to (4.6), and the boundary condition at infinity is satisfied in the sense
that u(t) ∈ H1(Ω

c
)3 for t ∈ (0,∞). If the functions f, a and b decay sufficiently rapidly,

this boundary condition will be fulfilled in a stronger way, on the basis of Theorem 4.3,
4.5 and Lemma 7.3 below. We will come back to this subject in section 8.

Theorem 4.10 Let ǫ0 ∈ (0, 1/2], q ∈ [1, 3/2), b ∈ H∞, a ∈ H
1/2+ǫ0
σ (Ω

c
), f ∈

L2
(
0,∞, Lq(Ω

c
)3
)
∩ L2

(
0,∞, L3/2(Ω

c
)3
)
. Then there is a unique function φ ∈ L2

n(S∞)
(see (2.1)) with

V(τ)(φ)|S∞ = −R(τ)(f)− I(τ)(a) + b. (4.8)

Moreover there is a unique function u ∈ L2
loc

(
[0,∞), H1(Ω

c
)3
)
such that (4.6) and (4.7)

hold. This function is given by

u = R
(τ)(f) + I

(τ)(a) +V
(τ)(φ)|Ωc × (0,∞). (4.9)

Proof: Theorem 4.10 holds according to [13, Theorem 2.26]. Note that the unique solv-
ability of (4.8) is a consequence of Theorem 4.8, 4.4 and 4.2. �

5. Temporal decay of the potential R(τ)(f).

This section has two aims. Firstly, we want to estimate ‖R(τ)(f)|ST,∞‖HT,∞
, and secondly,

we are going to determine an upper bound of |∂αxR(τ)(f)(x, t)| under the assumption |α| ≤
1. Our starting point will be to split f into a sum f (1) + f (2), with f (1) = χR3 × (t/2,∞)
and f (2) = χR3 × (0, t/2). The decay of R(τ)(f (1))(x, t) is then due to the asymptotic
behaviour of f for t → ∞, whereas R(τ)(f (2))(x, t) becomes small for large t due to the
decay properties of the fundamental solution Λ. The next lemma addresses some key
technical difficulties in the estimate of ‖R(τ)(f (2))|ST,∞‖HT,∞

and also of R(τ)(f (2))(x, t).

Lemma 5.1 Let α ∈ N
3
0, l ∈ N0 with |α| + l ≤ 1. Let q ∈ [1, 4], s ∈ [1,∞) with

3/(2 q) + 1/s > 1− |α|/2 − l/2. Take T ∈ (0,∞) and f ∈ Ls
(
0, T, Lq(R3)3

)
. Then

|∂lt∂αxR(τ)(f)(x, t)| ≤ C ‖f‖q,s;T
(
(t− T )−3/(2 q)−1/s+1−|α|/2−l (5.1)

+δ1l (t− T )−3/(2 q)−1/s+1/2
)

for x ∈ R
3, t ∈ (T,∞).

(Recall that R(τ)(f)|R3 × (T,∞) ∈ C1
(
R
3 × (T,∞)

)3
by Lemma 4.6.)

Proof: Take x and t as in the lemma. In the case l = 0, hence |α| ≤ 1, the exponents q and
s verify the condition 3/(2 q) + 1/s > 1− |α|/2. This and the inequality t− σ > (t− T )/2
for σ ∈ (0, T ) allow us to apply Theorem 4.1 with M = (t− T )/2 and ̺ = ∞. Lemma 4.6
and Theorem 4.1 then yield (5.1) in the case l = 0.

Let us suppose for the rest of this proof that l = 1. This means in particular that α = 0
and 3/(2 q)+1/s > 1/2. Consider the case s > 1 and q > 1. Then by Lemma 4.6, Hölder’s
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inequality and Lemma 4.2,

|∂tR(τ)(f)(x, t)| (5.2)

≤ C

∫ T

0

∫

R3

∑

j∈{5, 4}

(
|x− y − τ (t− σ) e1|+ (t− σ)1/2

)−j |f(y, σ)| dy dσ

≤ C ‖f‖q,s;T
∑

j∈{5, 4}

(∫ T

0

[∫

R3

(
|x− y − τ (t− σ) e1|+ (t− σ)1/2

)−j q′
dy

]s′/q′
dσ

)1/s′

.

But for any σ ∈ (0, T ), j ∈ {5, 4}, the preceding integral with respect to y equals
∫
R3

(
|z|+

(t− σ)1/2
)−j q′

dy, and is hence bounded by C(q) (t− σ)−j q′/2+3/2. Therefore from (5.2),

|∂tR(τ)(f)(x, t)| ≤ C(q) ‖f‖q,s;T
∑

j∈{5, 4}

(∫ T

0
(t− σ)[−j/2+3/(2q′)] s′ dσ

)1/s′

.

But −j/2 + 3/(2q′) = (−j + 3)/2 − 3/(2 q) for j ∈ {5, 4}. Since 3/(2 q) + 1/s > 1/2,
as mentioned above, we have [(−j + 3)/2 − 3/(2 q)] s′ < −1 for j as before, so we may
conclude that

|∂tR(τ)(f)(x, t)| ≤ C(q, s) ‖f‖q,s;T
∑

j∈{5, 4}

(t− T )(−j+3)/2−3/(2q)+1/s′ .

Thus we have shown (5.1) in the case s > 1, q > 1, under the assumption l = 1, as we
may recall. If s = 1, q > 1, it follows as in (5.2) that |∂tR(τ)(f)(x, t)| is bounded by

C
∑

j∈{5, 4}

∫ T

0

(∫

R3

(
|x− y − τ (t− σ) e1|+ (t− σ)1/2

)−j q′
dy

)1/q′

‖f( · , σ)‖q dσ.

Since (t−σ)1/2 ≥ (t−T )1/2 for σ ∈ (0, T ), we may conclude that the term |∂tR(τ)(f)(x, t)|
may be estimated by C(q) ‖f‖q,1;∞

∑
j∈{5, 4}(t − T )−j/2+3/(2q′), which is the looked-for

result in the case s = 1, q > 1. If s > 1, q = 1, inequality (5.2) is replaced by the estimate

|∂tR(τ)(f)(x, t)| ≤ C
∑

j∈{5, 4}

∫ T

0

∫

R3

(t− σ)−j/2|f(y, σ)| dy dσ,

so that |∂tR(τ)(f)(x, t)| ≤ C ‖f‖1,s;T
∑

j∈{5, 4}

(∫ T
0 (t − σ)−j s′/2 dσ

)1/s′
. Inequality (5.1)

with q = 1, s > 1 follows. It is obvious how to evaluate |∂tR(τ)(f)(x, t)| if s = q = 1. �

Further below (Corollary 5.1), we will estimate ‖R(τ)(f)|ST+µ,∞‖HT+µ,∞
in terms of neg-

ative powers of µ, under the assumption that f |R3×(T,∞) = 0. In the next three lemmas,
we derive this type of bound.

Lemma 5.2 Let q, s, T, f be given as in Lemma 5.1. Suppose in addition that 3/(2 q) +
1/s > 3/2. Let µ ∈ (0,∞). Then

(∫ ∞

T+µ

[
‖R(τ)(f)(t)|∂Ω‖2H1(∂Ω)3 +

∫

∂Ω
|n(Ω) · ∂tR(τ)(f)(x, t)|2 dox

]
dt
)1/2

≤ C ‖f‖q,s;T (µ−3/(2 q)−1/s+3/2 + µ−3/(2 q)−1/s+1/2).

(Recall that R(τ)(f)|R3 × (T,∞) is a C1-function by Lemma 4.6.)
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Proof: Since 3/(2 q)+1/s > 3/2, the term
(∫∞

T+µ

[
(t−T )−3/q−2/s+2+(t−T )−3/q−2/s

]
dt

)1/2

is bounded by C (µ−3/(2 q)−1/s+3/2 + µ−3/(2 q)−1/s+1/2). Thus the lemma follows from
Lemma 5.1. Note that the largest exponent −3/(2 q) − 1/s + 3/2 arises in the case
α = 0, l = 0 in Lemma 5.1, and the smallest one −3/(2 q) − 1/s + 1/2 if α = 0, l = 1. �

In order to deal with ∂
1/2
t R(τ)(f)(x, t), we need a preparatory result:

Lemma 5.3 Let q ∈ (1, 2], F ∈ Lq(R3)3 and d ∈ (0, 3]. Then, for r ∈ (0,∞),

(∫

∂Ω

[∫

R3

|Λ(x− y, r, τ) · F (y)| dy
]2
dox

)1/2
≤ C ‖F‖q max{1, r−d/(2q′)−3/(2 q)+1/2}.

Proof: Choose R0 > 0 so large that Ω ⊂ BR0/2. This means that Bc
R0

⊂ BR0/2(x)
c and

BR0 ⊂ B2R0(x) for x ∈ ∂Ω.
Let A denote the left-hand side of the estimate stated in the lemma, but with the integral
over R

3 replaced by one over BR0 . Take r ∈ (0,∞). Then, by Hölder’s inequality we see
that A2 is bounded by

C

3∑

j,k=1

∫

∂Ω

[(∫

BR0

|Λjk(x− y, r, τ)| dy
)1/q′(∫

BR0

|Λjk(x− y, r, τ)| |F (y)|q dy
)1/q]2

dox.

But for x ∈ ∂Ω, 1 ≤ j, k ≤ 3, by Corollary 4.1 withK = 2R0 and because BR0 ⊂ B2R0(x),

∫

BR0

|Λjk(x− y, r, τ)| dy ≤ C(R0)

∫

BR0

(|x− y|+ r1/2)−3 dy

≤ C(R0) r
−d/2

∫

B2R0
(x)

(|x− y|+ r1/2)−3+d dy ≤ C(R0, d) r
−d/2.

Therefore A ≤ C r−d/(2q′)
∑3

j,k=1

( ∫
∂Ω

[ ∫
BR0

|Λjk(x − y, r, τ)| |F (y)|q dy
]2/q

dox
)1/2

. Since

2/q ≥ 1, we may conclude with Theorem 2.1 that

A ≤ C r−d/(2q′)
3∑

j,k=1

(∫

BR0

(∫

∂Ω
|Λjk(x− y, r, τ)|2/q dox

)q/2
|F (y)|q dy

)1/q

.

On the other hand, again by Corollary 4.1 with K = 2R0, for y ∈ BR0 , 1 ≤ j, k ≤ 3,

∫

∂Ω
|Λjk(x− y, r, τ)|2/q dox ≤ C

∫

∂Ω
(|x− y|+ r1/2)−6/q dox ≤ C r−3/q+1.

As a consequence, A ≤ C r−d/(2q′)−3/(2 q)+1/2 ‖F‖q. Let B be defined also by the left-hand
side of the estimate stated in the lemma, but this time with the integral over R3 replaced
by one over Bc

R0
. We get

B ≤
3∑

j,k=1

(∫

∂Ω

[(∫

Bc
R0

|Λjk(x− y, r, τ)|q′ dy
)1/q′

‖F‖q
]2
dox

)1/2

. (5.3)
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In order to estimate the integral over Bc
R0

in (5.3), we recall that Bc
R0

⊂ BR0/2(x)
c for

x ∈ ∂Ω, so we may use Corollary 4.1 with K = R0/2 to obtain
∫

Bc
R0

|Λjk(x− y, r, τ)|q′ dy ≤ C(R0, q)

∫

BR0/2
(x)c

(
|x− y| ν(x− y)

)−3 q′/2
dy

≤ C(R0, q)

∫

Bc
R0/2

(
|z| ν(z)

)−3 q′/2
dz for x ∈ ∂Ω, 1 ≤ j, k ≤ 3.

But q ≤ 2, in particular q < 4, so 3 q′/2 > 2, hence with Corollary 2.2 we arrive at the
inequality

∫
Bc

R0

|Λjk(x − y, r, τ)|q′ dy ≤ C(R0, q). This estimate is inserted into (5.3). We

then obtain B ≤ C ‖F‖q. The lemma now follows with the estimate of A obtained above.
�

Lemma 5.4 Let s ∈ (1,∞), q ∈ (1, 3/2) with 3/(2 q)+1/s > 3/2. Let T, µ ∈ (0,∞), f ∈
Ls

(
0, T, Lq(R3)3

)
. Then

(∫ ∞

T+µ

∫

∂Ω
|∂1/2t R

(τ)(f)(x, t)|2 dox dt
)1/2

≤ C ‖f‖q,s;T
( ∑

j∈{2, 3}

µ−3/(2 q)−1/s+j/2 + µ−1/s
)
.

(According to Corollary 4.2, the fractional derivative ∂
1/2
t R(τ)(f)(x, t) is well defined for

any t ∈ (T,∞) and a. e. x ∈ ∂Ω.)

Proof: For brevity we set Ψ := R(τ)(f)|S∞. According to Corollary 4.2, for a. e. x ∈ ∂Ω
equation (2.2) is verified with Ψ(x, · ) in the role of φ. We will estimate each term on the
right-hand side of (2.2) in the norm of L2(ST+µ,∞)3. To begin with, we use Lemma 5.1 to
obtain

(∫ ∞

T+µ

∫

∂Ω
|(t− T )−1/2 Ψ

(
x, (t+ T )/2

)
|2 dox dt

)1/2
(5.4)

≤ C ‖f‖q,s;T
(∫ ∞

T+µ

∫

∂Ω

[
(t− T )−1/2

(
(t+ T )/2− T

)−3/(2 q)−1/s+1 ]2
dox dt

)1/2

≤ C ‖f‖q,s;T
(∫ ∞

T+µ
(t− T )−3/q−2/s+1 dt

)1/2
≤ C ‖f‖q,s;T µ−3/(2 q)−1/s+1,

where the last inequality holds because −3/q − 2/s + 1 < −1 due to our assumptions on
q and s. Again by referring to Lemma 5.1, we get for t ∈ (T + µ, ∞), x ∈ ∂Ω that the
term |

∫ t
(t+T )/2(t− r)−1/2 ∂rv(x, r) dr| is bounded by

C ‖f‖q,s;T
∫ t

(t+T )/2
(t− r)−1/2

∑

j∈{0, 1}

(t− T )−3/(2 q)−1/s+j/2 dr,

and thus by C ‖f‖q,s;T
∑

j∈{0, 1}(t−T )−3/(2 q)−1/s+1/2+j/2. As a consequence, since −3/q−
2/s + 2 < −1 in view of our assumptions on q and s,

(∫ ∞

T+µ

∫

∂Ω

∣∣∣
∫ t

(t+T )/2
(t− r)−1/2 ∂rΨ(x, r) dr

∣∣∣
2
dox dt

)1/2
(5.5)

≤ C ‖f‖q,s;T
∑

j∈{0, 1}

µ−3/(2q)−1/s+1+j/2.
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Moreover,

(∫ ∞

T+µ

∫

∂Ω

∣∣∣
∫ (t+T )/2

0
(t− r)−3/2 v(x, r) dr

∣∣∣
2
dox dt

)1/2
≤ A(1) + A(2), (5.6)

where A(j) for j ∈ {1, 2} is defined as the left-hand side of (5.6) with Ψ(x, r) replaced by

R(1)(x, r) :=

∫ min{r,T}

0

∫

R3

χ(0,1](r − σ)Λ(x− y, r − σ, τ) · f(y, σ) dy dσ

(x ∈ ∂Ω, r ∈ (0,∞)) in the case j = 1, and by a term R(2)(x, r) differing from R(1)(x, r)
insofar as χ(1,∞)(r−σ) substitutes for χ(0,1](r−σ) in the case j = 2. In order to estimate

A(1), we exploit the integration over ∂Ω (Lemma 5.3) in order to reduce the singularity
of R(1)(x, r) when r tends to zero. In a first step, we use Theorem 2.1 to obtain A(1) ≤( ∫∞

T+µB(t)2 dt
)1/2

, with

B(t) :=

∫ (t+T )/2

0
(t− r)−3/2

(∫

∂Ω
|R(1)(x, r)|2 dox

)1/2
dr

Let d be any number from (0, 3), for example d = 3/2. Theorem 2.1 applied once more

yields that
( ∫

∂Ω |R(1)(x, r)|2 dox
)1/2

is bounded by

∫ min{r,T}

0
χ(0,1](r − σ)

(∫

∂Ω

[∫

R3

|Λ(x− y, t− σ, τ) · f(y, σ)| dy
]2
dox

)1/2
dσ,

and hence by C
∫ min{r,T}
0 χ(0,1](r − σ) ‖f(σ)‖q (r − σ)−d/(2q′)−3/(2q)+1/2 dσ according to

Lemma 5.3. This estimate and Hölder’s inequality imply for t ∈ (T + µ, ∞) that

B(t) ≤
(∫ (t+T )/2

0
(t− r)−3s′/2 dr

)1/s′

·
(∫ (t+T )/2

0

[∫ min{r,T}

0
χ(0,1](r − σ) (r − σ)−d/(2q′)−3/(2q)+1/2 ‖f(σ)‖q dσ

]s
dr

)1/s
,

hence with Young’s inequality,

B(t) ≤ C ‖f‖q,s;T (t− T )−3/2+1/s′
∫

R

χ(0,1](σ)σ
−d/(2q′)−3/(2q)+1/2 dσ.

But −d/(2 q′)− 3/(2q) + 1/2 > −1 because d < 3 and q > 1, so

B(t) ≤ C ‖f‖q,s;T (t− T )−3/2+1/s′ ≤ C ‖f‖q,s;T (t− T )−1/2−1/s,

for t as before. Recalling that A(1) ≤
( ∫∞

T+µB(t)2 dt
)1/2

, we now obtain

A(1) ≤ C ‖f‖q,s;T
(∫

T+µ
(t− T )−1−2/s dt

)1/2
≤ C ‖f‖q,s;T µ−1/s. (5.7)

25



Turning to A(2), we deduce from Hölder’s inequality that

∫ (t+T )/2

0
(t− r)−3/2 |R(2)(x, r)| dr ≤

(∫ (t+T )/2

0
(t− r)−3s′/2 dr

)1/s′

‖R(2)(x, · )‖s (5.8)

≤ C (t− T )−3/2+1/s′ ‖R(2)(x, · )‖s ≤ C (t− T )−1/2−1/s ‖R(2)(x, · )‖s
for x ∈ ∂Ω, t ∈ (T + µ, ∞). But q < 3/2, hence 1− 3/(2q) < 0, so we get by Theorem 4.1
with α = 0, M = 1, ̺ = s that ‖R(2)(x, · )‖s ≤ C(q, s)‖f‖q,s;T for any x ∈ R

3. This choice

of ̺ is possible since s > 1. Thus from (5.8), A(2) ≤ C
( ∫∞

T+µ(t−r)−1−2/s dr
)1/2 ‖f‖q,s;T ≤

C ‖f‖q,s;T µ−1/s. The lemma follows from the preceding inequality, (5.4) – (5.6), (5.7), and
from equation (2.2) as indicated at the beginning of this proof. �

Corollary 5.1 Let q ∈ (1, 3/2), q̂ ∈ [1, 3/2), s ∈ (1,∞) with 3/(2 q) + 1/s > 3/2, f ∈
Lc

(
0,∞, Ld(R3)3

)
for (c, d) ∈ {(s, q), (2, q̂), (2, 3/2)}. Let T ∈ [1,∞). Then

‖R(τ)(f)|ST,∞‖HT,∞
≤ C ‖f‖q,s;∞ (T−3/(2q)−1/s+3/2 + T−1/s)

+C
(
‖f |R3 × (T/2, ∞)‖q̂,2;∞ + ‖f |R3 × (T/2, ∞)‖3/2, 2;∞

)
.

(Recall that by Theorem 4.2, we have R(τ)(f)|S∞ ∈ H∞.)

Proof: Put f (1) := χR3×(T/2,∞) f, f
(2) := χR3×(0, T/2) f. Then by Corollary 3.2 and

Theorem 4.2,

‖R(τ)(f (1))|ST,∞‖HT,∞
≤ ‖R(τ)(f (1))‖H∞

≤
(
‖f (1)‖q̂,2;∞ + ‖f (1)‖3/2, 2;∞

)
. (5.9)

Concerning R(τ)(f (2)), we use equation (4.3) with f (2) in the place of f , and then Lemma
5.2 and 5.4 with T replaced by T/2 and µ = T/2. Taking account of the assumption
T ≥ 1, we find that

‖R(τ)(f (2))|ST,∞‖HT,∞
≤ C ‖f‖q,s;∞ (T−3/(2q)−1/s+3/2 + T−1/s). (5.10)

Corollary 5.1 follows from (5.9) and (5.10). �

In section 8, we will need a pointwise estimate on spatial and temporal decay of R(τ)(f),
based on Theorem 4.3 and Lemma 5.1. Contrary to the situation in Theorem 4.3, we want
to avoid the assumption f |BR0 × (0,∞) ∈ L2

(
BR0 × (0,∞)

)3
because it is inconvenient in

the nonlinear case. The ensuing lemma allows us to replace this condition by the weaker
one f |BR0 × (0,∞) ∈ L2

(
0,∞, L1(BR0)

3
)
. We will apply this lemma only for ̺ = 2, but

still consider the case ̺ ∈ [1,∞) because one may hope that in future work, the decay
rates obtained in the special situation of Lemma 5.5 may be recovered in a more general
setting.

Lemma 5.5 Let ̺ ∈ [1,∞), R0 ∈ (0,∞) and f ∈ L̺
(
0,∞, L1(BR0)

3
)
. Take R ∈

(R0,∞). Then, for α ∈ N
3
0 with |α| ≤ 1, ǫ ∈ [0, 1], x ∈ Bc

R and t ∈ (0,∞),

|∂αxR(τ)(f)(x, t)|

≤ C
[ (

|x| ν(x)
)−1/2−1/̺−|α|/2 (

(1 + t)−2 ‖f‖1,̺;∞ + ‖f |BR0 × (t/2, ∞)‖1,̺;∞)

+
(
|x| ν(x)

)(−1/2−1/̺−|α|/2) (1−ǫ)
(1 + t)(−1/2−1/̺−|α|/2) ǫ ‖f‖1,̺;∞

]
.
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Proof: Take α, ǫ, x, t as above, and put f (1) := χBR0
×(0, t/2) f, f

(2) := χBR0
×(t/2,∞) f.

For y ∈ BR0 , we get

|x− y| ≥ |x| − |y| = |x| (1 −R0/R) + |x|R0/R− |y| ≥ |x|(1−R/R0) ≥ R−R0, (5.11)

where R − R0 > 0. Thus we may apply Corollary 4.1 with K = R − R0. Suppose that
̺ > 1. If ̺ = 1, the ensuing argument remains valid with some small modifications. Due
Lemma 4.6, Corollary 4.1 used as indicated, (5.11) and Lemma 2.4, we get

|∂αxR(τ)(f (1))(x, t)| (5.12)

≤ C

∫ t/2

0

∫

BR0

(
|x− y| ν(x− y) + t− σ

)−3/2−|α|/2 |f(y, σ)| dy dσ

≤ C

∫ t/2

0

∫

BR0

(
|x| ν(x) + t− σ

)−3/2−|α|/2 |f(y, σ)| dy dσ

≤ C

(∫ t/2

0

(
|x| ν(x) + t− σ

)(−3/2−|α|/2) ̺′
dσ

)1/̺′

‖f‖1,̺;∞

≤ C
(
|x| ν(x) + t

)−3/2−|α|/2+1/̺′ ‖f‖1,̺;∞.

In the case t ≤ 1, we thus get |∂αxR(τ)(f (1))(x, t)| ≤ C
(
|x| ν(x)

)−3/2+1/̺′−|α|/2 ‖f‖1,̺;∞,
and then multiply the right-hand side by 4 (1 + t)−2. If t ≥ 1, it follows from (5.12) that

|∂αxR(τ)(f (1))(x, t)| ≤ C
(
|x| ν(x)

)(−3/2+1/̺′−|α|/2) (1−ǫ)
(1+t)(−3/2+1/̺′−|α|/2) ǫ ‖f‖1,̺;∞. As

in (5.12), we obtain that |∂αxR(τ)(f (2))(x, t)| is bounded by

C

(∫ t

t/2

(
|x| ν(x) + t− σ

)(−3/2−|α|/2) ̺′
dσ

)1/̺′

‖f |BR0 × (t/2, ∞)‖1,̺;∞,

and hence by C
(
|x| ν(x)

)−3/2+1/̺′−|α|/2 ‖f |BR0 × (t/2, ∞)‖1,̺;∞. The lemma follows from
the preceding estimates and because −3/2 + 1/̺′ = −1/2− 1/̺. �

Lemma 5.6 Let α ∈ N
3
0 with |α| ≤ 1, q ∈ [1, 4], q̃, q, s ∈ [1,∞), s̃, s ∈ [1,∞] with

3/(2 d)+1/c > 1−|α|/2 for (c, d) ∈ {(s, q), (s̃, q̃)}, and 3/(2 q)+1/s < 1−|α|/2. Suppose
that R0 ∈ (0,∞) and f ∈ Lc

(
0,∞, Lq(Bc

R0
)3
)
for (c, d) ∈ {(s, q), (s̃, q̃), (s, q)}. Then, for

x ∈ R
3, t ∈ [1,∞),

|∂αxR(τ)(f)(x, t)| ≤ C
(
‖f‖q,s;∞ (1 + t)−3/(2q)−1/s+1−|α|/2

+‖f |Bc
R0

× (t/2, ∞)‖q̃,s̃;∞ + ‖f |Bc
R0

× (t/2, ∞)‖q,s;∞
)
.

Proof: Let x, t as in the lemma, and put f (1) := χBc
R0

×(0, t/2) f, f
(2) := χBc

R0
×(t/2,∞) f.

Lemma 5.1 with f replaced by f (1) and with T = t/2, and the assumptions t ≥ 1, 3/(2 q)+
1/s > 1−|α|/2 imply |∂αxR(τ)(f (1))(x, t)| ≤ C ‖f‖q,s;∞ (1+t)−3/(2q)−1/s+1−|α|/2.We further

note that according to Lemma 4.4, we have |∂αxR(τ)(f (2))(x, t)| ≤ A1 + A2, with A1 :=∫ t
t/2

∫
Bc

R0

χ(0,1](t− σ) |∂αxΛ(x − y, t − σ, τ) · f(y, σ)| dy dσ, and A2 defined as A1, but with

the term χ(0,1](t− σ) replaced by χ(1,∞)(t− σ). Since 3/(2 q) + 1/s < 1− |α|/2, Theorem
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4.1 with ̺ = ∞, M = 1 yields A1 ≤ C ‖f |Bc
R0

× (t/2, ∞)‖q,s;∞. Similarly, the assumption
3/(2 q̃) + 1/s̃ > 1 − |α|/2 and Theorem 4.1, again with ̺ = ∞, M = 1, imply A2 ≤
C ‖f |Bc

R0
× (t/2, ∞)‖q̃,s̃;∞. Lemma 5.6 follows by combining the preceding estimates. �

Now we collect what we found in this section about temporal pointwise decay of R(τ)(f),
and combine it with a pointwise spatial decay estimate.

Corollary 5.2 Let α ∈ N
3
0 with |α| ≤ 1, ̺ ∈ [1,∞), q ∈ [1, 4], q̃, q, s ∈ [1,∞), s̃, s ∈

[1,∞] with 3/(2 d)+1/c > 1−|α|/2 for (c, d) ∈ {(s, q), (s̃, q̃)}, and 3/(2 q)+1/s < 1−|α|/2.
Suppose that R0 ∈ (0,∞) and the function f : R3× (0,∞) 7→ R

3 satisfies f |BR0 × (0,∞) ∈
L̺

(
0,∞, L1(BR0)

3
)
, f |Bc

R0
× (0,∞) ∈ Lc

(
0,∞, Lq(Bc

R0
)3
)
with (c, d) being anyone of

the pairs (s, q), (s̃, q̃) and (s, q). Let R ∈ (R0,∞) and further suppose there is D0 > 0
such that

|∂αxR(τ)
(
f |Bc

R0
× (0,∞)

)
(x, t)| ≤ D0

(
|x| ν(x)

)−1/2−1/̺−|α|/2
for x ∈ Bc

R, t > 0. (5.13)

(This condition is satisfied if, for example, ̺ = 2 and χBc
R0

×(0,∞) f fulfills the assumptions

of Theorem 4.3 in the place of f .) Then, for x ∈ Bc
R, t ∈ (0,∞), ǫ ∈ [0, 1],

|∂αxR(τ)(f)(x, t)| ≤ C
[ (

|x| ν(x)
)−1/2−1/̺−|α|/2 (

(D0 +K1) (1 + t)−2 +K2(t)
)

(5.14)

+(D1−ǫ
0 +K1)

(
|x| ν(x)

)(−1/2−1/̺−|α|/2) (1−ǫ)

(
(1 + t)−1/2−1/̺−|α|/2 +K3 (1 + t)−3/(2q)−1/s+1−|α|/2 +K4(t)

)ǫ ]
,

with K1 := ‖f |BR0 × (0,∞)‖1,̺;∞, K2(t) := ‖f |BR0 × (t/2, ∞)‖1,̺;∞, K3 := ‖f |Bc
R0

×
(0,∞)‖q,s;∞, K4(t) := ‖f |Bc

R0
× (t/2, ∞)‖q̃,s̃;∞ + ‖f |Bc

R0
× (t/2, ∞)‖q,s;∞.

Proof: Take x, t, ǫ as in the lemma. We apply Lemma 5.5 with f replaced by f (1) :=
f |BR0 × (0,∞). It follows that |∂αxR(τ)(f (1))(x, t)| is bounded by the right-hand side of
(5.14). Suppose that t ≥ 1. Starting from the equation d = dǫ d1−ǫ for d > 0, we use
(5.13) as well as Lemma 5.6 with f replaced by f (2) := χBc

R0
×(0,∞) f . It follows that

|∂αxR(τ)(f (2))(x, t)| is also bounded by the right-hand side of (5.14). In the case t ≤ 1,
inequality (5.13) multiplied by 4 (1+ t)−2 yields a suitable estimate of |∂αxR(τ)(f (2))(x, t)|.
�

6. Temporal decay of the potential I(τ)(a).

First we consider the behaviour of ‖I(τ)(a)|ST,∞‖HT,∞
when T tends to infinity.

Theorem 6.1 Let ǫ0 ∈ (0, 1/2], p ∈ (1, 2], a ∈ H
1/2+ǫ0
σ (Ω

c
) ∩ Lp(Ω

c
)3 and T ∈ [1,∞).

Then ‖I(τ)(a)|ST,∞‖HT,∞
≤ C ‖a‖p T−3/(2p)+1/2. (Note that I(τ)(a)|S∞ ∈ H∞ due to the

assumption a ∈ H
1/2+ǫ0
σ (Ω

c
); see Theorem 4.4.)
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Proof: Recall that I(τ)(a) ∈ C1
(
R
3 × (0,∞)

)3
according to Lemma 4.8. From (4.4) and

Lemma 4.7 we get for α ∈ N
3
0 and l ∈ N0 with |α|+ l ≤ 1 that

(∫ ∞

T

∫

∂Ω
|∂lt∂αx I(τ)(a)(x, t)|2 dox dt

)1/2
≤ C ‖a‖p

(∫ ∞

T
(t−3/p−|α|−2l + δ1l t

−3/p−1) dt
)1/2

≤ C ‖a‖p (T−3/(2p)−|α|/2−l+1/2 + δ1l T
−3/(2p)).

Since T ≥ 1, the right-hand side of this estimate is bounded by C ‖a‖p T−3/(2p)+1/2, so

∫ ∞

T

(
‖I(τ)(a)(t)|∂Ω‖2H1(∂Ω)3 + ‖n(Ω) · ∂4I(τ)(a)(t)‖22

)
dt ≤ C ‖a‖2p T−3/p+1. (6.1)

Turning to an estimate of ∂
1/2
4

(
I(τ)(a)|S∞

)
, we note that by Corollary 4.3, this fractional

derivative exists, and equation (2.2) holds with I(τ)(a)(x, · ) in the role of φ and with T
replaced by T/2, for a. e. x ∈ ∂Ω. With this in mind, we find with Lemma 4.7 that

(∫ ∞

T

∫

∂Ω
|(t− T/2)−1/2

I
(τ)(a)

(
x, (t+ T/2)/2

)
|2 dox dt

)1/2
(6.2)

≤ C(p) ‖a‖p
(∫ ∞

T

(
t−1/2 (t+ T/2)−3/(2p)

)2
dt
)1/2

≤ C(p) ‖a‖p T−3/(2p).

We further find for t ∈ (T,∞), x ∈ ∂Ω that by (4.4) and Lemma 4.7,

∫ t

(t+T/2)/2
(t− r)−1/2 |∂4I(τ)(a)(x, r)| dr

≤ C(p) ‖a‖p
∫ t

(t+T/2)/2
(t− r)−1/2

∑

j∈{0, 1}

r−3/(2p)−1/2−j/2 dr

≤ C(p) ‖a‖p
∑

j∈{0, 1}

(t+ T/2)−3/(2p)−1/2−j/2

∫ t

(t+T/2)/2
(t− r)−1/2 dr ≤ C(p) ‖a‖p t−3/(2p),

where the last inequality is valid because t ≥ T ≥ 1. As a consequence, since p < 3, hence
−3/p < −1,

(∫ ∞

T

∫

∂Ω

∣∣∣
∫ t

(t+T/2)/2
(t− r)−1/2∂4I

(τ)(a)(x, r) dr
∣∣∣dox dt

)1/2
≤ C(p)‖a‖pT−3/(2p)+1/2. (6.3)

Next we consider the term

A :=
(∫ ∞

T

∫

∂Ω

∣∣∣
∫ (t+T/2)/2

0
(t− r)−3/2

I
(τ)(a)(x, r) dr

∣∣∣ dox dt
)1/2

. (6.4)

In the case p > 3/2, we have 3/(2 p) < 1, so we get with Lemma 4.7 that

A ≤ C(p) ‖a‖p
(∫ ∞

T

[∫ (t+T/2)/2

0
(t− r)−3/2 r−3/(2p) dr

]2
dt
)1/2

(6.5)

≤ C(p) ‖a‖p
(∫ ∞

T
t−3

[∫ (t+T/2)/2

0
r−3/(2p) dr

]2
dt
)1/2

≤ C(p) ‖a‖p T−3/(2p).
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Now suppose that p ≤ 3/2 so that 3/(2 p) ≥ 1. Then we use the splitting A ≤ A1 + A2,
where A1 is defined in the same way as A (see (6.4)), but with the lower bound 0 of the
integral with respect to r replaced by 3/4. Similarly, the definition of A2 follows that of
A, but the integral with respect to r is to extend from 0 to 3/4. If p < 3/2, we again use
the first two inequalities in (6.5), with the lower bound of the integral with respect to r

being 3/4 instead of 0. Since 3/(2 p) > 1, we have
∫ (t+T/2)/2
3/4 t−3/(2p) dr ≤ C(p), so we get

that A1 ≤ C(p) ‖a‖p
( ∫∞

T t−3 dt
)1/2 ≤ C(p) ‖a‖p T−1.

In the case 3/(2 p) = 1, we observe that
∫ (t+T/2)/2
3/4 t−3/(2p) dr ≤

∫ 3t/4
3/4 r−1 dr = ln t. There-

fore, again starting as in (6.5), we obtain A1 ≤ C(p) ‖a‖p T−1 (1 + lnT ) for p = 3/2. By
what we have seen further above, the preceding estimate is valid in the case p < 3/(2 p)
as well, and thus holds if p ≤ 3/(2 p). In order to deal with A2, we reduce the singularity
of the variable r in I(τ)(a)(x, r) for r ↓ 0 by exploiting the integration on ∂Ω. To this
end, we use Hölder’s inequality and Theorem 2.1, as well as Lemma 4.1, obtaining with
the abbreviation F (x, y, r) := H(x− y − τ r e1, r) that

∫

∂Ω
|I(τ)(a)(x, r)|2 dox

≤
∫

∂Ω

[(∫

R3

F (x, y, r) dy
)1/p′(∫

R3

F (x, y, r) |a(y)|p dy
)1/p]2

dox

=

∫

∂Ω

(∫

R3

F (x, y, r) |a(y)|p dy
)2/p

dox ≤
(∫

R3

[∫

∂Ω
F (x, y, r)2/p dox

]p/2
|a(y)|p dy

)2/p

for r ∈ (0,∞). Note that 2/p ≥ 1 because p ∈ (1, 2]. Now we apply Lemma 4.1 again to

deduce from the preceding estimate that
( ∫

∂Ω |I(τ)(a)(x, r)|2 dox
)1/2

is bounded by

C
(∫

R3

[∫

∂Ω
(|x− y − τ r e1|+ r1/2)−6/p dox

]p/2
|a(y)|p dy

)1/p
,

and hence by C r−3/(2p)+1/2 ‖a‖p for r ∈ (0,∞). Therefore, once more by Theorem 2.1,

A2 ≤ C
(∫ ∞

T
t−3

∫

∂Ω

[∫ 3/4

0
|I(τ)(a)(x, r)| dr

]2
dox dt

)1/2

≤ C

(∫ ∞

T
t−3

[∫ 3/4

0

(∫

∂Ω
|I(τ)(a)(x, r)|2 dox

)1/2
dr

]2
dt

)1/2

≤ C ‖a‖p
(∫ ∞

T
t−3

[∫ 3/4

0
r−3/(2p)+1/2 dr

]2
dt
)1/2

.

Since p > 1, we have −3/(2 p)+1/2 > −1, so we arrive at the inequality A2 ≤ C ‖a‖p T−1.
On combining the definition of A in (6.4), the estimate of A in the case p > 3/2 in (6.5),
the inequalities A ≤ A1+A2 and A1 ≤ C ‖a‖p T−1 (1+lnT ) (see above), and the preceding
estimate of A2, we find A ≤ C ‖a‖p T−̺(p) σ(p, T ), with ̺(p) := 3/(2 p), σ(p, T ) := 1 if
p > 3/2, and ̺(p) := 1, σ(p, T ) := 1 + lnT in the case p ≤ 3/2. But T ≥ 1, so we get in
any case that A ≤ C ‖a‖p T−3/(2p)+1/2. Since equation (2.2) is valid with I(τ)(a)(x, · ) in
the role of φ and with T replaced by T/2, for a. e. x ∈ ∂Ω (Corollary 4.3), we may deduce
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from the preceding estimate and (6.2) – (6.4) that
(∫∞

T

∫
∂Ω |∂1/24 I(τ)(a)(x, t)|2 dox dt

)1/2 ≤
C ‖a‖p T−3/(2p)+1/2. But by Corollary 4.3, equation (4.3) holds for Ψ := I(τ)(a)|S∞, so

Theorem 6.1 follows from from (6.1) and the estimate of ∂
1/2
4

(
I(τ)(a)|S∞

)
just proved. �

A pointwise estimate with respect to the asymptotics of I(τ)(a) in time and in space is
readily available, due to Theorem 4.5 and Lemma 4.7.

Corollary 6.1 Take R0, δ0, κ0 and a as in Theorem 4.5. Let p ∈ [1,∞] and suppose that
a ∈ Lp(Ω

c
)3. Let R ∈ (R0,∞), α ∈ N

3
0 with |α| ≤ 1. Then, for ǫ ∈ [0, 1], x ∈ Bc

R, t ∈
(0,∞),

|I(τ)(a)(x, t)| ≤ C
[
(δ0 + ‖a|ΩR0‖1)

(
|x| ν(x)

)(−1−|α|/2)
(1 + t)−2

+(δ0 + ‖a|ΩR0‖1)1−ǫ ‖a‖ǫp
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
(1 + t)(−3/(2p)−|α|/2) ǫ

]
.

Proof: In the case t ≤ 1, Theorem 4.5 immediately yields that |I(τ)(a)(x, t)| is bounded
by C (δ0 + ‖a|ΩR0‖1)

(
|x| ν(x)

)−1−|α|/2
(1 + t)−2. If t ≥ 1, the looked-for estimate holds

due to Theorem 4.5, (4.4), Lemma 4.7 and because d = dǫ d1−ǫ for d > 0. �

7. Temporal decay of the potential V(τ)(φ) and of the solu-
tion of the integral equation (4.8).

A key element of our theory is a decay estimate of the solution to the integral equation
(4.8). This element will be presented in Theorem 7.1 below. Its proof depends on certain
features of the potential V(τ)(φ), which we establish in the ensuing two lemmas.

Lemma 7.1 Let µ, T ∈ (0,∞) and φ ∈ L2(ST )
3. Then

(∫

T+µ

∫

∂Ω
|∂1/2t V(τ)(φ)(x, t)|2 dox dt

)1/2
≤ C (µ−3/2 + µ−1)T 1/2 ‖φ‖2.

(By Corollary 4.4, the fractional derivative ∂
1/2
t V(τ)(φ)(x, t) exists for a. e. x ∈ ∂Ω and

for t ∈ (T,∞)).

Proof: For brevity we set v := V(τ)(φ). By Corollary 4.4, equation (2.2) holds with
v(x, · ) in the place of the function φ in Lemma 2.3, for a. e. x ∈ ∂Ω. With this reference
in mind, we observe that by Lemma 4.10 and 4.2, for r ∈ (T,∞), x ∈ ∂Ω, l ∈ {0, 1},

|∂lrv(x, r)| ≤
∫ T

0

∫

∂Ω

(
(r − σ)−3/2−l + (r − σ)−3/2−l/2

)
|φ(y, σ)| doy dσ

≤ C
(
(r − T )−3/2−l + (r − T )−3/2−l/2

)
T 1/2 ‖φ‖2,
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where we used that ‖φ‖1 ≤ C T 1/2 ‖φ‖2. The preceding inequality implies

(∫ ∞

T+µ

∫

∂Ω
|(t− T )−1/2 v

(
x, (t+ T )/2

)
|2 dox dt

)1/2
(7.1)

≤ CT 1/2 ‖φ‖2
(∫ ∞

T+µ
(t− T )−4 dt

)1/2
≤ CT 1/2 ‖φ‖2 µ−3/2,

(∫ ∞

T+µ

∫

∂Ω

∣∣∣
∫ t

(t+T )/2
(t− r)−1/2 ∂rv(x, r) dr

∣∣∣
2
dox dt

)1/2
(7.2)

≤ CT 1/2 ‖φ‖2
(∫ ∞

T+µ

[∫ t

(t+T )/2
(t− r)−1/2

(
(t− T )−5/2 + (t− T )−2

)
dr

]2
dt
)1/2

≤ CT 1/2 ‖φ‖2 (µ−3/2 + µ−2).

For t ∈ [T + µ, ∞), r ∈
(
0, (t+ T )/2

]
, the inequality t− r ≥ (t− T )/2 holds. Therefore

B :=
(∫ ∞

T+µ

∫

∂Ω

∣∣∣
∫ (t+T )/2

0
(t− r)−3/2 v(x, r) dr

∣∣∣
2
dox dt

)1/2
(7.3)

≤ C

(∫ ∞

T+µ
(t− T )−3

∫

∂Ω

[∫ (t+T )/2

0
|v(x, r)| dr

]2
dox dt

)1/2
.

By extending the domain of integration of the variable r to (0,∞), we may separate the
integration with respect to r and t. In this way we get

B ≤ Cµ−1
(∫

∂Ω

[∫ ∞

0
|v(x, r)| dr

]2
dox

)1/2
. (7.4)

But by Corollary 4.1 with K = diamΩ, the term
∫∞
0 |v(x, r)| dr for x ∈ ∂Ω is bounded by

C
∫∞
0

∫ T
0

∫
∂Ω(|x−y|2+r−σ)−3/2 |φ(y, σ)| doy dσ dr. Integrating with respect to r, this triple

integral, in turn, may be estimated by C
∫ T
0

∫
∂Ω |x− y|−1 |φ(y, σ)| doy dσ, and hence with

Hölder’s inequality by CT 1/2
∫
∂Ω |x− y|−1 ‖φ(y, · )‖2 doy. On applying Hölder’s inequality

once more, we may thus deduce from (7.4) that

B ≤ Cµ−1 T 1/2
(∫

∂Ω

[∫

∂Ω
|x− y|−1 doy

] [∫

∂Ω
|x− y|−1 ‖φ(y, · )‖22 doy

]
dox

)1/2

≤ Cµ−1 T 1/2
(∫

∂Ω

∫

∂Ω
|x− y|−1 dox ‖φ(y, · )‖22 doy

)1/2
≤ Cµ−1 T 1/2 ‖φ‖2.

The lemma follows from this inequality, (7.1) – (7.3) and, as explained at the beginning
of this proof, from (2.2). �

Lemma 7.2 As in Lemma 7.1, let µ, T ∈ (0,∞) and φ ∈ L2(ST )
3. Then

(∫ ∞

T+µ

[
‖V(τ)(φ)(t)|∂Ω‖2H1(∂Ω)3 + ‖n(Ω) · ∂tV(τ)(φ)(t)‖22

]
dt
)1/2

(7.5)

≤ C (µ−2 + µ−1)T 1/2 ‖φ‖2.

(Recall that by Lemma 4.10, we have V(τ)(φ)|R3 × (T,∞) ∈ C1
(
R
3 × (T,∞)

)
.)
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Proof: We again set v := V(τ)(φ) for brevity. Lemma 4.2 and 4.10 yield for x ∈ ∂Ω and
t ∈ [T + µ, ∞) that

|v(x, t)| +
3∑

j=1

|∂jv(x, t)|+ |∂tv(x, t)| (7.6)

≤ C

∫ T

0

∫

∂Ω

(
(t− σ)−3/2 + (t− σ)−2 + (t− σ)−5/2

)
|φ(y, σ)| doy dσ

≤ C
(
(t− T )−3/2 + (t− T )−5/2

)
‖φ‖1 ≤ CT 1/2

(
(t− T )−3/2 + (t− T )−5/2

)
‖φ‖2.

Denote the left-hand side of (7.5) by B. We may deduce from (7.6) that B is bounded by

CT 1/2 ‖φ‖2
( ∫∞

T+µ

[
(t−T )−3+(t−T )−5

]
dt

)1/2
, and hence by CT 1/2 ‖φ‖2 (µ−1+µ−2). �

Corollary 7.1 There is a constant c3 > 0 such that ‖V(τ)(φ)|ST+µ,∞‖HT+µ,∞
is bounded

by c3 (1 + T )1/2 (1 + µ)−1 ‖φ‖2, for T, µ ∈ (0,∞) and φ ∈ L2(ST )
3.

Proof: First suppose that µ ∈ (0, 1]. Then Corollary 3.2 and Theorem 4.7 yield that
‖V(τ)(φ)|ST+µ,∞‖HT+µ,∞

≤ ‖V(τ)(φ)|S∞‖H∞
≤ C ‖φ‖2 ≤ C ‖φ‖2 (1 + µ)−1 (1 + T )1/2. If

µ ≥ 1, we use Lemma 7.1, 7.2 and Corollary 4.4 to obtain that ‖V(τ)(φ)|ST+µ,∞‖HT+µ,∞

is bounded by CT 1/2 ‖φ‖2 (µ−1 + µ−2), and thus again by C ‖φ‖2 (1 + µ)−1 (1 + T )1/2. �

Theorem 7.1 Let b̃ ∈ H∞. Suppose there are numbers δ ∈ (0,∞), ζ ∈ (0, 1) such that
‖b̃|ST,∞‖HT,∞

≤ δ T−ζ for T ∈ (1,∞). Let φ be the unique function from L2
n(S∞) such

that V(τ)(φ)|S∞ = b̃ (Theorem 4.8). Then ‖φ|ST,∞‖2 ≤ C (1 + T )−ζ for T ∈ (0,∞).

Proof: For brevity, set ǫ := 1− ζ. Let n ∈ N with n ≥ 400 c21 c
2
2, where c1 was introduced

in Theorem 4.7, and c2 in Theorem 4.8. Let k be the unique number from N such that
k ǫ < 1 ≤ (k + 1) ǫ. Define ϕ(ǫ) as in Lemma 2.1. In view of a later proof by induction,
suppose that T, B ∈ (0,∞) are such that

T ≥ max{4, (160 c2 c3 n)2, (320 c2 c3k)1/ϕ(ǫ)}, (7.7)

B ≥ max{40 c2 c3 (‖φ|S1‖2 + 1), 20 δ}, ‖φ|St,∞‖2 ≤ B t−1+ǫ for t ∈ [1, T ]. (7.8)

We want to show that ‖φ|ST,∞‖2 ≤ (B/2)T−1+ǫ in this situation, hence ‖φ|St,∞‖2 ≤
B t−1+ǫ for t ∈ [1, 2T ]. (Note that St,∞ ⊂ ST,∞ for t ∈ [T, 2T ].) With this aim in mind,
we refer to Lemma 2.2, choosing a number i0 ∈ {0, ..., n − 1} such that the inequality
‖φ|∂Ω× (t0−T/(2n), t0)‖ ≤ ‖φ|ST \ST/2‖2 n−1/2 holds with t0 := (T/2)

(
1+ (i0+1)/n

)
.

Since t0 ≤ T and φ|St0,∞ ∈ L2
n(St0,∞), we obtain with Corollary 4.6 that

‖φ|ST,∞‖2 ≤ ‖φ|St0,∞‖2 ≤ c2 ‖V(τ)(φ|St0,∞)|St0,∞‖Ht0,∞
(7.9)

≤ c2
(
‖V(τ)(φ)|St0,∞‖Ht0,∞

+ ‖V(τ)(φ|St0)|St0,∞‖Ht0,∞

)
.

where the last inequality holds because V(τ)(φ) = V(τ)(φ|St0) +V(τ)(φ|St0,∞). Recalling

that V(τ)(φ)|S∞ = b̃, and splitting V(τ)(φ|St0) into a suitable sum, we may conclude from
(7.9) that ‖φ|ST,∞‖2 ≤ c2 (‖b̃|St0,∞‖Ht0,∞

+ A1 + A2 +
∑k−1

j=0 Bj + A3), where the terms

A1, A2, B0, ..., Bk−1, A3 all have the form ‖V(τ)(φ|A)|St0,∞‖Ht0,∞
, with A being defined
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by A = ∂Ω×
(
t0−T/(2n), t0

)
, A = St0−T/(2n)\ST/4 and A = S1 in the case of A1, A2 and

A3, respectively, and A = S(T/4)1−j/k\S(T/4)1−(j+1)/k in the case of Bj , for 0 ≤ j ≤ k − 1.

The definition ofBj makes sense because T ≥ 4 (see (7.7)), so (T/4)1−j/k > (T/4)1−(j+1)/k

for j as before. But t0 ≥ T/2, so by Corollary 3.2 and the preceding estimate of ‖φ|ST,∞‖2,

‖φ|ST,∞‖2 ≤ c2 (‖b̃|ST/2,∞‖HT/2,∞
+ A1 + A2 +

k−1∑

j=0

B̃j + Ã3), (7.10)

where B̃0, ..., B̃k−1, Ã3 are defined in the same way as B0, ..., Bk−1, A3, respectively,
except that the restriction to St0,∞ is replaced by a restriction to ST/2,∞, and the mapping
‖ ‖Ht0,∞

by ‖ ‖HT/2,∞
. Corollary 4.5 and the choice of t0 imply

c2 A1 ≤ c1 c2 ‖φ|∂Ω ×
(
t0 − T/(2n), t0

)
‖2 ≤ c1 c2 ‖φ|ST \ST/2‖2 n−1/2

≤ c1 c2 ‖φ|ST/2,∞‖2 n−1/2,

so by (7.8) and the choice of n we get c2 A1 ≤ c1 c2B (T/2)−1+ǫ n−1/2 ≤ (B/10)T−1+ǫ.
Concerning A2, we use Corollary 7.1 with T replaced by t0−T/(2n) and µ by T/(2n), to
obtain

c2 A2 ≤ c2 c3
(
1 + T/(2n)

)−1 (
1 + t0 − T/(2n)

)1/2 ‖φ|St0−T/(2n)\ST/4‖2.

≤ 2 c2 c3 nT
−1 (1 + T )1/2 ‖φ|ST/4,∞‖2.

But T ≥ 1, hence (1+T )1/2 ≤ 2T 1/2, so it follows from the preceding estimate of c2 A2 and
from (7.8) with t = T/4 that c2 A2 ≤ 4 c2 c3 nT

−1/2 ‖φ|ST/4,∞‖2 ≤ 16 c2 c3 nT
−3/2+ǫB.

By the choice of T in (7.7), we may conclude that c2 A2 ≤ (B/10)T−1+ǫ. Moreover,
by Corollary 7.1 with T, µ replaced by T/2 − 1 and 1, respectively, we get c2 Ã3 ≤
4 c2 c3 T

−1 ‖φ|S1‖2, hence c2 Ã3 ≤ (B/10)T−1 ≤ (B/10)T−1+ǫ by the choice of B in (7.8)
and because T ≥ 1. Due to the assumptions on b̃, the definition of ǫ and because T > 2, we
obtain c2 ‖b̃|ST/2,∞‖HT/2,∞

≤ δ(T/2)−1+ǫ, so that c2 ‖b̃|ST/2,∞‖HT/2, ∞
≤ (B/10)T−1+ǫ

by the choice of B in (7.8). This leaves us to estimate c2
∑k−1

j=0 B̃j. To this end let

j ∈ {0, ..., k−1}. Then Corollary 7.1 with (T/4)1−j/k in the role of T and T/2−(T/4)1−j/k

in that of µ implies that c2 B̃j is bounded by

c2 c3
(
1 + T/2− (T/4)1−j/k

)−1 (
1 + (T/4)1−j/k

)1/2 ‖φ|S(T/4)1−j/k\S(T/4)1−(j+1)/k‖2.

But T ≥ 4, so
(
1 + (T/4)1−j/k

)1/2 ≤ 21/2 (T/4)1/2−j/(2k) and 1 + T/2 − (T/4)1−j/k ≥
1 + T/4 ≥ T/4. Therefore we get c2 B̃j ≤ 8 c2 c3 T

−1/2−j/(2k) ‖φ|S(T/4)1−(j+1)/k ,∞‖2, so it
follows with (7.8) that

c2 B̃j ≤ 8 c2 c3 T
−1/2−j/(2k)B (T/4)(1−(j+1)/k) (−1+ǫ) ≤ 32 c2 c3B TZ(j) T−1+ǫ.

where Z(j) := −1/2 + j/(2k) + 1/k − ǫ (j + 1)/k. But Z(j) ≤ −ϕ(ǫ) by Lemma 2.1,
with ϕ(ǫ) defined there. Thus c2 B̃j ≤ 32 c2 c3B T−ϕ(ǫ) T−1+ǫ, hence by the choice of

T in (7.7), c2 B̃j ≤ T−1+ǫB/(10 k). Since this holds for any j ∈ {0, ..., k − 1}, we

thus get c2
∑k−1

j=0 B̃j ≤ (B/10)T−1+ǫ. Combining (7.10) with the preceding estimates
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of ‖b̃|ST/2,∞‖HT/2, ∞
, A1, A2,

∑k−1
j=0 B̃j and Ã3, we get ‖φ|ST,∞‖2 ≤ (B/2)T−1+ǫ,

so we have in fact shown that if ‖φ|St,∞‖2 ≤ B t−1+ǫ for t ∈ [1, T ] (see (7.8)), then
‖φ|ST,∞‖2 ≤ (B/2)T−1+ǫ.

Now, in view of a proof by induction, put T0 := max{4, (160 c2 c3 n)2, (320 c2 c3k)1/ϕ(ǫ)}
and B0 := max{40 c2 c3 (‖φ|S1‖2 + 1), 20 δ, ‖φ‖2 T 1−ǫ

0 , 2 ‖φ‖2}. Then for t ∈ [1, T0],
we find ‖φ|St,∞‖2 ≤ ‖φ‖2 ≤ ‖φ‖2 T 1−ǫ

0 t−1+ǫ ≤ B0 t
−1+ǫ. Suppose that m ∈ N0 and

‖φ|St,∞‖2 ≤ B0 t
−1+ǫ for t ∈ [1, 2m T0]. Since B0 fulfills the condition on B in (7.8), as

does 2m T0 the one on T in (7.7), we may apply the first part of this proof with 2m T0 andB0

in the place of T and B, respectively. It follows that ‖φ|S2m T0,∞‖2 ≤ (B0/2) (2
m T0)

−1+ǫ.
Thus for t ∈ [2m T0, 2

m+1 T0],

‖φ|St,∞‖2 ≤ ‖φ|S2m T0,∞‖2 ≤ (B0/2) (2
m T0)

−1+ǫ ≤ B0 (2
m+1 T0)

−1+ǫ ≤ B0 t
−1+ǫ.

Thus we have shown by induction that ‖φ|St,∞‖2 ≤ B0 t
−1+ǫ for any t ∈ [1, 2m T0] and

any m ∈ N0, so the preceding inequality is valid for any t ∈ [1,∞). Hence, for such t we
find ‖φ|St,∞‖2 ≤ 2B0 (1+ t)−1+ǫ. But for t ∈ (0, 1], it is obvious that ‖φ|St,∞‖2 ≤ ‖φ‖2 ≤
2 ‖φ‖2 (1 + t)−1+ǫ ≤ B0 (1 + t)−1+ǫ. This completes the proof of Theorem 7.1. �

We will combine Theorem 7.1 with the following pointwise temporal and spatial estimate
of V(τ)(φ).

Lemma 7.3 Let R ∈ (0,∞) with Ω ⊂ BR, φ ∈ L2(S∞)3 and α ∈ N
3
0 with |α| ≤ 1. Then,

for x ∈ Bc
R, t ∈ (0,∞),

|∂αxV(τ)(φ)(x, t)| ≤ C
[ (

|x| ν(x)
)−1−|α|/2 ‖φ|St/2,∞‖2 +

(
|x| ν(x) + t

)−1−|α|/2 ‖φ‖2
]
.

Proof: Choose R0 ∈ (0, R) with Ω ⊂ BR0 . Take x, t as in the lemma. For y ∈ ∂Ω, we
have |y| ≤ R0, so we find as in (5.11) that |x− y| ≥ |x| (1−R0/R) ≥ R−R0 > 0, and by
Lemma 2.4, ν(x − y)−1 ≤ C |y| ν(x)−1 ≤ C R0 ν(x)

−1. Hence by (4.5) and Corollary 4.1
with K = R−R0,

|∂αxV(τ)(φ)(x, t)| ≤ C(R,R0, τ)

∫ t

0

∫

∂Ω

(
|x| ν(x) + t− σ

)−3/2−|α|/2 |φ(y, σ)| doy dσ,

so |∂αxV(τ)(φ)(x, t)| ≤ C
∫ t
0

(
|x| ν(x) + t− σ

)−3/2−|α|/2 ‖φ(σ)‖2 dσ. By Hölder’s inequality,

∫ t/2

0

(
|x| ν(x) + t− σ

)−3/2−|α|/2 ‖φ(σ)‖2 dσ ≤
(∫ t/2

0

(
|x| ν(x) + t− σ

)−3−|α|
dσ

)1/2
‖φ‖2

≤ C
(
|x| ν(x) + t

)−1−|α|/2 ‖φ‖2.

If the integral from 0 to t/2 in the preceding estimate is replaced by one from t/2 to t,

the same type of estimate yields the upper bound C
(
|x| ν(x)

)−1−|α|/2 ‖φ|St/2,∞‖2 for this
modified integral. Lemma 7.3 follows from these estimates. �

Corollary 7.2 Let b̃ ∈ H∞, δ ∈ (0,∞), ζ ∈ (0, 1) with ‖b̃|ST,∞‖HT,∞
≤ δ T−ζ for

T ∈ (1,∞). Let φ ∈ L2
n(S∞) with V(τ)(φ)|S∞ = b̃ (Theorem 4.8), R0, R ∈ (0,∞) with
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R0 < R and Ω ⊂ BR0 , and α ∈ N
3
0 with |α| ≤ 1. Then, for x ∈ Bc

R, t ∈ (0,∞), ǫ ∈ [0, 1],

|∂αxV(τ)(φ)(x, t)| ≤ C
[ (

|x| ν(x)
)(−1−|α|/2)

(1 + t)−ζ

+
(
|x| ν(x) + t

)(−1−|α|/2) (1−ǫ)
(1 + t)(−1−|α|/2) ǫ ‖φ‖2

]
.

Proof: Lemma 7.3 and Theorem 7.1 yield that the estimate in the corollary holds under
the additional assumption t ≥ 1. In the case t ∈ (0, 1], we deduce from Lemma 7.3 that

|∂αxV(τ)(φ)(x, t)| ≤ C
(
|x| ν(x)

)(−1−|α|/2) ‖φ‖2, so we again obtain the estimate stated in
the corollary. �

8. Main results.

We begin by collecting our assumptions on the right-hand side f in the differential equa-
tions (1.12), (1.9) and (1.4), the initial data a in (1.6) and the Dirichlet boundary data b
in (1.10).

Let A ∈ (2,∞), B ∈ [0, 3/2] with A + min{1, B} > 3, A + B ≥ 7/2, ̺0 ∈ (2,∞), R1 ∈
(0,∞) with Ω ⊂ BR1 , γ ∈ L2

(
(0,∞)

)
∩ L̺0

(
(0,∞)

)
, f : R3 × (0,∞) 7→ R

3 measurable
with f |BR1 × (0,∞) ∈ L2

(
0,∞, L1(BR0)

3
)
and

|f(y, σ)| ≤ γ(σ) |y|−A ν(y)−B for y ∈ Bc
R0
, σ ∈ (0,∞). (8.1)

Moreover, suppose there are numbers q̂0 ∈ [1, 3/2), q0 ∈ (1, 3/2), q0 ∈ (1,∞), s0 ∈
(1,∞), s0 ∈ [1,∞] such that 3/(2 q0) + 1/s0 > 3/2, 3/(2 q) + 1/s < 1,

f ∈ Lc
(
0,∞, Ld(R3)3

)
for (c, d) ∈ {(2, 3/2), (2, q̂0), (s0, q0)}

and f |Bc
R1

× (0,∞) ∈ Ls0
(
0,∞, Lq0(Bc

R1
)3
)
. Further suppose there are numbers δ1, ζ1 ∈

(0,∞) such that

‖f |R3 × (t/2, ∞)‖q̂0,2;∞ + ‖f |R3 × (t/2, ∞)‖3/2, 2;∞ ≤ δ1 t
−ζ1 for t ∈ (1,∞). (8.2)

Note that (8.2) implies ‖f |BR1 × (t/2, ∞)‖1,2;∞ ≤ C(R1) δ1 t
−ζ1 for t ∈ (1,∞). Moreover,

let ǫ0 ∈ (0, 1/2], p0 ∈ (1, 2], and assume that a ∈ H
1/2+ǫ0
σ (Ω

c
) ∩ Lp0(Ω

c
)3. In addition,

suppose there are numbers R2, δ2 ∈ (0,∞), κ0 ∈ (0, 1] such that Ω ⊂ BR2 , a|BR2

c ∈
W 1,1

loc (BR2

c
)3,

|∂αy a(y)| ≤ δ2
(
|y| ν(y)

)−1−|α|/2−κ0 for y ∈ BR2

c
, α ∈ N

3
0 with |α| ≤ 1. (8.3)

Finally let b ∈ H∞, and suppose there are numbers δ3 ∈ (0,∞), ζ2 ∈ (0, 1) such that

‖b|ST,∞‖HT,∞
≤ δ3 T

−ζ3 for T ∈ (1,∞). (8.4)

Now we turn to our main result on spatial and temporal pointwise decay of solutions to
(1.12), (1.10), (1.6). In view of later applications in the nonlinear case, we state this result
in the form of a theorem and a corollary.
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Theorem 8.1 Suppose that f, a and b satisfy the assumptions listed above. Then there
is a unique function φ ∈ L2

n(S∞) verifying the integral equation (4.8). Put u := R(τ)(f)+
I(τ)(a) + V(τ)(φ)|Ωc × (0,∞) (see section 4 for the definition of the preceding potential
functions). Let α ∈ N

3
0 with |α| ≤ 1. In addition to the assumptions above, suppose that

3/(2 q) + 1/s < 1− |α|/2. Put

̺1 := min{ζ1, ζ2, 3/(2 q0) + 1/s0 − 3/2, 1/s0, 3/(2 p0)− 1/2},
̺2 := min{ζ1, 1 + |α|/2, 3/(2 q0) + 1/s0 − 1 + |α|/2, 3/(2 p0) + |α|/2}.

Let R ∈
(
max{R1, R2}, ∞

)
. (The parameters q0, s0, q0, s0, ζ1, ζ2, R1, R2, p0 were intro-

duced at the beginning of this section.) Then, for x ∈ Bc
R, t ∈ (0,∞), ǫ ∈ [0, 1],

|∂αxu(x, t)| ≤ C
[ (

|x| ν(x)
)−1−|α|/2

(1 + t)−̺1 (8.5)

+
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ) (
(1 + t)−̺2 + ‖f |Bc

R1
× (t/2, ∞)‖q0,s0;∞

)ǫ ]
.

Proof: Concerning existence and uniqueness of φ, we refer to Theorem 4.10. In order
to prove (8.5), take ǫ, x, t as in the theorem. By Corollary 5.1 and assumption (8.2),
we have ‖R(τ)(f)|ST,∞‖HT,∞

≤ CT−min{3/(2q0)+1/s0−3/2, 1/s0, ζ1} for T ∈ (1,∞). Moreover,

by Theorem 6.1, ‖I(τ)(a)|ST,∞‖HT,∞
≤ CT−3/(2p0)+1/2 equally for T ∈ (1,∞). These

estimates, our assumptions on b, equation (4.8) and Corollary 7.2 yield

|∂αxV(τ)(φ)(x, t)| ≤ C
[ (

|x| ν(x)
)−1−|α|/2

(1 + t)−ζ1 (8.6)

+
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
(1 + t)(−1−|α|/2) ǫ

]
,

with ̺1 defined in the theorem. Theorem 4.3 with R0, f replaced by R1, χBc
R1

×(0,∞) f ,

respectively, and (8.1) imply |∂αxR(τ)
(
f |Bc

R1
× (0,∞)

)
(y, r)| ≤ C

(
|y| ν(y)

)−1−|α|/2
for

y ∈ Bc
R, r ∈ (0,∞). This estimate, Corollary 5.2 with ̺ = 2, (s̃, q̃) = (2, q̂0) and

assumption (8.2) yield

|∂αxR(τ)(f)(x, t)| ≤ C
[ (

|x| ν(x)
)−1−|α|/2

(1 + t)−ζ1 (8.7)

+
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ) (
(1 + t)−̺2 + ‖f |Bc

R1
× (t/2, ∞)‖q0,s0;∞

)ǫ ]
.

Corollary 6.1 provides the estimate

|∂αx I(τ)(a)(x, t)| ≤ C
[ (

|x| ν(x)
)−1−|α|/2

(1 + t)−2 (8.8)

+
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
(1 + t)(−3/(2p0)−|α|/2) ǫ

]
.

Inequality 8.5 follows from (8.6) - (8.8). �

Theorem 4.9, 4.10 and 8.1 taken together yield the following

Corollary 8.1 Under the assumptions on f, a and b listed at the beginning of this section,
there is a unique function u ∈ L2

loc

(
0,∞, H1(Ω

c
)3
)
satisfying (4.6) and (4.7) (u velocity

part of a solution to (1.12), (1.10), (1.6)). This function is given by u = R(τ)(f) +
I(τ)(a) +V(τ)(φ)|Ωc × (0,∞), with φ from (4.8), and it fulfills (8.5).
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In order to exhibit the best possible rate of temporal decay inherent to inequality (8.5),
we consider the case that f and a are bounded functions of compact support:

Corollary 8.2 Suppose that f : R
3 × (0,∞) 7→ R

3 is measurable, bounded and with
compact support, and a ∈ H1

σ(Ω
c
) also bounded and with compact support. Let ζ ∈ [1/2, 1)

and suppose that (8.4) is satisfied with ζ2 = ζ. Let u be the solution to (4.6), (4.7). Then
there is R ∈ (0,∞) with Ω ⊂ BR such that |∂αxu(x, t)| is bounded by

C
[ (

|x| ν(x)
)−1−|α|/2

(1 + t)−ζ +
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
(1 + t)(−1−|α|/2) ǫ

]

for α ∈ N
3
0 with |α| ≤ 1, ǫ ∈ [0, 1], x ∈ Bc

R and t ∈ (0,∞).

Proof: There are numbers q ∈ (1, 3/2), p ∈ (1, 2] and s ∈ (1,∞) so close to 1 that
3/(2 q) + 1/s − 3/2 ≥ ζ (in particular 3/(2 q) + 1/s − 1 + |α|/2 ≥ 1 + |α|/2), 1/s ≥ ζ and
3/(2 p) − 1/2 ≥ ζ (in particular 3/(2 p) + |α|/2 ≥ 1 + |α|/2). Moreover we may choose
R0, T0 ∈ (0,∞) such that Ω ⊂ BR0 , supp(f) ⊂ BR0 × [0, T0) and supp(a) ⊂ BR0 . Then
f |R3 × (t/2, ∞) = 0 for t ∈ [2T0, ∞), so there is c > 0 with

‖f |R3 × (t/2, ∞)‖1,2;∞ + ‖f |R3 × (t/2, ∞)‖3/2, 2;∞ ≤ c (1 + t)−2 for t ∈ (0,∞). (8.9)

Thus the assumptions on f and a stated at the beginning of the chapter are verified if
we suppose that R1 = R0, γ = 0, q̂ = 1, q0 = q, s0 = s, p0 = p, with q, s, p as chosen
above, δ1 = c, ζ1 = 2, ǫ0 = 1/2, R2 = R0. The parameters A, B, ̺0, q0, s0, δ2 and
κ0 are irrelevant due to the choice of R0, γ and T0; they may be chosen as a matter of
form in any way corresponding to the specifications given at the beginning of this section.
According to the assumptions in the corollary, inequality (8.4) holds with ζ2 = ζ.

Now take R ∈ (R0,∞). Then we may conclude with Theorem 8.1 that (8.5) holds. But
due to (8.9) and our choice of q, s, p, ζ1 and ζ2, the parameters ̺1 and ̺2 in (8.5) equal
ζ and 1 + |α|/2, respectively. This completes the proof. �

Turning to the nonlinear systems (1.9) and (1.4), we first specify which type of solution
to the stationary problem (1.7) will be considered.

Theorem 8.2 Let B ∈ H1/2(∂Ω)3 with
∫
∂ΩB · n(Ω) dox = 0, Ψ ∈ L6/5(Ω

c
)3, c, R ∈

(0,∞), σ ∈ (4,∞) such that |Ψ(y)| ≤ c |x|−σ for x ∈ Bc
R.

Then there is U ∈ L6(Ω
c
)3 ∩W 1,1

loc (Ω
c
)3 with ∇U ∈ L2(Ω

c
)9, divU = 0, U |∂Ω = −e1 +

B,
∫
Ω

c

[
∇U · ∇V +

(
τ ∂1U + τ (U · ∇)U − Ψ

)
· V

]
dx = 0 for any V ∈ C∞

0 (Ω)3 with
divV = 0. In addition, there are numbers R3, c ∈ (0,∞) such that Ω ⊂ BR3 and

|∂αxU(x)| ≤ c
(
|x| ν(x)

)−1−|α|/2
for x ∈ Bc

R3
, α ∈ N

3
0 with |α| ≤ 1. (8.10)

Proof: For the first part of this theorem, up to but excluding inequality (8.10), we refer
to [21, Theorem IX.4.1], [20, Theorem II.5.1]. As for (8.10), a slightly different version of
this estimate was proved in [2] in the case Ψ = 0; see [2, p. 658 above and p. 661, (3.8)].
In [5], inequality (8.10) was deduced from the theory in [21]. �

In order to deal simultaneously with initial-boundary value problem (1.9), (1.10), (1.6)
on the one hand and (1.4), (1.10), (1.6) on the other, we introduce the new parameter τ̃ ,
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which is to take the values 0 or τ : τ̃ ∈ {0, τ}. Then we consider a function u with the
following properties:

u ∈ L∞
(
0,∞, H1(Ω

c
)3
)
, ∇xu ∈ L2

(
Ω
c × (0,∞)

)9
, (8.11)

u(t)|∂Ω = b(t) for t ∈ (0,∞), divxu = 0,

∫ ∞

0

∫

Ω
c

(
−u(x, t) · V (x)ϕ′(t) +∇xu(x, t) · ∇V (x)ϕ(t) (8.12)

+
[
τ ∂1u(x, t) + τ

(
u(x, t) · ∇x

)
u(x, t) + τ̃

(
U(x) · ∇x

)
u(x, t) + τ̃

(
u(x, t) · ∇

)
U(x)

−f(x, t)
]
· V (x)ϕ(t)

)
dx dt =

∫

Ω
c
a(x) · V (x) dxϕ(0)

for ϕ ∈ C∞
0

(
[0,∞)

)
, V ∈ C∞

0 (Ω
c
)3 with divV = 0. This means that u is an L2-strong

solution to (1.9), (1.10), (1.6) if τ̃ = 1, and an L2-strong solution to (1.4), (1.10), (1.6) in
the case τ̃ = 0. Of course, strictly speaking, u is merely the velocity part of such a solution.
But as usual in this context, the preceding definition involves only this velocity part, which
we call “solution” without any further qualification. Results on existence of this type of
solutions are due to Heywood [23, p. 674], Solonnikov [34, Theorem 10.1, Remark 10.1],
and Neustupa [29, Theorem 1], [30, Theorem 4.1] under smallness conditions on the data.
Solutions in Lp-spaces with p 6= 2 were constructed by Solonnikov [34], Miyakawa [27],
Shibata [32] and Enomoto, Shibata [17]. If a solution as in (8.11), (8.12) is considered as
given, and if the data f and a decay in space as specified in (8.1) and (8.3), then it can
be shown without any smallness conditions that u, too, decays in space. This is the result
whose essential point is stated in (1.11), and which we now formulate in detail, choosing
a version which is suitable for what follows.

Theorem 8.3 Suppose that f, a and b satisfy the assumptions listed above (some of which
are not relevant here because they are related to temporal decay). Let U be the function from
Theorem 8.2, and assume that u satisfies (8.11) and (8.12). Put F (x, t) := −τ

(
u(x, t) ·

∇x

)
u(x, t), G(x, t) := −τ̃

(
U(x) · ∇x

)
u(x, t)− τ̃

(
u(x, t) · ∇

)
U(x) for x ∈ Ω

c
, t ∈ (0,∞).

Then there are constants c, R4 ∈ (0,∞) such that Ω ⊂ BR4 , |∂αxR(τ)(F + G)(x, t)| ≤
c
(
|x| ν(x)

)−1−|α|/2
and |∂αxu(x, t)| ≤ c

(
|x| ν(x)

)−1−|α|/2
for x ∈ Bc

R4
, t ∈ (0,∞), α ∈ N

3
0

with |α| ≤ 1.

Proof: First consider the case τ̃ = 1. We refer to [14, Corollary 3.5, Theorem 4.6, 4.8]
for the first inequality, which actually is an intermediate result in the proof of the second
([14, Theorem 1.2]). Note that in [14], the function f is supposed to fulfill the relation

f |BR1 × (0,∞) ∈ L2
(
BR1 × (0,∞)

)3
, instead of the weaker condition f |BR1 × (0,∞) ∈

L2
(
0,∞, L1(BR1)

3
)
required here. However, the former condition enters into [14] only via

[14, Theorem 2.16], which restates [13, Theorem 3.1] and is reproduced as Theorem 4.3 in
the work at hand. But the conclusion of this theorem remains valid if its assumptions are
modified as indicated above. In fact, Theorem 4.3 as it stands yields (1.11) in the case that
f is replaced by χBc

R0
×(0,∞) f , and Lemma 5.5 implies (1.11) if f ∈ L2

(
0,∞, L1(BR0)

3
)
.

(In these two references, the parameter R0 is in the role of R1 here.) Combining these
two results, we end up with inequality (1.11) under the modified assumptions on f . We
further remark that in [14], we supposed Ψ = 0 and B = 0 in the analogue of Theorem
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8.2 ([14, Theorem 1.1]). However, these relations are not used anywhere in [14]; only the
conclusions on U stated in Theorem 8.2 are relevant. Concerning the case τ̃ = 0, we
indicate that all the proofs in [14] also carry through, some of them in a much simpler
form, if the function U in that reference vanishes. Therefore the preceding arguments
remain valid if τ̃ = 0. �

In the ensuing lemmas, we collect some integrability properties of the functions F (non-
linearity) and G defined in Theorem 8.3.

Lemma 8.1 Let u be a function satisfying (8.11), and define F and G as in Theorem
8.3. Let H ∈ {F, G}. Then H ∈ L2

(
0,∞, L̺(Ω

c
)3
)
and ‖H|Ωc × (t/2, ∞)‖̺,2;∞ ≤

C ‖∇xu|Ωc × (t/2, ∞)‖2 for t ∈ (0,∞), ̺ ∈ [1, 3/2] in the case of H = F , and ̺ ∈
[11/10, 3/2] if H = G.

Proof: First suppose that H = F . Then the statements of the lemma are well known.
By the proof of [14, Lemma 3.2, estimate (3.1) with s0 = 2, r0 = 6] for example, we have
‖F (r)‖̺ ≤ C (‖u(r)‖2 + ‖u(r)‖6) ‖∇xu(r)‖2 for r ∈ (0,∞), ̺ = 1 and ̺ = 3/2. The claims
in Lemma 8.1 with respect to F follow with (8.11) and Theorem 2.2.

Now consider the case H = G. Let r ∈ (0,∞). By Hölder’s inequality and Theorem 2.2,
we get ‖(U ·∇x)u(r)‖3/2 ≤ C ‖U‖6 ‖∇xu(r)‖2 and ‖

(
u(r) ·∇

)
U‖3/2 ≤ C ‖u(r)‖6 ‖∇U‖2 ≤

C(U) ‖∇xu(r)‖2, so that ‖G(r)‖3/2 ≤ C(U) ‖∇xu(r)‖2. Moreover, as in the proof of [14,

Lemma 3.2], inequality (8.10) and Corollary 2.2 imply U ∈ L22/9(Ω
c
)3, ∇U ∈ L66/49(Ω

c
)9,

so by Hölder’s inequality, ‖(U · ∇x)u(r)‖11/10 ≤ C ‖U‖22/9 ‖∇xu(r)‖2 ≤ C(U) ‖∇xu(r)‖2
and ‖

(
u(r) · ∇

)
U‖11/10 ≤ ‖u(r)‖6 ‖∇U‖66/49 ≤ C(U) ‖∇xu(r)‖2. Therefore ‖G(r)‖11/10 is

bounded by C(U) ‖∇xu(r)‖2. The statements in the lemma relating to G now follow by
interpolation. Note that in [14, (3.4)], it should read ‖u‖6,2;T0 instead of ‖u‖2,6;T0 . �

Corollary 8.3 In the situation of Theorem 8.3, let R ∈ [R4,∞), and take R ∈ (R,∞).

Then the estimate |∂αxR(τ)
(
F + G|Bc

R
× (0,∞)

)
(x, t)| ≤ C

(
|x| ν(x)

)−1−|α|/2
holds for

x ∈ Bc
R, t ∈ (0,∞) and α ∈ N

3
0 with |α| ≤ 1.

Proof: By Lemma 8.1, we have F +G ∈ L2
(
0,∞, L11/10(Ω

c
)3
)
, so Lemma 5.5 with ǫ = 0

and F + G|BR × (0,∞) in the place of f yields for x, t, α as above that |∂αxR(τ)
(
F +

G|BR × (0,∞)
)
(x, t)| ≤ C

(
|x| ν(x)

)−1−|α|/2
. Thus the corollary follows from the first

inequality in Theorem 8.3. �

Lemma 8.2 Let f, a, b, U, u, F, G be given as in Theorem 8.3, and take p ∈ [2, 6], ̺ ∈
[p,∞). Put R := max{R3, R4}, with R3 from Theorem 8.2 and R4 from Theorem 8.3.
Then, for H ∈ {F, G}, the function H|Bc

R
× (0,∞) belongs to L̺

(
0,∞, Lp(Bc

R
)3
)
, and

‖H|Bc
R
× (t,∞)‖p,̺;∞ ≤ C ‖∇xu|Ωc × (t,∞)‖2/̺2 for t ∈ (0,∞).

Proof: We note that (1/p−1/6)−1 ∈ (4/3, ∞], so ‖∇U |Bc
R
‖(1/p−1/6)−1 <∞ by (8.10) and

Corollary 2.2. Inequality (8.10) further yields that ‖U |Bc
R
‖∞ < ∞. Define G1(x, r) :=(

u(x, r) · ∇
)
U(x) for x ∈ Ω

c
, r ∈ (0,∞). Then we may conclude with Theorem 2.2

that ‖G1(r)|Bc
R
‖p ≤ C ‖u(r)‖6 ‖∇U |Bc

R
‖(1/p−1/6)−1 ≤ C(U) ‖∇u(r)‖2 for r ∈ (0,∞). Let
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t ∈ [0,∞). Since ̺ ≥ p ≥ 2, the preceding estimate implies

‖G1|Bc
R
× (t,∞)‖p,̺;∞ ≤ C(U)

(∫ ∞

t
‖∇xu(r)‖̺2 dr

)1/̺

≤ C ‖∇xu‖1−2/̺
2,∞;∞

(∫ ∞

t
‖∇xu(r)‖22 dr

)1/̺
≤ C ‖∇xu‖1−2/̺

2,∞;∞ ‖∇xu|Ωc × (t,∞)‖2/̺2 .

Put G2(x, r) :=
(
U(x) · ∇x

)
u(x, r) for x ∈ Ω

c
, r ∈ (0,∞). Then Theorem 8.3 yields that

‖G2(r)|Bc
R
‖p ≤ C ‖U |Bc

R
‖∞ ‖∇xu(r)|Bc

R
‖p ≤ C(U)

(∫

Bc
R

|∇u(x, r)|2 |x|−(3/2) (p−2) dx
)1/p

for r ∈ (0,∞), so ‖G2(r)|Bc
R
‖p ≤ C ‖∇xu(r)‖2/p2 . Since ̺ ≥ p, hence 2 ̺/p ≥ 2, we thus

get as in the estimate of G1 that

‖G2|Bc
R
× (t,∞)‖p,̺;∞ ≤ C ‖∇xu‖2(1/p−1/̺)

2,∞;∞ ‖∇xu|Ωc × (t,∞)‖2/̺2 .

But ‖∇xu‖2,∞;∞ < ∞ by (8.11), so the claims of the lemma referring to the case H = G
are proved. Since by Theorem 8.3 and Corollary 2.2, there is c > 0 with ‖u(r)|Bc

R
‖∞ ≤

c, ‖∇xu(r)|Bc
R
‖(1/p−1/6)−1 ≤ c for r ∈ (0,∞), the case H = F may be handled in the

same way. �

For a function u which satisfies not only (8.11) and (8.12), but also the pointwise decay
estimate of ‖∇xu(t)‖2 in (1.16), the following relations hold for the nonlinearity (u ·∇x)u,
that is, for the function F from Theorem 8.3.

Lemma 8.3 In the situation of Theorem 8.3, suppose in addition that that u satisfies
(1.16). Then

‖∇xu(t)‖2 ≤ C (1 + t)−κ1 for t > 0; (8.13)

‖F |Ωc × (t,∞)‖q,2;∞ ≤ C (1 + t)3κ1(1−1/q) for t > 0, q ∈ [1, 3/2]; (8.14)

‖F |Bc
R4

× (t,∞)‖q,∞;∞ ≤ C (1 + t)−2κ1/q for t > 0, q ∈ [2,∞). (8.15)

Proof: Since u ∈ L∞
(
0,∞, H1(Ω

c
)3
)
by (8.11), the estimate in (8.13) follows imme-

diately with (1.16). Moreover, with Theorem 2.2 and (8.13), we find that ‖F (r)‖3/2 ≤
C ‖u(r)‖6 ‖∇xu(r)‖2 ≤ C ‖∇xu(r)‖22 ≤ C ‖∇xu(r)‖2 (1 + r)−κ1 for r ∈ (0,∞). This im-
plies (8.14) in the case q = 3/2. From (8.11) we get ‖F (r)‖1 ≤ C ‖u(r)‖2 ‖∇xu(r)‖2 ≤
C ‖∇xu(r)‖2 ≤ C for r ∈ (0,∞), so that (8.14) holds for q = 1 as well. That lat-
ter estimate for q ∈ (1, 3/2) now follows by interpolation. Let q ∈ [2,∞). Then
for r as before, by the second estimate in Theorem 8.3 and (8.13), ‖F (r)|Bc

R4
‖q ≤

C
( ∫

Bc
R4

|x|−q−(3/2)(q−2) |∇xu(x, r)|2 dx
)1/q ≤ C ‖∇xu(r)‖2/q2 ≤ C (1+r)−2κ1/q. This proves

(8.15). �

Now we are in a position to prove our main results about the asymptotics of solutions to
the nonlinear problem (1.9), (1.10), (1.6) and (1.4), (1.10), (1.6).
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Theorem 8.4 Suppose that f, a and b satisfy the assumptions listed at the beginning of
this section. Let α ∈ N

3
0 with |α| ≤ 1, and let the parameters q0, s0 introduced at the

beginning of this section verify the additional condition 3/(2 q0) + 1/s0 < 1− |α|/2. Take
U as in Theorem 8.2, let τ̃ ∈ {0, 1}, and suppose that u is given as in (8.11), (8.12), that
is, u is a L2-strong solution to (1.9), (1.10), (1.6) if τ̃ = 1, and to (1.4), (1.10), (1.6)
in the case τ̃ = 0. Let R ∈ (max{R1, ..., R4}, ∞), with R3 from Theorem 8.2, R4 from
Theorem 8.3, and R1, R2 fixed at the beginning of this section.

Then there is a bounded function X : (0,∞) 7→ (0,∞) with X(t) ↓ 0 for t→ ∞ such that

|∂αxu(x, t)| ≤
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
X(t)ǫ for x ∈ Bc

R, t ∈ (0,∞), ǫ ∈ [0, 1]. (8.16)

If τ̃ = 0 and u additionally satisfies (1.16) with κ1 > 0, and if q1, q̂1 ∈ (1, 3/2), q1 ∈ [2,∞)
with 3/(2 − |α|) < q1, then

|∂αxu(x, t)| ≤ C
[ (

|x| ν(x)
)(−1−|α|/2)

(1 + t)−min{̺1, 3/(2 q1)−1, 3κ1 (1−1/q̂1), κ1} (8.17)

+
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)

·
(
(1 + t)−min{̺2, 3/(2 q1)−1/2+|α|/2, 2κ1/q2} + ‖f |Bc

R1
× (t/2, ∞)‖q0,s0;∞

)ǫ ]

for x, t, ǫ as in (8.16), with ̺1, ̺2 from Theorem 8.1.

Assume in addition that f and a are bounded and with compact support, the parameter ζ2
from (8.4) belongs to [1/2, 1), and δ > 0 is suffiently small. Then

|∂αxu(x, t)| ≤ C
[ (

|x| ν(x)
)(−1−|α|/2)

(1 + t)−min{1/2, κ1}+δ (8.18)

+
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
(1 + t)−(min{1+|α|/2, k(α)}+δ) ǫ

]
,

with k(α) := κ1 in the case α = 0, and k(α) := 2κ1/3 if |α| = 1.

Proof: Define F and G as in the proof of Theorem 8.3. By our assumptions on f and by
Lemma 8.1, we have f +F +G ∈ L2

(
0,∞, Lp(Ω

c
)3
)
for p ∈ [max{11/10, q̂0}, 3/2]. From

(8.11), (8.12), we obtain that u satisfies (4.7) with f + F +G in the place of f , as well as
(4.6). Thus Theorem 4.10 yields there is a unique function φ ∈ L2

n(S∞) such that

V
(τ)(φ)|S∞ = −R

(τ)(f + F +G)− I
(τ)(a) + b, (8.19)

and

u = R(τ)(f + F +G) + I(τ)(a) +V(τ)(φ)|Ωc × (0,∞). (8.20)

On the other hand, since f belongs to L2
(
0,∞, Lq(Ω

c
)3
)
for q ∈ {q̂0, 3/2}, we know

from Theorem 4.2 that R(τ)(f)|S∞ ∈ H∞. Moreover I(τ)(a)|S∞ ∈ H∞ by Theorem 4.4,
and b ∈ H∞ by assumption. Therefore Theorem 4.8 states there is a unique function
φ(1) ∈ L2

n(S∞) such that

V
(τ)(φ(1))|S∞ = −R

(τ)(f)− I
(τ)(a) + b. (8.21)
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According to Lemma 8.1, the function F + G belongs to L2
(
0,∞, Lp(Ω

c
)3
)
for p ∈

[11/10, 3/2] so that R(τ)(F + G)|S∞ ∈ H∞ (Theorem 4.2). Therefore, once more by
Theorem 4.8, there is φ(2) ∈ L2

n(S∞) such that

V(τ)(φ(2))|S∞ = −R(τ)(F +G)|S∞. (8.22)

In view of the uniqueness statement in Theorem 4.8, and because of (8.19), (8.21) and
(8.22), we may conclude that φ = φ(1) + φ(2), so by (8.20) u = u(1) + u(2), where u(1) :=
R(τ)(f)+I(τ)(a)+V(τ)(φ(1))|Ωc×(0,∞) and u(2) := R(τ)(F +G)+V(τ)(φ(2))|Ωc×(0,∞).
By the definition of u(1), inequality (8.5) holds with u(1) in the place of u, hence

|∂αxu(1)(x, t)| ≤ C
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
X1(t)

ǫ (8.23)

for x, t, ǫ as in (8.16), with

X1(t) := (1 + t)−̺1 + (1 + t)−̺2 + ‖f |Bc
R1

× (t/2, ∞)‖q0,s0;∞.

Turning to u(2), we may deduce from Lemma 7.3 that

|∂αxV(τ)(φ(2))(x, t)| ≤ C
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
X2(t)

ǫ (8.24)

for x, ǫ as in (8.16) and t ∈ [1,∞), where X2(t) is defined by

X2(t) := (1 + t)−1−|α|/2 + ‖φ(2)|St/2,∞‖2.

If t ∈ (0, 1), we argue as in the proof of Corollary 7.2, referring to Lemma 7.3 to obtain

|V(τ)(φ(2))(x, t)| ≤ C
(
|x| ν(x)

)−1−|α|/2
for x, t as in (8.16). Thus we obtain (8.24) again,

this time for t ∈ (0, 1). Put R := max{R3, R4}. The term ‖F +G|Bc
R
× (t/2, ∞)‖6,8;∞ is

bounded by C ‖∇xu|Ωc × (t/2, ∞)‖1/42 for t ∈ (0,∞) according to Lemma 8.2. Moreover
Lemma 8.1 yields that F + G ∈ L2

(
0,∞, Lp(Ω

c
)3
)
and ‖F + G|Ωc × (t/2, ∞)‖p,2;∞ ≤

C ‖∇xu|Ωc × (t/2, ∞)‖2 for t ∈ (0,∞), p ∈ [11/10, 3/2]. From this latter estimate we
may conclude that ‖F + G|(Ωc ∩ BR) × (t/2, ∞)‖1,2;∞ ≤ C ‖∇xu|Ωc × (t/2, ∞)‖2. By

Corollary 8.3, we know there is D0 > 0 with |∂αxR(τ)
(
F + G|Bc

R
× (0,∞)

)
(x, t)| ≤

D0

(
|x| ν(x)

)−1−|α|/2
for x ∈ Bc

R, t ∈ (0,∞), hence (5.13) is valid with F + G, R in
the place of f and R0, respectively. Due to these estimates, we may apply Corollary 5.2
with ̺ = 2, q = 4/3, s = 2, q̃ = 11/10, s̃ = 2, q = 6, s = 8 and R0, f replaced by R and
F +G, respectively, to obtain

|∂αxR(τ)(F +G)(x, t)| ≤ C
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
X3(t)

ǫ (8.25)

for x, t, ǫ as in (8.16), with X3(t) := (1 + t)−7/8 +
∑

r∈{1, 1/4} ‖∇xu|Ωc × (t/2, ∞)‖r2. As a
consequence of (8.24) and (8.25) and the definition of u(2), we arrive at the estimate

|∂αxu(2)(x, t)| ≤ C
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ) (
X2(t) +X3(t)

)ǫ

for x, t, ǫ as in (8.16). Inequality (8.16) now follows with (8.23) and because u = u(1)+u(2).
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Now suppose that τ̃ = 0 so that G = 0. Further suppose that u satisfies (1.16) with κ1 > 0.
Let q1, q̂1 and q1 be chosen as in the theorem. Note that F ∈ L2

(
0,∞, Lq1(Ω

c
)3
)
accord-

ing to Lemma 8.1 By applying (8.14) with q = q̂1 and q = 3/2, and Corollary 5.1 with
q = q1, s = 2, q̂ = q̂1, we get ‖R(τ)(F )|ST,∞‖HT,∞

≤ CT−min{3/(2q1)−1, 3κ1 (1−1/q̂1), κ1} for
T ∈ (1,∞). This inequality, (8.22) and Corollary 7.2 imply

|∂αxV(τ)(φ(2))(x, t)| ≤ C
[ (

|x| ν(x)
)−1−|α|/2

(1 + t)−min{3/(2q1)−1, 3κ1 (1−1/q̂1), κ1} (8.26)

+
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
(1 + t)(−1−|α|/2) ǫ

]

for x, t, ǫ as in (8.16). Next we want to apply Corollary 5.2 to R(τ)(F ), with f, R0

replaced by F and R, respectively. As indicated further above, inequality (5.13) holds
for the preceding choice of f and R0 in that latter estimate. Recall that by Lemma 8.1,
F ∈ L2

(
0,∞, Lp(Ω

c
)3
)
for any p ∈ [1, 3/2]. On the other hand, it follows with (8.14)

that ‖F |(Ωc∩BR)× (t/2, ∞)‖1,2;∞ ≤ C(R) ‖F |Ωc× (t/2, ∞)‖3/2, 2;∞ ≤ (1+ t)−κ1 . Due to

(8.15), we get ‖F |Bc
R
× (t/2, ∞)‖q1,∞;∞ ≤ C (1 + t)−2κ1/q1 for t ∈ (0,∞). Thus Corollary

5.2 with ̺ = 2, q = 1, s = 2, q̃ = 3/2, s̃ = 2, q = q1, s = ∞ and R in the place of R0

yields

|∂αxR(τ)(F )(x, t)| ≤ C
[ (

|x| ν(x)
)−1−|α|/2

(1 + t)−min{2,κ1}

+
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
(1 + t)−min{1+|α|/2, 2κ1/q1} ǫ

]

for x, t, ǫ as in (8.16). The preceding estimate, (8.26) and the definition of u(2) imply

|∂αxu(2)(x, t)| ≤ C
[ (

|x| ν(x)
)−1−|α|/2

(1 + t)−min{3/(2q1)−1, 3κ1 (1−1/q̂1), κ1}

+
(
|x| ν(x)

)(−1−|α|/2) (1−ǫ)
(1 + t)−min{1+|α|/2, 2κ1/q1} ǫ

]
,

again for x, t, ǫ as in (8.16). This result combined with (8.5) with u(1) in the place of u
and the equation u = u(1) + u(2) lead to (8.17).

Suppose in addition that f and a are bounded with compact support, and ζ2 ∈ [1/2, 1).
Then ̺1 may be taken as ζ2, and ̺2 as 1+ |α|/2; see the proof of Corollary 8.2. Moreover
3/(2 q1) ↑ 3/2 for q1 ↓ 1, and 3κ1 (1 − 1/q̂1) → κ1 for q̂1 ↑ 3/2. If α = 0, we may take
q1 = 2. In the case |α| = 1, the relation 2κ1/q1 ↑ 2κ1/3 holds for q1 ↓ 3. The term
‖f |Bc

R1
× (t/2, ∞)‖q0,s0;∞ may be estimated by C (1 + t)−2. These remarks and (8.17)

imply (8.18). �
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