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We present pointwise space-time decay estimates for the velocity part of solutions to the time-dependent Oseen system in 3D, with Dirichlet boundary conditions and vanishing velocity at infinity. In addition, similar estimates are derived for solutions to the time-dependent incompressible Navier-Stokes system with Oseen term, and for solutions to the stability problem associated with the stationary incompressible Navier-Stokes system with Oseen term.

Introduction

Consider the incompressible time-dependent Navier-Stokes system

∂ t v -∆ x v + τ ∂ 1 v + τ (v • ∇ x )v + ∇ x π = f, div x v = 0 (1.1)
for t ∈ (0, ∞), x ∈ Ω c := R 3 \Ω, with the boundary conditions

v(t)|∂Ω = b(t), v(x, t) → (1, 0, 0) (|x| → ∞) for t ∈ (0, ∞), (1.2) 
and the initial condition

v(0) = v 0 , (1.3) 
where Ω is an open bounded set in R 3 with connected Lipschitz boundary. Problem (1.1) -(1.3) is a mathematical model for the flow of a viscous incompressible fluid around a rigid body that moves steadily and without rotation, under the assumption that the underlying reference frame adheres to the body, represented by the set Ω. The "exterior domain" Ω c is supposed to be filled with the fluid. The function v stands for the unknown velocity field and the function π for the unknown pressure field of the fluid. The real number τ > 0 (Reynolds number) and the functions f (volume force), v 0 (initial velocity) and b (velocity of the fluid particles on the surface of the body) are given.

Problem (1.1) -(1.3) is already normalized in the sense that the flow is characterized by a single parameter -the Reynolds number -and the rigid body moves with the constant velocity (-1, 0, 0) with respect to an observer at rest. This latter feature of the motion of the body, expressed by the boundary condition at infinity stated in (1.2), means in particular that the negative part of the x 1 -axis corresponds to the upstream and the positive part to the downstream direction of the flow.

We will study the asymptotic behaviour of the fluid far from the rigid body. These asymptotics are of interest because they may be interpreted as features of the flow that may actually be observed. In this respect, particular attention is directed at the wake extending behind the rigid body, in our situation around the positive x 1 -axis. This wake should emerge in the asymptotics provided by theory.

Since nonzero boundary conditions at infinity are inconvenient from a mathematical point of view, we will not deal with equations (1.1) -(1.3) directly, but with an equivalent problem. To this end, we introduce the new velocity u := v -(1, 0, 0), which satisfies the Navier-Stokes system with Oseen term,

∂ t u -∆ x u + τ ∂ 1 u + τ (u • ∇ x )u + ∇ x π = f, div x u = 0 in Ω c × (0, ∞), (1.4) 
as well as the side conditions u(t)|∂Ω = (-1, 0, 0) + b(t), u(x, t) → 0 (|x| → ∞) for t ∈ (0, ∞), (1.5)

u(0) = a, (1.6) 
with a := v 0 -(1, 0, 0). In the work at hand, we are interested in temporal and spatial asymptotics of the velocity part u of solutions to (1.4), (1.5), (1.6). But due to the stationary component (-1, 0, 0) of the Dirichlet boundary data in (1.5), the velocity u cannot be expected to decay for t → ∞, even if b(t) tends to zero. Therefore we modify our problem a second time. To this end, we take a solution (U, Π) of the stationary Navier-Stokes system with Oseen term,

-∆U + τ ∂ 1 U + τ (U • ∇)U + ∇Π = F, div U = 0 in Ω c , (1.7) 
under Dirichlet boundary conditions

U |∂Ω = (-1, 0, 0) + B, U (x) → 0 (|x| → ∞), (1.8) 
with given functions F : Ω c → R 3 , B : ∂Ω → R 3 , and then introduce the new unknowns u(x, t) := u(x, t) -U (x), π(x, t) -Π(x), and the new given functions f (x, t) := f (x, t) -F (x), b(x, t) := b(x, t)-B(x) and a := a-U . For simplicity denoting these new quantities again by u, π, f, b, a, instead of u, π, f , b, a, respectively, we then arrive at the system

∂ t u -∆ x u + τ ∂ 1 u + τ (u • ∇ x )u + τ (U • ∇ x )u + τ (u • ∇)U + ∇ x π = f, (1.9) div x u = 0 in Ω c × (0, ∞),
with the boundary conditions u(t)|∂Ω = b(t), u(x, t) → 0 (|x| → ∞) for t ∈ (0, ∞), (1.10) and initial condition (1.6) (stability problem associated with (1.7), (1.8)). According to [START_REF] Deuring | Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity[END_REF]Theorem 1.2], under suitable conditions on the data, the velocity part u of a solution to (1.9), (1.10), (1.6) exhibits an asymptotic behaviour in space described by the estimate

|∂ α x u(x, t)| ≤ C |x| ν(x) -1-|α|/2 for x ∈ R 3 with |x| ≥ R, t ∈ (0, ∞), (1.11) 
α ∈ N 3 0 with |α| := α 1 + α 2 + α 3 ≤ 1, where R is some positive real so large that Ω ⊂ B R . The same estimate is shown in previous papers [START_REF] Deuring | Spatial decay of time-dependent Oseen flows[END_REF], [START_REF] Deuring | Pointwise spatial decay of time-dependent Oseen flows: the case of data with noncompact support[END_REF] for solutions to the linear system ("Oseen system")

∂ t u -∆ x u + τ ∂ 1 u + ∇ x π = f, div x u = 0 in Ω c × (0, ∞), (1.12) 
again under side conditions (1.10) and (1.6). The fact that inequality (1.11) holds for α ∈ N 3 0 with |α| ≤ 1 means that u and the spatial gradient ∇ x u of u are evaluated. The factor ν(x) in (1.11) is defined by ν(x) := 1 + |x| -x 1 for x ∈ R 3 .

(1. [START_REF] Deuring | Pointwise spatial decay of time-dependent Oseen flows: the case of data with noncompact support[END_REF] Due to this factor, the right-hand side of (1.11) decays less fast in the wake region around the positive x 1 -axis than it does elsewhere; see [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF]section VII.3] for more details. For this reason the presence of the factor ν(x) in (1.11) may be interpreted as a mathematical manifestation of the wake.

Inequality (1.11) deals only with spatial decay of the velocity. However, for suitable data, the velocity far from the body should decay in space as well as in time. It is the aim of the work at hand to make this idea more precise by determining upper bounds of |u(x, t)| and |∇ x u(x, t)| reflecting this type of asymptotics. In certain special situations, such estimates may be deduced immediately from (1.11) and estimates of u(t) ∞ available in literature, where ∞ denotes the norm of L ∞ (Ω c ) 3 . With respect to the linear problem (1.12),

(1.10), (1.6), Enomoto, Shibata [START_REF] Enomoto | On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation[END_REF] showed that if f = 0, b = 0, Ω smoothly bounded and a ∈ L p (Ω c ) 3 for some p ∈ [1, ∞), then u(t) ∞ ≤ C a p t -3/(2p)-|α|/2 for t ∈ (0, ∞) for x, t, α as in (1.11) and for ǫ ∈ [0, 1]. In particular, the highest rate of temporal decay that may be attained is (1 + t) -3/2-|α|/2 , arising if p = 1.

(
The theory of the linear problem (1.12), (1.10), (1.6) we present here does not require f or b to vanish, nor Ω to be more regular than Lipschitz bounded. The estimates we derive reflect the asymptotics of the data f, a and b in a rather precise way (Corollary 8.1). In the best possible case, occuring when f and a are both bounded and with compact support and b decays sufficiently rapidly, we show that for ζ ∈ (0, 1) arbitrary but fixed, the inequality

|∂ α x u(x, t)| (1.14) ≤ C |x| ν(x) -1-|α|/2 (1 + t) -ζ + |x| ν(x) (-1-|α|/2) (1-ǫ) (1 + t) (-1-|α|/2) ǫ
holds for x, t, α as in (1.11) and for ǫ ∈ [0, 1] (Corollary 8.2). Further below, when we sketch our method of proof, we will indicate why we do not achieve the rate (1+t) -3/2-|α|/2 of temporal decay.

Concerning the nonlinear problem (1.9), (1.10), (1.6), decay estimates of u(t) ∞ were provided by Masuda [START_REF] Masuda | On the stability of incompressible viscous fluid motions past bodies[END_REF], Heywood [START_REF] Heywood | The Navier-Stokes equations. On the existence, regularity and decay of solutions[END_REF], Shibata [START_REF] Shibata | On an exterior initial boundary value problem for Navier-Stokes equations[END_REF] and Enomoto, Shibata [START_REF] Enomoto | On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation[END_REF] for a non-normalized version of this problem, with [START_REF] Masuda | On the stability of incompressible viscous fluid motions past bodies[END_REF], [START_REF] Enomoto | On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation[END_REF] and [START_REF] Shibata | On an exterior initial boundary value problem for Navier-Stokes equations[END_REF] requiring that the viscosity equals 1. Masuda chose initial data in L 2 and assumed b = 0, ∂Ω smooth and U small in a suitable sense. Constructing L 2 -weak solutions that become strong after a certain time, he obtained u(t) ∞ ≤ C t -1/8 for large t, or instead u(t) ∞ → 0 (t → ∞), depending on the asymptotics of f ([26, p. 297, Theorem; p.298, Remark 1.3]). Heywood [23, p. 674-675], [START_REF] Heywood | The exterior nonstationary problem for the Navier-Stokes equations[END_REF]Theorem 4] admitted nonvanishing f and b, improving the decay rate of u(t) ∞ to t -1/4 under various smallness conditions on a, f and b. Enomoto, Shibata [START_REF] Enomoto | On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation[END_REF] worked with initial data in L 3 , constructing mild solutions under the assumptions that f and b vanish, Ω is smoothly bounded and the initial data a and the data of the stationary problem (1.7), (1.8), and hence U , are small. Within this framework, they showed that u(t) ∞ ≤ C t -1/2 for t ∈ (0, ∞) ([17, Theorem 1.3]). In a previous article by Shibata [START_REF] Shibata | On an exterior initial boundary value problem for Navier-Stokes equations[END_REF], a similar but slightly weaker result is derived ( [START_REF] Shibata | On an exterior initial boundary value problem for Navier-Stokes equations[END_REF]Theorem 1.4]).

As in the linear case, these decay estimates of u(t) ∞ combined with (1.11) yield pointwise space-time decay estimates of u, although not of ∇ x u because the quantity ∇ x u(t) ∞ is not considered in the references in question. It is perhaps not astonishing that the assumptions in these references are restrictive. After all, an algebraic rate of decay of u(t) ∞ is a rather strong stability result. Too strong for our purposes, we think, because it describes the behaviour of |u(x, t)| for t → ∞ at any point x ∈ Ω c , whereas we are interested in the asymptotics of u(x, t) only at points x with |x| large.

We will show that any L 2 -strong solution (see (8.11), (8.12)) to (1.9), (1.10), (1.6) satisfies the estimate

|∂ α x u(x, t)| ≤ C |x| ν(x) (-1-|α|/2) (1-ǫ) X(t) ǫ (1.15)
for x, t, α as in (1.11) and for ǫ ∈ [0, 1], where X : (0, ∞) → (0, ∞) is a bounded function with X(t) ↓ 0 for t ↑ ∞ (Theorem 8.4). References on existence of L 2 -strong solutions to (1.9), (1.10), (1.6) are listed in the passage following (8.12). We will take the point of view that such a solution is given. Under this assumption, (1.15) may be shown without any smallness condition. A key role in our proofs will be played by the property

∇ x u ∈ L 2 Ω c × (0, ∞)
3 verified by the solutions under consideration.

Concerning algebraic decay of |∂ α x u(x, t)| with respect to t, we consider the somewhat simpler system (1.4) (Navier-Stokes system with Oseen term), again with the side conditions (1.10) and (1.6). L 2 -strong solutions to this problem fulfilling the additional assumption

∇ x u(t) 2 ≤ c t -κ 1 (t ∈ (1, ∞)) (1.16)
for some constants c, κ 1 > 0 will be shown to satisfy an inequality that in the best possible case, arising if f and a are bounded and with compact support and b decays sufficiently fast, takes the form

|∂ α x u(x, t)| ≤ C |x| ν(x) -1-|α|/2 (1 + t) -ζ + |x| ν(x) (-1-|α|/2) (1-ǫ) (1 + t) ζ ǫ (1.17)
for x, t, α as in (1.11) and ǫ ∈ [0, 1], where ζ and ζ are constants determined by the data and the exponent κ 1 in (1.16) (Theorem 8.4). As in the case of (1.15), no smallness condition is involved in the proof of this estimate.

The interest of our theory may be illustrated by an existence result due to Neustupa [START_REF] Neustupa | A spectral criterion for stability of a steady viscous incompressible flow past an obstacle[END_REF].

According to [START_REF] Neustupa | A spectral criterion for stability of a steady viscous incompressible flow past an obstacle[END_REF]Theorem 4.1] (also see [START_REF] Neustupa | Stability of a steady viscous incompressible flow past an obstacle[END_REF]Theorem 1]), if f and b vanish, Ω is smoothly bounded, a is small with respect to the norm of H 1 (Ω c ) 3 , and all eigenvalues of a certain linear operator have negative real part and stay away from the imaginary axis, then an L 2 -strong solution to (1.9), (1.10), (1.6) in the sense of (8.11), (8.12) exists. Since no smallness of U (velocity part of a solution to (1.7), (1.8)) is required and the viscosity is arbitrary, the results in [START_REF] Masuda | On the stability of incompressible viscous fluid motions past bodies[END_REF], [START_REF] Heywood | The Navier-Stokes equations. On the existence, regularity and decay of solutions[END_REF] or [START_REF] Enomoto | On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation[END_REF] cannot be applied to this solution. The theory presented here, however, yields that Neustupa's solution satisfies (1.15) (see Theorem 8.4), provided, of course, that the spatial asymptotics of a are compatible with our assumptions, listed at the beginning of section 8.

Property (1.16) is fulfilled by the solutions to (1.9), (1.10), (1.6) constructed in [START_REF] Masuda | On the stability of incompressible viscous fluid motions past bodies[END_REF] and [START_REF] Heywood | The Navier-Stokes equations. On the existence, regularity and decay of solutions[END_REF]; see [26, inequality (7)], [23, p. 675]. It it true that as mentioned above, these references additionally provide algebraic decay of the L ∞ -norm of u(t). However, this latter property is suspended on H 2 -regularity of the Stokes operator ([26, p. 323; p. 299, Proposition 1], [23, p. 675]), and thus on smoothness of ∂Ω. Therefore the L ∞ -estimates of u(t) from [START_REF] Masuda | On the stability of incompressible viscous fluid motions past bodies[END_REF] or [START_REF] Heywood | The Navier-Stokes equations. On the existence, regularity and decay of solutions[END_REF] cannot be used in the proof of (1.17) if Ω is supposed to be only Lipschitz bounded. And in any case, they do not yield an access to (1.17) if |α| = 1. So, as far as we know, inequality (1.17) is new at least in the case |α| = 1, even though it only relates to (1.4) instead of (1.9).

In order to prove our results, we will start from a representation formula established in [START_REF] Deuring | A representation formula for the velocity part of 3D time-dependent Oseen flows[END_REF] for solutions to the linear problem (1.12), (1.10), (1.6), and stated as equation (4.9) below, in Theorem 4.10. This formula consists of a sum involving two volume potentials -one on R 3 × (0, ∞) and related to f , the other one on R 3 and linked to the initial data a -, as well as a single layer potential on S ∞ := ∂Ω × (0, ∞) whose weight function solves an integral equation on S ∞ (equation (4.8)). We refer to section 4 for the definition of these potential functions.

In order to solve the integral equation (4.8), we use an L 2 -theory developed by Shen [START_REF] Shen | Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders[END_REF] for the Stokes system, and extended to the Oseen system in [START_REF] Deuring | A potential theoretic approach to the time-dependent Oseen system[END_REF]. In the framework of this theory, the right-hand side of (4.8) must belong to a space whose definition is rather complicated and thus gives rise to much of the technicalities we have to grapple with in what follows. This space, denoted by H ∞ in this work, is introduced in section 3. It is involved in the crucial part of our argument, that is, in determining how the L 2 -norm on S T,∞ := ∂Ω × (T, ∞) of the solution to (4.8) is bounded in terms of T . This point is settled in Theorem 7.1.

In each of the sections 5, 6 and 7, we consider one of the three potential functions appearing in the representation formula (4.9), deriving a pointwise decay estimate in space and in time for the function in question, among other results. Theorem 7.1 is applied in this context in order to deal with the single layer potential from (4.9) (Corollary 7.2). Once upper bounds of these potentials are available, the formula in (4.9) yields an estimate of the solution to (1.12), (1.10), (1.6) (Theorem 8.1).

As concerns the nonlinear problems (1.9), (1.10), (1.6) and (1.4), (1.10), (1.6), the idea is, of course, to replace

f by f -τ (u • ∇ x )u -τ (U • ∇ x )u -τ (u • ∇)U and f -τ (u • ∇ x )u,
respectively, and then apply our estimates of solutions to the linear problem (1.12), (1.10), (1.6). However, we were not able to shift all difficulties into the theory of this linear problem. In fact, we will need an intermediate result from [START_REF] Deuring | Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity[END_REF] -stated as the first estimate in Theorem 8.3 -whose proof exploits the interaction between the nonlinearity and the kernel function of one of the potentials in (4.9).

It is mainly due to the integral equation (4.8) that we cannot deal with weak solutions to (1.9) or (1.4). For this type of solution, we are not able to show that the right-hand side of (4.8) with f replaced in the way just mentioned belongs to the function space H ∞ , as required by Theorem 4.8, on which the resolution theory of (4.8) is based. There are other aspects of our results whose scope is limited by this resolution theory. For example, since we may solve this equation only in an L 2 -framework, but not in L p with p = 2, we cannot admit values ζ ≥ 1 in (1.14), nor can we obtain an algebraic decay rate of the time variable in (1.15).

Let us mention some further papers related to the work at hand. Knightly [START_REF] Knightly | Some decay properties of solutions of the Navier-Stokes equations[END_REF] considered pointwise decay in space of strong solutions to the nonlinear system (1.9), detecting the wake phenomen, but he required various smallness conditions on the data and restrictive assumptions on the asymptotics of the solution. Mizumachi [START_REF] Mizumachi | On the asymptotic behaviour of incompressible viscous fluid motions past bodies[END_REF] studied the spatial asymptotics of strong solutions of (1.4), (1.10), (1.6), but still under rather restrictive assumptions. The results of these two authors were improved in the articles [START_REF] Deuring | Spatial decay of time-dependent Oseen flows[END_REF], [START_REF] Deuring | Pointwise spatial decay of time-dependent Oseen flows: the case of data with noncompact support[END_REF] (linear case) and [START_REF] Deuring | Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity[END_REF] (nonlinear problem (1.9), (1.10), (1.6)), with predecessor papers [START_REF] Deuring | The single-layer potential associated with the time-dependent Oseen system[END_REF], [START_REF] Deuring | On volume potentials related to the time-dependent Oseen system[END_REF], [START_REF] Deuring | On boundary driven time-dependent Oseen flows[END_REF], [START_REF] Deuring | A potential theoretic approach to the time-dependent Oseen system[END_REF], [START_REF] Deuring | A representation formula for the velocity part of 3D time-dependent Oseen flows[END_REF], [START_REF] Deuring | The Cauchy problem for the homogeneous time-dependent Oseen system in R 3 : spatial decay of the velocity[END_REF]. As concerns temporal decay of spatial L p -norms of solutions to the Oseen system (1.12) under side conditions (1.10), (1.6) and with f = 0 and b = 0, a basic study is due to Kobayashi, Shibata [START_REF] Kobayashi | On the Oseen equation in three-dimensional exterior domains[END_REF]. Their theory was extended in various respects in [START_REF] Enomoto | Local energy decay of solutions to the Oseen equation in the exterior domain[END_REF] and [START_REF] Enomoto | On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation[END_REF]. The L ∞ -estimate from [START_REF] Enomoto | On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation[END_REF] mentioned above is an example of such an extension. A different approach was used by Bae, Jin [START_REF] Bae | Estimates of the wake for the 3D Oseen equations[END_REF], who considered temporal decay of weighted L p -norms of solutions to (1.12), (1.10), (1.6) with b = 0, f = 0, where the weight functions take account of the wake phenomenon. This type of result was extended to the nonlinear problem (1.9), (1.10), (1.6) with b = 0, f = 0 by Bae, Roh [START_REF] Bae | Stability for the 3D Navier-Stokes equations with nonzero far field velocity on exterior domains[END_REF].

Notation. Various auxiliary results.

As we may recall, the bounded open set Ω ⊂ R 3 with connected Lipschitz boundary ∂Ω and the parameter τ ∈ (0, ∞) were fixed at the beginning of section 1. We will write n (Ω) for the outward unit normal to Ω. The notations S ∞ := ∂Ω × (0, ∞) for T ∈ (0, ∞] and S T,∞ := ∂Ω × (T, ∞) for T ∈ [0, ∞) were also already introduced in section 1, as was the function ν (see (1.13)), as well as the abbreviation |α| for the length α 1 + α 2 + α 3 of a multiindex α ∈ N 3 0 . The symbol | | additionally denotes the Euclidean norm in R 3 . For A ⊂ R 3 , we set A c := R 3 \A. Moreover we abbreviate e 1 := (1, 0, 0), and we put B r (x) := {y ∈ R 3 : |y -x| < r} for x ∈ R 3 , and B r := B r (0), where r ∈ (0, ∞). Let A be a nonempty set. If ϕ : A → R is a function, we define |ϕ| ∞ := sup{|ϕ(x)| : x ∈ A}. Let n ∈ N and B a vector space consisting of functions f : A → R. Suppose B is equipped with a norm, denoted by B . Then we put B n := {F : A → R n : F j ∈ B for 1 ≤ j ≤ n}, and we equip B n with the norm

F (n) B := ( n j=1 F j 2 B ) 1/2 (F ∈ B n ). But instead of (n)
B , we will write B again. Next we introduce a fractional derivative. Let A ⊂ R 3 , T ∈ (0, ∞] and ψ : A × (0, T ) → R a function such that ψ(x, • ) is measurable and t 0 (t -r) -1/2 |ψ(x, r)| dr < ∞ for x ∈ A, t ∈ (0, T ). Define W (x, t) := t 0 (t -r) -1/2 ψ(x, r) dr for these x and t. If the derivative ∂ t W (x, t) exists for some such x and t, we put ∂

1/2 t V (x, t) := Γ(1/2) -1 ∂ t W (x, t).
Here Γ denotes the usual Gamma function. In the case that ∂ t W (x, t) exists for any x ∈ A, t ∈ (0, T ), we define ∂

1/2 4 V := Γ(1/2) -1 ∂ 4 W. Let A ⊂ R 3 be open. For p ∈ [1, ∞],
the norm of the Lebesgue space L p (A), defined with respect to the Lebesgue measure on R 3 , is denoted by p . The same notation is used for the norm of L p -spaces on ∂Ω or on subsets of S ∞ . If T ∈ (0, ∞], put ), we write W 1,p (A) for the usual Sobolev space of order 1 and exponent p. If p = 2, we use the notation H 1 (A) instead of W 1,2 (A). For s ∈ (0, 1), let H s (A) be the Sobolev space defined via the intrinsic norm with exponent 2 introduced in [1, section 7.51]. The symbol H s σ (A) stands for the closure of the set {V ∈ C ∞ 0 (A) 3 : div V = 0} with respect to the norm of H s (A) 3 (s ∈ (0, 1]). Moreover, if A is again an open set in R 3 , then W 1,1 loc (A) designates the set of all functions

L 2 n (S T ) := {ψ ∈ L 2 (S T ) 3 : ∂Ω n (Ω) (x) • ψ(x, t) do x = 0 for a. e. t ∈ (0, T )}. (2.1) For a, b ∈ R ∪ {∞}, a < b, let L 1 loc [a, b) stand for the set of all functions g : (a, b) → R such that g|(a, c) ∈ L 1 (a, c) for c ∈ (a, b). For p ∈ [1, ∞
V : A → R such that V |K ∈ W 1,1 (K) for any open, bounded set K ⊂ R 3 with K ⊂ A.
The Sobolev space H 1 (∂Ω) is to be defined in the standard way (see [19, section III.6], for example). We write H 1 (∂Ω) 3 for the norm of H 1 (∂Ω) 3 , and H 1 (∂Ω) ′ for the usual norm of the canonical dual space H 1 (∂Ω) ′ of H 1 (∂Ω). Frequently we will use the fact that there is c > 0 such that for functions 3 is open and v : A × J → R is a function with suitable smoothness, then the notation ∆ x v, ∇ x v, div x v indicates that the differential operators in question refer to v(x, t) as a function of x ∈ A. It will be convenient to denote this function by v(t), for t ∈ J. For a function V : A → R, we write ∆V, ∇V and div V , respectively.

V ∈ C 1 (R 3 ) 3 , the inequality V |∂Ω H 1 (∂Ω) 3 ≤ c ( V |∂Ω 2 + 3 j=1 ∂ j V |∂Ω 2 ) holds. If J ⊂ R is an interval, A ⊂ R
Let B be a Banach space, a, b ∈ R ∪ {∞} with a < b, and p ∈ [1, ∞]. Then the norm of the space L p (a, b, B) is denoted by Let T ∈ (0, ∞]. For any w ∈ S T , we introduce a mapping F w ∈ L 2 0, T, H 1 (∂Ω) ′ by setting F w (t)(V ) := ∂Ω w(x, t) V (x) do x for V ∈ H 1 (∂Ω) and for a. e. t ∈ (0, T ). However, we will again write w instead of F w . We write C for numerical constants, and C(γ 1 , ..., γ n ) for constants depending exclusively on parameters γ 1 , ..., γ n ∈ [0, ∞), for some n ∈ N. However, it will not be possible to specify all our constants in such a precise way. So in most cases we will use a different symbol, namely C, for generic constants, assuming that their dependencies become clear from context. Occasionally we will use expressions of the form C(γ 1 , ..., γ n ) in order to insist that the constant under consideration depends on γ 1 , ..., γ n ∈ [0, ∞), but it may additionally be a function of other quantities.

L p (a,b,B) . If B = L q (A) n for some q ∈ [1, ∞], n ∈ {1, 3}, A ⊂ R 3 open or A = ∂Ω,
We will frequently use Minkowski's inequality for integrals. For the convenience of the reader, we state a suitable version as Theorem 2.1 ([35, p. 271, Appendix A1]) Let A 1 , A 2 be nonempty sets, A j a measure space on A j and m j a σ-finite measure on A j , for j ∈ {1, 2}. Let F : A 1 × A 2 → R be an A 1 ⊗ A 2 -measurable function, and take p ∈ [1, ∞). Then

A 1 A 2 |F (x, y)| dm 2 (y) p dm 1 (x) 1/p ≤ A 2 A 1 |F (x, y)| p dm 1 (x) 1/p dm 2 (y).
Next we state a Sobolev inequality for certain functions in exterior domains.

Theorem 2.2 Let V ∈ W 1,1 loc (Ω c ) with V ∈ L κ (Ω c ) for some κ ∈ [1, ∞) and ∇V ∈ L 2 (Ω c ) 3 . Then V ∈ L 6 (Ω c ) and V 6 ≤ C ∇V 2 .
Proof: [13, Lemma 2.4], which is a consequence of [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF]Theorem II.5.1].

We note some technical details whose sense will become clear later on.

Lemma 2.1 Let ǫ ∈ (0, 1). Put ϕ(ǫ) := ǫ -1/2 if ǫ > 1/2, and ϕ(ǫ) := min{1/12, ǫ/4} if ǫ ≤ 1/2. Let k ∈ N with k ǫ ≤ 1 < (k + 1) ǫ, and let j ∈ {0, ..., k -1}. Then Z(j) := -1/2 + j/(2 k) + 1/k -(j + 1) ǫ/k ≤ -ϕ(ǫ).
Proof: Suppose that ǫ > 1/2. Then k = 1 so that j = 0. It follows that Z(j) = -1/2 + 1 -ǫ ≤ -ϕ(ǫ). Next suppose that ǫ ∈ (1/3, 1/2], so k = 2 and j ∈ {0, 1}. If j = 0, we have Z(j) = -ǫ/2 ≤ -ϕ(ǫ), and if j = 1, Z(j) = 1/4 -ǫ ≤ -1/12 ≤ -ϕ(ǫ).

Next consider the case ǫ ∈ (1/4, 1/3], so that k = 3 and j ∈ {0, 1, 2}. If j = 0, we find Z(j) = -1/6 -ǫ/3 ≤ -1/6 ≤ -ϕ(ǫ). For j = 1, we get Z(j) = -2 ǫ/3 ≤ -1/6 ≤ -ϕ(ǫ), and for j = 2, Z(j) = 1/6 -ǫ ≤ -1/12 ≤ -ϕ(ǫ).

Now we turn to the case

ǫ ≤ 1/4, which means that k ≥ 4. If j ∈ [k/2, k -2], then Z(j) ≤ -1/2 + (k -2)/(2 k) + 1/k -ǫ/2 = -ǫ/2 ≤ -ϕ(ǫ). The value j = k -1 leads to the equation Z(j) = 1/(2 k) -ǫ, hence by the choice of k, Z(j) = (k + 1)/k 2 (k + 1) -1 -ǫ ≤ (k + 1)/k ǫ/2 -ǫ = -ǫ/2 + ǫ/(2 k) ≤ -3 ǫ/8, so that Z(j) ≤ -ϕ(ǫ). Next suppose that k/4 ≤ j ≤ k/2 so that Z(j) ≤ -1/2 + 1/4 + 1/k -j ǫ/k ≤ -1/4 + 1/k -ǫ/4 ≤ -ǫ/4 ≤ -ϕ(ǫ),
where the second from last inequality holds because k ≥ 4. If j ≤ k/4, we get Z(j) ≤ -1/2 + 1/8 + 1/k ≤ -1/8 ≤ -ϕ(ǫ), with the second from last inequality being a consequence of the relation k ≥ 4. Thus we have found in any case that Z(j) ≤ -ϕ(ǫ).

Lemma 2.2 Let T > 0, n ∈ N, n ≥ 2, φ ∈ L 2 ∂Ω × (T /2, T ) 3 . For i ∈ {0, ..., n -1}, put I i := T (1 + i/n)/2, T 1 + (i + 1)/n /2 .
Then there is i 0 ∈ {0, ..., n -1} such that φ|∂Ω

× I i 0 2 ≤ φ 2 n -1/2 .
Proof: Suppose that φ|∂Ω × I i 2 > φ 2 n -1/2 for any i ∈ {0, ..., n -1}. Then

φ 2 2 = n-1 i=0 φ|∂Ω × I i 2 2 1/2 > φ 2 n -1/2 n-1 i=0 1 1/2 = φ 2 .
Since this is a contradiction, the lemma is proved.

Lemma 2.3 Let T ∈ (0, ∞), φ ∈ L 1 loc [0, ∞) with φ|(T, ∞) ∈ C 1 (T, ∞) . Define H(t) := t 0 (t -r) -1/2 φ(r) dr for t ∈ (T, ∞). Then H ∈ C 1 (T, ∞) and H ′ (t) = √ 2 (t -T ) -1/2 φ (t + T )/2 -(1/2) (t+T )/2 0 (t -r) -3/2 φ(r) dr (2.2) + t (t+T )/2 (t -r) -1/2 φ ′ (r) dr for t ∈ (T, ∞),
with all the preceding integrals existing as Lebesgue integrals.

Proof: Let T 1 , T 2 ∈ (T, ∞) with T 1 < T 2 , and put T 0 := (T + T 1 )/2,

F (t) := T 0 0 (t -r) -1/2 φ(r) dr, G(t) := t T 0 (t -r) -1/2 φ(r) dr for t ∈ [T 1 , T 2 ],
hence H|[T 1 , T 2 ] = F + G. Lebesgue's theorem and the relation

T 0 < T 1 yield that F ∈ C 1 ([T 1 , T 2 ]). Turning to G, we choose a function φ ∈ C 1 (R) such that φ|[T 0 , ∞) = φ|[T 0 , ∞)
, and then consider

G(κ, t) := κ 0 r -1/2 φ(t -r) dr for (κ, t) ∈ B := [T 1 -T 0 , T 2 -T 0 ] × [T 1 , T 2 ].
Again by Lebesgue's theorem, the derivative ∂ 2 G exists and belongs to C 0 (B). Moreover, since for any t

∈ [T 1 , T 2 ], the function r → r -1/2 φ(t -r), r ∈ [T 1 -T 0 , T 2 -T 0 ], is continuous, the derivative ∂ 1 G exists, too, and ∂ 1 G ∈ C 0 (B). But G(t -T 0 , t) = G(t) for t ∈ [T 1 , T 2 ], so we get H|[T 1 , T 2 ] = F + G ∈ C 1 ([T 1 , T 2 ]).
Next we differentiate the function G(t -T 0 , t), t ∈ [T 1 , T 2 ], write the result as a sum of (t -T 0 ) -1/2 φ(T 0 ) plus an integral from T 0 to t, split off an integral from T 0 to (t + T )/2 and integrate by parts in that latter integral. Equation (2.2) follows by a differentiation of F and because

H|[T 1 , T 2 ] = F + G. Corollary 2.1 Let T ∈ (0, ∞), Ψ ∈ L 1 loc [0, ∞), L 2 (∂Ω) 3 , v ∈ C 1 R 3 × (T, ∞) 3 with Ψ|S T,∞ = v|S T,∞ .
Then there is a set N ⊂ ∂Ω of measure zero such that for any x ∈ ∂Ω\N, t ∈ (T, ∞), we have

t 0 (t -r) -1/2 |Ψ(x, r)| dr < ∞. Define W (x, t) := t 0 (t -r) -1/2 Ψ(x, r) dr for such x and t. Then, for x ∈ ∂Ω\N , we have W (x, • ) ∈ C 1 (T, ∞)
3 , and equation (2.2) holds with Ψ(x, • ) in the role of φ, with all integrals existing in the Lebesgue sense. In particular, the fractional derivative ∂ 1/2 t Ψ(x, t) exists for x, t as above.

Proof: Let T 0 ∈ (T, ∞). Then Ψ|S T 0 ∈ L 1 0, T 0 , L 2 (∂Ω) 3 by our assumptions on Ψ, so there is a set N ⊂ ∂Ω of measure zero such that Ψ(x,

• )|(0, T 0 ) ∈ L 1 (0, T 0 ) 3 for x ∈ ∂Ω\N . Since Ψ(x, • )|(T, ∞) is a C 1 -function for any x ∈ ∂Ω, we thus get that Ψ(x, • ) ∈ L 1 loc [0, ∞) 3 for x ∈ ∂Ω\N . Now the corollary follows from Lemma 2.3.
In order to handle the term ν(x) defined in (1.13), we need the ensuing three lemmas, all of them well known.

Lemma 2.4 ([15, Lemma 4.8]) ν(x -y) -1 ≤ C |y| ν(x) -1 for x, y ∈ R 3 . Lemma 2.5 ([18, Lemma 2.3]) Let β ∈ (1, ∞). Then ∂Br ν(x) -β do x ≤ C(β) r for r ∈ (0, ∞). Lemma 2.6 ([6, Lemma 2]) Let K ∈ (0, ∞). Then for x ∈ R 3 , t ∈ (0, ∞), |x -τ t e 1 | 2 + t ≥ C(K, τ ) χ [0,K] (|x|) (|x| 2 + t) + χ (K,∞) (|x|) (|x| ν(x) + t) . Corollary 2.2 Let β ∈ (2, ∞). Then B c R |x| ν(x) -β do x ≤ C(β) R -β+2 for R ∈ (0, ∞).
Proof: By Lemma 2.5,

B c R |x| ν(x) -β do x = ∞ R r -β ∂Br ν(x) -β do x dr ≤ C(β) ∞ R r -β+1 dr = C(β) R -β+2 .
3. Definition of the space H ∞ and its norm. Some properties of this space.

In this section, we introduce the key function space of our theory, denoted by H ∞ and taken from [START_REF] Shen | Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders[END_REF]. We start by fixing T 0 ∈ (0, ∞] and defining

H T 0 := {w|S T 0 : w ∈ C ∞ 0 (R 4 ) 3 , w|R 3 × (-∞, 0) = 0}.
For Ψ ∈ H T 0 , we set

Ψ H T 0 := T 0 0 Ψ(t) 2 H 1 (∂Ω) 3 + ∂ 1/2 4 Ψ(t) 2 2 + n (Ω) • ∂ 4 Ψ(t) 2 H 1 (∂Ω) ′ dt 1/2 .
The mapping

H T 0 is a norm on H T 0 . In the case T 0 = ∞, we further put Ψ|S T,∞ H T,∞ := ∞ T Ψ(t) 2 H 1 (∂Ω) 3 + ∂ 1/2 4 Ψ(t) 2 2 + n (Ω) • ∂ 4 Ψ(t) 2 H 1 (∂Ω) ′ dt 1/2 for T ∈ [0, ∞), Ψ ∈ H ∞ . Note that the term Ψ|S T,∞ H T,∞ depends on Ψ|S T , via the fractional derivative ∂ 1/2 4 Ψ. Further note that in the case T = 0, we have Ψ|S T,∞ H T,∞ = Ψ H∞ .
In order to construct a completion of H T 0 , we consider sequences (Ψ n ) in H T 0 which are Cauchy sequences with respect to the norm H T 0 , with the additional property that

there is Ψ ∈ L 2 n (S T 0 ) with Ψ n -Ψ 2 → 0.
In such a situation it is not clear a priori how Ψ is related to the limit of (∂

1/2 4 Ψ n ) in L 2 (S T 0 ) and to the limit of (n (Ω) • ∂ 4 Ψ n ) in L 2 0, T 0 , H 1 (∂Ω) ′ ).
But it turns out that if Ψ = 0, these limits vanish as well. This fact and some other, related ones are the subject of

Lemma 3.1 Let T 0 ∈ (0, ∞], Ψ ∈ L 2 (S T 0 ) 3 , v n ∈ C ∞ 0 (R 4 ) 3 with v n |R 3 × (-∞, 0) = 0 for n ∈ N such that v n -Ψ 2 → 0 and (v n |S T 0 ) is a Cauchy sequence with respect to the norm H T 0 on H T 0 . Then the sequence ( v n |S T 0 H T 0 ) converges. If Ψ = 0, then lim n→∞ v n |S T 0 H T 0 = 0. If T 0 = ∞, T ∈ (0, ∞) and Ψ|S T = 0, then lim n→∞ v n |S T,∞ H T,∞ = lim n→∞ v n |S ∞ H∞ . If T 0 = ∞, T , T ∈ (0, ∞) with T ≤ T, then lim n→∞ v n |S T,∞ H T,∞ ≤ lim n→∞ v n |S T ,∞ H T ,∞ . Proof: Since (v n |S T 0 ) is a Cauchy sequence with respect to the norm H T 0 , the sequence ( v n |S T 0 H T 0
) is a Cauchy sequence in R and thus converges. It further follows there are functions Ψ (1) 

∈ L 2 0, T 0 , H 1 (∂Ω) 3 , Ψ (2) ∈ L 2 (S T 0 ) 3 and Ψ (3) ∈ L 2 0, T 0 , H 1 (∂Ω) ′ such that v n -Ψ (1) L 2 0,T 0 , H 1 (∂Ω) 3 + ∂ 1/2 4 v n -Ψ (2) 2 + v n -Ψ (3) L 2 0,T 0 , H 1 (∂Ω) ′ -→ 0, (3.1) 
where

v n (x, t) := n (Ω) (x) • v n (x, t) for n ∈ N, x ∈ ∂Ω, t ∈ (0, T 0 )
. By the definition of the mapping H T,∞ , this means in the case

T 0 = ∞ that lim n→∞ v n |S T ,∞ 2 H T ,∞ = ∞ T Ψ (1) (t) 2 H 1 (∂Ω) 3 + Ψ (2) (t) 2 2 + Ψ (3) (t) 2 H 1 (∂Ω) ′ dt (3.2)
for any T ∈ [0, ∞). Now suppose that T 0 = ∞, T ∈ (0, ∞), and Ψ|S T = 0. We will show that the limits lim

n→∞ v n |S T,∞ H T,∞ and lim n→∞ v n |S ∞ H∞ coincide. Since Ψ -v n 2 → 0,
we obtain from (3.1) that Ψ = Ψ (1) . But Ψ|S T = 0, so we may conclude that Ψ (1) 

|S T = 0. Moreover, for V ∈ L 2 (∂Ω) 3 , φ ∈ C ∞ 0 (0, T ) , we get from (3.1) that ∂Ω T 0 Ψ (2) (x, t) • V (x) φ(t) dt do x = lim n→∞ ∂Ω T 0 ∂ 1/2 4 v n (x, t) • V (x) φ(t) dt do x . (3.3) Put w n (x, t) := t 0 (t -r) -1/2 v n (x, r) dr for n ∈ N, x ∈ ∂Ω, t ∈ (0, ∞). By Lemma 2.3, we have w n (x, • ) ∈ C 1 (0, ∞) 3 for any x ∈ ∂Ω, n ∈ N. Since ∂ 1/2 4 v n (x, t) = ∂ t w n (x, t) for n, x, t as before, we get ∂Ω T 0 ∂ 1/2 4 v n (x, t) • V (x) φ(t) dt do x = - ∂Ω T 0 w n (x, t) • V (x) φ ′ (t) dt do x (3.4) for n ∈ N. But ∂Ω T 0 w n (x, t) • V (x) φ ′ (t) dt do x (3.5) = ∂Ω T 0 T r (t -r) -1/2 φ ′ (t) dt v n (x, r) • V (x) dr do x ≤ C(T ) |φ ′ | ∞ T 0 v n (r)|∂Ω 2 dr V 2 ≤ C(T ) |φ ′ | ∞ V 2 v n |S T 2 (n ∈ N). Since v n |S T 2 = v n -Ψ|S T 2 (n ∈ N) and Ψ -v n 2 → 0, we may conclude from (3.3) - (3.5) that Ψ (2) |S T = 0.
A similar reasoning based on (3.1) yields Ψ (3) |S T = 0. Now we may conclude from (3.2) with T = 0 and T = T that lim

n→∞ v n |S T,∞ H T,∞ = lim n→∞ v n |S ∞ H∞ .
If T 0 ∈ (0, ∞] and Ψ = 0, the same reasoning yields Ψ (i) = 0 for i ∈ {1, 2, 3}. In this way we deduce from (3.1) that lim n→∞ v n |S T 0 H T 0 = 0.

The last claim of the lemma is an immediate consequence of (3.2).

Corollary 3.1 Let T 0 ∈ (0, ∞], Ψ ∈ L 2 (S T ) 3 , (Ψ n ) and ( Ψ n ) sequences in H T 0 with Ψ -Ψ n 2 → 0, Ψ -Ψ n 2 → 0 and such that (Ψ n ) and ( Ψ n ) are Cauchy sequences with respect to the norm H T 0 on H T 0 . Then lim n→∞ Ψ n H T 0 = lim n→∞ Ψ n H T 0 . If T 0 = ∞ and T ∈ (0, ∞), it further follows that lim n→∞ Ψ n |S T,∞ H T,∞ = lim n→∞ Ψ n |S T,∞ H T,∞ . Proof: Lemma 3.1 Let T 0 ∈ (0, ∞].
We define the space H T 0 as the set of all functions Ψ ∈ L 2 n (S T 0 ) for which there is a sequence (Ψ n ) in H T 0 such that Ψ -Ψ n 2 → 0 and (Ψ n ) is a Cauchy sequence with respect to the norm H T 0 . This means in particular that H T 0 ⊂ L 2 n (S T 0 ). (See (2.1) for the definition of L 2 n (S T 0 ).) For Ψ ∈ H T 0 and a sequence (Ψ n ) as above, we set Ψ H T 0 := lim n→∞ Ψ n H T 0 . Corollary

implies that the mapping

H T 0 is well defined on H T 0 . The space H T 0 equipped with this mapping is a Banach space, a fact that we will not need in the following.

Suppose that T 0 = ∞. We set Ψ|S T,∞ H T,∞ := lim n→∞ Ψ n |S T,∞ H T,∞ for Ψ ∈ H ∞ , T ∈ (0, ∞), where Ψ n ∈ H ∞ for n ∈ N with the properties that Ψ -Ψ n 2 → 0 and (Ψ n ) is
a Cauchy sequence with respect to the norm H∞ . It again follows from Corollary 3.1 that the mapping H T,∞ is well defined.

Corollary 3.2 Let T ∈ (0, ∞) and Ψ ∈ H ∞ . If Ψ|S T = 0, then Ψ|S T,∞ H T,∞ = Ψ H∞ . If T ∈ [0, T ], then Ψ|S T,∞ H T,∞ ≤ Ψ|S T ,∞ H T ,∞ . Proof: Lemma 3.1. Lemma 3.2 Let T ∈ (0, ∞), Ψ ∈ H ∞ , and suppose there is v ∈ C 1 R 3 × (T, ∞) 3 with Ψ|S T,∞ = v|S T,∞ . Then t 0 (t -r) -1/2 |Ψ(x, r)| dr < ∞ for t ∈ (T, ∞
) and for a. e. x ∈ ∂Ω. Put W (x, t) := t 0 (t-r) -1/2 Ψ(x, r) dr for these t and x. Then W (x, 

• ) ∈ C 1 (T, ∞)
H T,∞ = ∞ T Ψ(t) 2 H 1 (∂Ω) 3 + ∂ 4 W (t) 2 2 + n (Ω) • ∂ 4 Ψ(t) 2 H 1 (∂Ω) ′ dt. (3.6) Proof: Since Ψ ∈ H ∞ , we have in particular Ψ ∈ L 2 (S ∞ ) 3 , so Ψ ∈ L 1 loc [0, ∞) L 2 (∂Ω) 3 . In addition Ψ|S T,∞ = v|S T,∞ with v ∈ C 1 R 3 × (T, ∞) 2 
3 , so the claims about W are valid according to Corollary 2.1. This leaves us to show (3.6). Again since Ψ ∈ H ∞ , there are functions

v n ∈ C ∞ (R 4 ) 3 with v n |R 3 × (-∞, 0) = 0 for n ∈ N such that v n -Ψ 2 → 0 and such that (v n |S ∞
) is a Cauchy sequence with respect to the norm H∞ on H T 0 . The latter property implies there are mappings Ψ (1) 

∈ L 2 0, ∞, H 1 (∂Ω) 3 , Ψ (2) ∈ L 2 (S ∞ ) 3 and Ψ (3) ∈ L 2 0, ∞, H 1 (∂Ω) ′ as in (3.1) with T 0 = ∞. Thus (3.2) holds, so by the definition of H T,∞ , Ψ|S T,∞ 2 
H T,∞ = ∞ T Ψ (1) (t) 2 H 1 (∂Ω) 3 + Ψ (2) (t) 2 2 + Ψ (3) (t) 2 H 1 (∂Ω) ′ dt (3.7)
We further conclude from (3.1) and the choice of the sequence (v n ) that Ψ (1) = Ψ. Let us show that Ψ (2) |S T,∞ = ∂ 4 W. To this end, we proceed as in the proof of Lemma 3.1. We take

V ∈ L 2 (∂Ω) 3 , φ ∈ C ∞ 0 (T, ∞) , and we put w n (x, t) := t 0 (t -r) -1/2 v n (x, r) dr for n ∈ N, x ∈ ∂Ω, t ∈ (0, ∞). By Lemma 2.3, we have w n (x, • ) ∈ C 1 (0, ∞)
3 for any

x ∈ ∂Ω, and ∂

1/2 4 v n = ∂ 4 w n for n ∈ N. Similarly to (3.3) and (3.4), we get ∂Ω ∞ T Ψ (2) (x, t) • V (x) φ(t) dt do x = -lim n→∞ ∂Ω ∞ T w n (x, t) • V (x) φ ′ (t) dt do x . (3.8)
There is T 1 ∈ (T, ∞) such that supp(φ) ⊂ (T, T 1 ). Thus, with W introduced in the lemma,

∂Ω ∞ T (w n -W )(x, t) • V (x) φ ′ (t) dt do x = ∂Ω T 1 0 t 0 (t -r) -1/2 (v n -Ψ)(x, r) • V (x) φ ′ (t) dr dt do x = ∂Ω T 1 0 T 1 r (t -r) -1/2 φ ′ (t) dt (v n -Ψ)(x, r) • V (x) dr do x ≤ C(T 1 ) |φ ′ | ∞ ∂Ω (v n -Ψ)(x, • ) 2 |V (x)| do x ≤ C(T 1 ) |φ ′ | ∞ V 2 v n -Ψ 2 Since v n -Ψ 2 → 0, we thus get - ∂Ω ∞ T W (x, t) • V (x) φ ′ (t) dt do x = -lim n→∞ ∂Ω ∞ T w n (x, t) • V (x) φ ′ (t) dt do x . (3.9)
On the other hand, since W (x, 4. Some fundamental solutions and potential functions. A representation formula for the velocity part of solutions to the Oseen system with Dirichlet boundary conditions.

• ) ∈ C 1 (t, ∞) for a. e. x ∈ ∂Ω, - ∂Ω ∞ T W (x, t) • V (x) φ ′ (t) dt do x = ∂Ω ∞ T ∂ 4 W (x, t) • V (x) φ(t)
We define three potential functions, denoted by R (τ ) (f ), I (τ ) (a) and V (τ ) (φ), respectively. The first is related to the right-hand side f in (1.12), the second to the initial data a in (1.6), and the third to the Dirichlet boundary data b in (1.10). We begin by introducing fundamental solutions to the heat equation, the time-dependent Stokes system and the Oseen system (1.12), respectively. We write H for the fundamental solution of the heat equation in R 3 , that is,

H(z, t) := (4 π t) -3/2 e -|z| 2 /(4 t) for (z, t) ∈ R 3 × (0, ∞).
As a fundamental solution of the time-dependent Stokes system, we choose the same function Γ as in [START_REF] Shen | Boundary value problems for parabolic Lamé systems and a nonstationary linearized system of Navier-Stokes equations in Lipschitz cylinders[END_REF], that is,

Γ jk (z, t) := δ jk H(z, t) + ∞ t ∂ j ∂ k H(z, s) ds for (z, t) ∈ R 3 × (0, ∞), 1 ≤ j, k ≤ 3.
Actually this is the velocity part of the fundamental solution in question; we will not need the pressure part associated with. Finally we introduce the velocity part of the looked-for fundamental solution of the time-dependent Oseen system (1.12), setting Λ jk (z, t, τ ) := Γ jk (z -t τ e 1 , t) for z, t, j, k as before.

Note that in what follows, Γ does not stand for the usual Gamma function. We state some properties of H, Γ = (Γ jk ) 1≤j,k≤3 and Λ = (Λ jk ) 1≤j,k≤3 .

Lemma 4.1 H ∈ C ∞ R 3 × (0, ∞) , R 3 H(z, t) dz = 1 for t ∈ (0, ∞), and |∂ l t ∂ α z H(z, t)| ≤ C (|z| 2 + t) -3/2-|α|/2-l for z ∈ R 3 , t ∈ (0, ∞), α ∈ N 3 0 , l ∈ N 0 with |α| + l ≤ 1.
Proof: For a proof of the estimate at the end of the lemma, we refer to [START_REF] Solonnikov | A priori estimates for second order parabolic equations[END_REF]. An estimate of this kind holds for any α ∈ N 3 0 , l ∈ N 0 , but we will need it only in the case |α| + l ≤ 1.

Lemma 4.2 ([31, Proposition 2.19]) Γ jk , Λ jk ( • , • , τ ) ∈ C ∞ R 3 × (0, ∞) , |∂ l t ∂ α z Γ jk (z, t)| ≤ C (|z| 2 + t) -3/2-|α|/2-l , |∂ l t ∂ α z Λ jk (z, t)| ≤ C(τ ) (|z -t τ e 1 | 2 + t) -3/2-|α|/2-l + δ l1 (|z -t τ e 1 | 2 + t) -2 for z ∈ R 3 , t ∈ (0, ∞), α ∈ N 3 0 , l ∈ N 0 with |α| + l ≤ 1, j, k ∈ {1, 2, 3}.
By combining Lemma 2.6 and the preceding lemma, we get

Corollary 4.1 Let K ∈ (0, ∞) and put γ K (z) := |z| 2 for z ∈ B K , γ K (z) := |z| ν(z) for z ∈ B c K . Then |∂ l t ∂ α z Λ jk (z, t)| ≤ C(τ, K) (γ K (z) + t) -3/2-|α|/2-l + δ l1 (γ K (z) + t) -2
for z, t, α, l, j, k as in the preceding lemma.

The ensuing theorem provides an estimate of convolutions of Λ.

Theorem 4.1 Let q ∈ [1, ∞), ̺ ∈ (1, ∞], s ∈ [1, ∞] with s ≤ ̺, M ∈ (0, ∞), j, k ∈ {1, 2, 3}, α ∈ N 3 0 with |α| ≤ 1. Take h ∈ L s 0, ∞, L q (R 3 ) . Then the ensuing inequality holds for W = (0, M ) if 1 -|α|/2 -3/(2 q) -1/s + 1/̺ > 0, and for W = (M, ∞) if 1 -|α|/2 -3/(2 q) -1/s + 1/̺ < 0: ∞ 0 ∞ 0 R 3 χ W (t -σ) |∂ α x Λ jk (x -y, t -σ, τ )| |h(y, σ)| dy dσ ̺ dt 1/̺ ≤ C(τ, q, ̺, s) M 1-|α|/2-3/(2 q)-1/s+1/̺ h q,s;∞ for x ∈ R 3 if ̺ < ∞, and ∞ 0 R 3 χ W (t -σ) |∂ α x Λ jk (x -y, t -σ, τ )| |h(y, σ)| dy dσ ≤ C(τ, q, s) M 1-|α|/2-3/(2 q)-1/s h q,s;∞ for x ∈ R 3 , t ∈ (0, ∞) if ̺ = ∞.
Proof: Theorem 4.1 follows from [10, Lemma 2.7] and [14, Theorem 2.8] if the parameter p in those references is chosen as p = ∞. As becomes apparent from the proof of these references, not only L ∞ -estimates are provided if p = ∞ or ̺ = ∞, but pointwise estimates not involving any sets of measure zero.

The ensuing lemma is the basis of the definition of our first potential function. Due to the preceding lemma, we may define a function R (τ ) (h) :

Lemma 4.3 Let q, s ∈ [1, ∞) and h ∈ L s 0, ∞, L q (R 3 ) 3 . Then, for a. e. (x, t) ∈ R 3 × (0, ∞), α ∈ N 3 0 with |α| ≤ 1, we have t 0 R 3 |∂ α x Λ(x -y, t -σ, τ ) • h(y,
R 3 × [0, ∞) → R 3 for any h ∈ L s 0, T, L q (A) 3 with q, s ∈ [1, ∞), A ⊂ R 3 measurable, T ∈ (0, ∞], by setting R (τ ) (x, t) := t 0 R 3 Λ(x -y, t -σ, τ ) • h(y, σ) dy dσ for a. e. (x, t) ∈ R 3 × [0, ∞),
where h denotes the zero extension of

h to R 3 × (0, ∞). Lemma 4.4 ([10, Lemma 2.11]) Let q, s ∈ [1, ∞) and h ∈ L s 0, ∞, L q (R 3 ) 3 . Then the weak derivativee ∂ l R (τ ) (h) exists for 1 ≤ l ≤ 3, in particular R (τ ) (h)(t) ∈ W 1,1 loc (R 3 ) 3×3 for a. e. t ∈ (0, ∞). Moreover ∂ l R (τ ) (x, t) = t 0 R 3 ∂ l Λ(x -y, t -σ, τ ) • h(y, σ) dy dσ for a. e. x ∈ R 3 , a. e. t ∈ (0, ∞), 1 ≤ l ≤ 3.
In particular the trace of R (τ ) (h)(t) on ∂Ω is well defined for a. e. t ∈ (0, ∞). Lemma 4.5 ([10, Lemma 2.12, Corollary 2.13]) Let q, s ∈ [1, ∞) and let h be a function belonging to L s 0, ∞, L q (R 3 ) 3 . Then

t 0 R 3 |Λ(x-y, t-σ, τ )•h(y, σ)| dy dσ < ∞ for a. e. (x, t) ∈ ∂Ω × (0, ∞). Thus R (τ ) (h) is well defined also as a function on S ∞ . Moreover, R (τ ) (h)(t) as a function on ∂Ω is the trace of R (τ ) (h)(t) as a function on R 3 , for a. e. t ∈ (0, ∞). Lemma 4.6 Let T ∈ (0, ∞), q ∈ [1, 4], s ∈ [1, ∞), f ∈ L s 0, T, L q (R 3 ) 3 . Then R (τ ) (f )|R 3 × (T, ∞) ∈ C 1 R 3 × (T, ∞)
3 and

∂ l t ∂ α x R (τ ) (f )(x, t) = T 0 R 3 ∂ l t ∂ α x Λ(x -y, t -σ, τ ) • f (y, σ) dy dσ (4.1) for x ∈ R 3 , t ∈ (T, ∞), l ∈ N 0 , α ∈ N 3 0 with l + |α| ≤ 1,
where the preceding integral exists as a Lebesgue integral.

Proof: The lemma follows from Lebesgue's theorem. However, since f is not required to belong to

L 1 R 3 × (0, T )
3 , it is perhaps not completely obvious how to apply that theorem. In particular, the reason for the condition q ≤ 4 may not be clear. So we indicate a proof. Let R ∈ (0, ∞),

T 0 ∈ (T, ∞). It is enough to show that R (τ ) (f )|B R × (T 0 , ∞) is a C 1 -function and equation (4.1) holds for (x, t) ∈ B R × (T 0 , ∞). Put f (1) := χ B c
2R ×(0,T ) f. Then, by Corollary 4.1 with K = R and Lemma 2.4, we get

|∂ l t ∂ α x Λ(x -y, t -σ, τ ) • f (1) (y, σ)| ≤ C(R, τ ) g l,α (y) |f (y, σ)| (4.2) for x ∈ B R , y ∈ R 3 , t ∈ (T 0 , ∞), σ ∈ (0, T ), α, l as in (4.1)
, where

g l,α (y) := χ (2R, ∞) (|y|) |y| ν(y) -3/2-|α|/2-l + δ l1 |y| ν(y) -2
for y ∈ R 3 .

Since q < 4, we have 3 q ′ /2 > 2, so by Corollary 2.2,

T 0 R 3 g l,α (y) |f (y, σ)| dy dσ ≤ T 0 R 3 g l,α (y) q ′ dy 1/p ′ f (σ) q dσ ≤ C(R, q, s, τ ) T 1/s ′ f q,s;T < ∞,
for l, α as in (4.1). Therefore from (4.2) and Lesbesgue's theorem, we may conclude that R (τ ) (f (1) ) is a C 1 -function on B R × (T 0 , ∞), and equation (4.1) is valid for x ∈ B R , t ∈ (T 0 , ∞) and with f replaced by f (1) . Put f (2) 

:= χ B 2R ×(0,T ) f . Then f (2) ∈ L 1 R 3 × (0, T ) 3
, and due to Lemma 4.2, we have

|∂ l t ∂ α x Λ jk (x -y, t -σ, τ )| ≤ C(τ ) (T 0 -T ) -3/2-|α|/2-l + δ 1l (T 0 -T ) -2
for x, y, t, σ as in (4.2), 1 ≤ j, k ≤ 3 and α, l as in (4.1). Therefore Lebesgue's theorem yields that 2) . Since f = f (1) + f (2) , the lemma is proved.

R (τ ) (f (2) )|B R × (T 0 , ∞) is a C 1 -function and (4.1) holds on B R × (T 0 , ∞) if f is replaced by f (
The next theorem presents a criterion on

f implying R (τ ) (f )|S ∞ ∈ H ∞ . Theorem 4.2 ([11, Theorem 8.1]) Let f ∈ L 2 0, ∞, L ̺ (R 3 ) 3 for ̺ = 3/2 and for some ̺ ∈ [1, 3/2). Then R (τ ) (f )|S ∞ ∈ H ∞ and R (τ ) (f )|S ∞ H∞ ≤ C ( f 3/2,2;∞ + f q,2;∞ ).
Corollary 4.2 Let T, q, f be given as in Lemma 4.6, and abbreviate

Ψ := R (τ ) (f )|S ∞ .
For a. e. x ∈ ∂Ω we then have

Ψ(x, • )|(T, ∞) ∈ C 1 (T, ∞) 3 , t 0 (t -r) -1/2 |Ψ(x, r)| dr < ∞ for t ∈ (T, ∞), and the function t → t 0 (t -r) -1/2 Ψ(x, r) dr, t ∈ (T, ∞), belongs to C 1 (T, ∞) 3 , so that ∂ 1/2
t Ψ(x, t) exists for any t ∈ (T, ∞). In addition, equation (2.2) holds with Ψ(x, • ) in the place of φ, for a. e. x ∈ ∂Ω. Finally,

Ψ|S T,∞ 2 H T,∞ (4.3) = ∞ T Ψ(t)|∂Ω 2 H 1 (∂Ω) 3 + ∂Ω |∂ 1/2 t Ψ(x, t)| 2 do x + ∂Ω |n (Ω) (x) • ∂ t Ψ(x, t)| 2 do x dt
Proof: Theorem 4.2, Lemma 4.6 and 3.2.

We will need the following estimate on pointwise spatial decay of R (τ ) (f ).

Theorem 4.3 ([13, Theorem 3.1]) Let A ∈ (2, ∞), B ∈ [0, 3/2] with A + min{1, B} > 3, A + B ≥ 7/2, ̺ 0 ∈ (2, ∞), R 0 ∈ (0, ∞), γ ∈ L 2 (0, ∞) ∩ L ̺ 0 (0, ∞) , f : R 3 × (0, ∞) → R 3 measurable with |f (y, σ)| ≤ γ(σ) |y| -A ν(y) -B for y ∈ B c R 0 , σ ∈ (0, ∞). Further suppose that f |B R 0 × (0, ∞) ∈ L 2 B R 0 × (0, ∞) 3 . Let R ∈ (R 0 , ∞).
Then, for x ∈ B c R , t ∈ (0, ∞), α ∈ N 3 0 with |α| ≤ 1, inequality (1.11) holds. (Note that by Lemma 4.3 and 4.4 with q = s = 2, and because γ ∈ L 2 (0, ∞) and A > 2, the term

∂ α x R (τ ) (f )(x, t) in (1.11) is well defined.)
The next lemma allows to define the potential I (τ ) (a) further below and yields a pointwise temporal estimate of this potential.

Lemma 4.7 Let p ∈ [1, ∞], a ∈ L p (R 3 ) 3 , l ∈ N 0 , α ∈ N 3 0 with l + |α| ≤ 1. Then R 3 |∂ l t ∂ α x H(x -y -τ t e 1 , t) a(y)| dy ≤ C(p) a p (t -3/(2 p)-|α|/2-l + δ 1l t -3/(2 p)-1/2 )
for x ∈ R 3 , t ∈ (0, ∞), where 3/(2 p) := 0 if p = ∞.

Proof: Take x, t as in the lemma, and let the left-hand side of the estimate in Lemma 4.7 be denoted by A. In the case p ∈ (1, ∞), we get with Lemma 4.1 that

A = R 3 |∂ l 4 ∂ α x H(x -y -τ t e 1 , t) -δ 1l τ ∂ 1 H(x -y -τ t e 1 , t)| |a(y)| dy ≤ C a p R 3 (|x -y -τ t e 1 | + t 1/2 ) (-3-|α|-2 l) p ′ +δ 1l (|x -y -τ t e 1 | + t 1/2 ) -4 p ′ dy 1/p ′ ≤ C a p R 3 (|z| + t 1/2 ) (-3-|α|-2 l) p ′ + δ 1l (|z| + t 1/2 ) -4 p ′ dz 1/p ′ ≤ C a p (t -3/2-|α|/2-l+3/(2p ′ ) + δ 1l t -2+3/(2p ′ ) ) ≤ C a p (t -3/(2p)-|α|/2-l + δ 1l t -3/(2p)-1/2 ).
If p = 1, the estimate A ≤ C a p (t -3/(2p)-|α|/2-l + δ 1l t -3/(2p)-1/2 ) follows almost immediately from Lemma 4.1. Suppose p = ∞. Then, in the case α = 0, l = 0,

A ≤ a p R 3 H(x -y -τ t e 1 , t) dy = a p R 3
H(z, t) dz = a p by Lemma 4.1, and in the case |α| + l > 0 by the same reference,

A ≤ C a p R 3 (|z| + t 1/2 ) -3-|α|-2l + δ l1 (|z| + t 1/2 ) -4 dz ≤ C a p (t -|α|/2-l + δ 1l t -1/2 ).
This completes the proof of the lemma.

In view of Lemma 4.7, we may define 3 , for some measurable subset A of R 3 , with a denoting the zero extension of a to R 3 .

I (τ ) (a)(x, t) := R 3 H(x -y -τ t e 1 , t) a(y) dy x ∈ R 3 , t ∈ (0, ∞) , where p ∈ [1, ∞], a ∈ L p (A)
Lemma 4.8 Let p ∈ [1, ∞] and a ∈ L p (R 3 ) 3 . Then I (τ ) (a) ∈ C 1 R 3 × (0, ∞) 3 and 
∂ l t ∂ α x I (τ ) (a)(x, t) = R 3 ∂ l t ∂ α x H(x -y -τ t e 1 , t) a(y) dy (4.4) for x ∈ R 3 , t ∈ (0, ∞), α ∈ N 3 0 , l ∈ N 0 with |α| + l ≤ 1.
Proof: See [12, Lemma 2.3] and its proof.

Actually I (τ ) (a) is a C ∞ -function, but we will not need this fact. Proof: Theorem 4.4, Lemma 4.8 and 3.2.

We will need the following pointwise spatial decay estimate of I (τ ) (a). We turn to a single layer potential whose definition is based on the ensuing

Theorem 4.5 Let R 0 , δ 0 ∈ (0, ∞), κ 0 ∈ (0, 1], a ∈ L 1 loc (R 3 ) 3 such that a|B R 0 c ∈ W 1,1 loc (B R 0 c ) 3 , |∂ α a(y)| ≤ δ 0 |y| ν(y) -1-|α|/2-κ 0 for y ∈ B R 0 c , α ∈ N 3 0 with |α| ≤ 1. Let R ∈ (R 0 , ∞) and take α as before. Then, for x ∈ B c R and t ∈ (0, ∞), |∂ α x I (τ ) (a)(x, t)| ≤ C (δ 0 + a|B R 0 1 ) |x| ν(x) -1-|α|/2
Lemma 4.9 Let φ ∈ L 2 (S ∞ ) 3 , α ∈ N 3 0 with |α| ≤ 1. Then, for x ∈ R 3 \∂Ω, t ∈ (0, ∞), we have t 0 ∂Ω |∂ α x Λ(x-y, t -σ, τ )•φ(y, σ)| do y dσ < ∞.
In addition, the preceding relation holds for a. e. x ∈ ∂Ω and a. e. t ∈ (0, ∞).

Proof: If x ∈ R 3 \∂Ω, we have |x -y| ≥ dist(x, ∂Ω) > 0 for y ∈ ∂Ω, so Corollary 4.1 with K = dist(x, ∂Ω)/2 yields |∂ α x Λ jk (x -y, t -σ, τ )| ≤ C dist(x, ∂Ω) -3/2-|α|/2
> 0 for y as before, t ∈ (0, ∞) and σ ∈ (0, t). This estimate and Hölder's inequality imply the first claim of the lemma. The second holds according to [START_REF] Deuring | Spatial decay of time-dependent Oseen flows[END_REF]Lemma 2.19].

In view of the preceding lemma, we may define

V (τ ) (φ)(x, t) := t 0 ∂Ω Λ(x -y, t -σ, τ ) • φ(y, σ) do y dσ for T ∈ (0, ∞], φ ∈ L 2 (S T ) 3 , x ∈ R 3 \∂Ω, t ∈ (0, ∞)
, and for a. e. x ∈ ∂Ω and a. e. t ∈ (0, ∞), where φ denotes the zero extension of φ to S ∞ .

Note that V (τ ) (φ) is defined as a function on (R 3 \∂Ω) × (0, ∞) and also as a function on ∂Ω × (0, ∞). The second of these functions is the trace of the first:

Theorem 4.6 Let φ ∈ L 2 (S ∞ ) 3 and abbreviate v := V (τ ) (φ)|Ω c × (0, ∞). Then v ∈ W 1,1 loc Ω c × (0, ∞) 3 ∩ C 0 Ω c × [0, ∞) 3 , v(t) ∈ C ∞ (Ω c ) 3 and ∂ l v(x, t) = t 0 ∂Ω ∂ l Λ(x -y, t -σ, τ ) • φ(y, σ) do y dσ (4.5) for t ∈ (0, ∞), x ∈ Ω c , 1 ≤ l ≤ 3. Moreover v ∈ L ∞ 0, ∞, L 2 (Ω c ) 3 , ∇ x v ∈ L 2 Ω c × (0, ∞) 9
, and for t ∈ (0, ∞), the trace of v(t) coincides with V (τ ) (φ)(t) considered as a function on ∂Ω.

Proof: For the first part of the lemma, up to and including (4. If φ ∈ L 2 (S T ) 3 for some T < ∞, then V (τ ) (φ) is smooth on R 3 × (T, ∞):

Lemma 4.10 Let T ∈ (0, ∞) and φ ∈ L 2 (S T ) 3 . Then V (τ ) (φ)|R 3 × (T, ∞) belongs to C 1 R 3 × (T, ∞)
3 , and

∂ l t ∂ α x V (τ ) (φ)(x, t) = T 0 ∂Ω ∂ l t ∂ α x Λ(x -y, t -σ, τ ) • φ(y, σ) do y dσ for x ∈ R 3 , t ∈ (T, ∞), α ∈ N 3 0 , l ∈ N 0 with |α| + l ≤ 1,
where the preceding integral exists as Lebesgue integral.

Proof: If x ∈ R 3 , t ∈ (T, ∞) in the situation of Lemma 4.10, the time integral in the definition of V (τ ) (φ)(x, t) only extends from 0 to T , and not from 0 to t. Thus the lemma follows from Corollary 4.1 and Lebesgue's theorem by a similar but simpler reasoning as in the proof of Lemma 4.6, simpler in particular because L 2 (S T ) 3 ⊂ L 1 (S T ) 3 .

We will need the following, much more deep-lying properties of V (τ ) (φ). 3 , define V (0) (φ) in the same way as V (τ ) (φ), but with the term Λ(x -y, t -σ, τ ) replaced by Γ(x -y, t -σ); compare [ 3 , and there is c > 0 with V (0) (φ)|S ∞ H∞ ≤ c φ 2 for φ as before. The theorem follows with [START_REF] Deuring | A potential theoretic approach to the time-dependent Oseen system[END_REF]Theorem 4].

Theorem 4.7 The relation V (τ ) (φ)|S ∞ ∈ H ∞ holds for φ ∈ L 2 (S ∞ ) 3 . There is a constant c 1 > 0 such that V (τ ) (φ)|S ∞ H∞ ≤ c 1 φ 2 for such φ. Proof: For φ ∈ L 2 (S ∞ )
V (0) (φ)|S ∞ ∈ H ∞ for φ ∈ L 2 (S ∞ )
Theorem 4.8 ([9, Corollary 3]) There is c 2 > 0 such that φ 2 ≤ V (τ ) (φ)|S ∞ H∞ for φ ∈ L 2 n (S ∞ ). For b ∈ H ∞ , the integral equation V (τ ) (φ)|S ∞ = b is solved by a unique function φ ∈ L 2
n (S ∞ ). (The function space L 2 n (S ∞ ) was introduced in (2.1)).

Corollary 4.4 Let T ∈ (0, ∞) and φ ∈ L 2 (S T ) 3 . Then all the conclusions listed in Corollary 4.2 for the function Ψ introduced there are true for Ψ = V (τ ) (φ)|S ∞ as well.

Proof: Lemma 4.10, Theorem 4.7 and Lemma 2.3.

Corollary 4.5 Let φ ∈ L 2 (S ∞ ), T ∈ (0, ∞).
Then, with c 1 from Theorem 4.7, we have

V (τ ) (φ)|S T,∞ H T,∞ ≤ V (τ ) (φ) H∞ ≤ c 1 φ 2 .
Proof: Theorem 4.7, Corollary 3.2.

Corollary 4.6 Let T ∈ (0, ∞) and φ ∈ L 2 n (S ∞ ) with φ|S T = 0. Then, with c 2 from Theorem 4.8, φ 2 ≤ c 2 V (τ ) (φ) H∞ = c 2 V (τ ) (φ)|S T,∞ H T,∞ .
Proof: The inequality stated in the corollary holds according to Theorem 4.8, whereas the equation follows from Corollary 3.2.

In view of a representation formula for solutions to (1.12), (1.10), (1.6), we first state a uniqueness theorem for such solutions.

Theorem 4.9 Let b : S ∞ → R 3 , a ∈ L 1 loc (Ω c ) 3 , f ∈ L 2 loc [0, ∞), [H 1 σ (Ω c )] ′ ). Then there is at most one function u ∈ L 2 loc [0, ∞), H 1 (Ω c ) 3 such that u(t)|∂Ω = b(t) for t ∈ (0, ∞), div x u = 0, (4.6) ∞ 0 Ω c -u(x, t) • V (x) ϕ ′ (t) (4.7) + ∇ x u(x, t) • ∇V (x) ϕ(t) + τ ∂ 1 u(x, t) • V (x) ϕ(t) dx -f (t)(V ) ϕ(t) dt = Ω c a(x) • V (x) dx ϕ(0) for ϕ ∈ C ∞ 0 [0, ∞) , V ∈ C ∞ 0 (Ω c ) 3 with div V = 0.
Proof: This theorem may be shown in the same way as an analogous result for the Stokes system. We refer to [START_REF] Deuring | A representation formula for the velocity part of 3D time-dependent Oseen flows[END_REF]Theorem 3.7] and its proof.

Now we construct a solution to (1.12), (1.10), (1.6) in the form u = R (τ ) (f ) + I (τ ) (a) + V (τ ) (φ), with φ being the solution to the integral equation (4.8) below. In this way we obtain a representation formula for the velocity as a sum of three potential functions, as announced in section 1. We consider this solution as a weak one in the sense of Theorem 4.9 because we want to range it in a uniqueness class which is as large as possible. If f and a are smooth, then u is the velocity part of a solution satisfying (1.12) and ( 1 

∈ (0, 1/2], q ∈ [1, 3/2), b ∈ H ∞ , a ∈ H 1/2+ǫ 0 σ (Ω c ), f ∈ L 2 0, ∞, L q (Ω c ) 3 ∩ L 2 0, ∞, L 3/2 (Ω c ) 3 . Then there is a unique function φ ∈ L 2 n (S ∞ ) (see (2.1)) with V (τ ) (φ)|S ∞ = -R (τ ) (f ) -I (τ ) (a) + b. (4.8)
Moreover there is a unique function u ∈ L 2 loc [0, ∞), H 1 (Ω c ) 3 such that (4.6) and (4.7)

hold. This function is given by 

u = R (τ ) (f ) + I (τ ) (a) + V (τ ) (φ)|Ω c × (0, ∞). ( 4 

Temporal decay of the potential R (τ ) (f ).

This section has two aims. Firstly, we want to estimate R (τ ) (f )|S T,∞ H T,∞ , and secondly, we are going to determine an upper bound of |∂ α x R (τ ) (f )(x, t)| under the assumption |α| ≤ 1. Our starting point will be to split f into a sum f (1) + f (2) , with f (1) = χ R 3 × (t/2, ∞) and f (2) = χ R 3 × (0, t/2). The decay of R (τ ) (f (1) )(x, t) is then due to the asymptotic behaviour of f for t → ∞, whereas R (τ ) (f (2) )(x, t) becomes small for large t due to the decay properties of the fundamental solution Λ. The next lemma addresses some key technical difficulties in the estimate of R (τ ) (f (2) )|S T,∞ H T,∞ and also of R (τ ) (f (2) )(x, t).

Lemma 5.1 Let α ∈ N 3 0 , l ∈ N 0 with |α| + l ≤ 1. Let q ∈ [1, 4], s ∈ [1, ∞) with 3/(2 q) + 1/s > 1 -|α|/2 -l/2. Take T ∈ (0, ∞) and f ∈ L s 0, T, L q (R 3 ) 3 . Then |∂ l t ∂ α x R (τ ) (f )(x, t)| ≤ C f q,s;T (t -T ) -3/(2 q)-1/s+1-|α|/2-l (5.1) +δ 1l (t -T ) -3/(2 q)-1/s+1/2 for x ∈ R 3 , t ∈ (T, ∞). (Recall that R (τ ) (f )|R 3 × (T, ∞) ∈ C 1 R 3 × (T, ∞)
3 by Lemma 4.6.)

Proof: Take x and t as in the lemma. In the case l = 0, hence |α| ≤ 1, the exponents q and s verify the condition 3/(2 q) + 1/s > 1 -|α|/2. This and the inequality t -σ > (t -T )/2 for σ ∈ (0, T ) allow us to apply Theorem 4.1 with M = (t -T )/2 and ̺ = ∞. Lemma 4.6 and Theorem 4.1 then yield (5.1) in the case l = 0.

Let us suppose for the rest of this proof that l = 1. This means in particular that α = 0 and 3/(2 q) + 1/s > 1/2. Consider the case s > 1 and q > 1. Then by Lemma 4.6, Hölder's inequality and Lemma 4.2,

|∂ t R (τ ) (f )(x, t)| (5.2) ≤ C T 0 R 3 j∈{5, 4} |x -y -τ (t -σ) e 1 | + (t -σ) 1/2 -j |f (y, σ)| dy dσ ≤ C f q,s;T j∈{5, 4} T 0 R 3 |x -y -τ (t -σ) e 1 | + (t -σ) 1/2 -j q ′ dy s ′ /q ′ dσ 1/s ′ .
But for any σ ∈ (0, T ), j ∈ {5, 4}, the preceding integral with respect to y equals R 3 |z|+ (t -σ) 1/2 -j q ′ dy, and is hence bounded by C(q) (t -σ) -j q ′ /2+3/2 . Therefore from (5.2),

|∂ t R (τ ) (f )(x, t)| ≤ C(q) f q,s;T j∈{5, 4} T 0 (t -σ) [-j/2+3/(2q ′ )] s ′ dσ 1/s ′ .
But -j/2 + 3/(2q ′ ) = (-j + 3)/2 -3/(2 q) for j ∈ {5, 4}. Since 3/(2 q) + 1/s > 1/2, as mentioned above, we have [(-j + 3)/2 -3/(2 q)] s ′ < -1 for j as before, so we may conclude that

|∂ t R (τ ) (f )(x, t)| ≤ C(q, s) f q,s;T j∈{5, 4} (t -T ) (-j+3)/2-3/(2q)+1/s ′ .
Thus we have shown (5.1) in the case s > 1, q > 1, under the assumption l = 1, as we may recall. If s = 1, q > 1, it follows as in (5.2) that

|∂ t R (τ ) (f )(x, t)| is bounded by C j∈{5, 4} T 0 R 3 |x -y -τ (t -σ) e 1 | + (t -σ) 1/2 -j q ′ dy 1/q ′ f ( • , σ) q dσ.
Since (t -σ) 1/2 ≥ (t -T ) 1/2 for σ ∈ (0, T ), we may conclude that the term |∂ t R (τ ) (f )(x, t)| may be estimated by C(q) f q,1;∞ j∈{5, 4} (t -T ) -j/2+3/(2q ′ ) , which is the looked-for result in the case s = 1, q > 1. If s > 1, q = 1, inequality (5.2) is replaced by the estimate

|∂ t R (τ ) (f )(x, t)| ≤ C j∈{5, 4} T 0 R 3 (t -σ) -j/2 |f (y, σ)| dy dσ, so that |∂ t R (τ ) (f )(x, t)| ≤ C f 1,s;T j∈{5, 4} T 0 (t -σ) -j s ′ /2 dσ 1/s ′ . Inequality (5.1) with q = 1, s > 1 follows. It is obvious how to evaluate |∂ t R (τ ) (f )(x, t)| if s = q = 1.
Further below (Corollary 5.1), we will estimate R (τ ) (f )|S T +µ, ∞ H T +µ, ∞ in terms of negative powers of µ, under the assumption that f |R 3 × (T, ∞) = 0. In the next three lemmas, we derive this type of bound.

Lemma 5.2 Let q, s, T, f be given as in Lemma 5.1. Suppose in addition that 3/(2 q) + 1/s > 3/2. Let µ ∈ (0, ∞).

Then ∞ T +µ R (τ ) (f )(t)|∂Ω 2 H 1 (∂Ω) 3 + ∂Ω |n (Ω) • ∂ t R (τ ) (f )(x, t)| 2 do x dt 1/2
≤ C f q,s;T (µ -3/(2 q)-1/s+3/2 + µ -3/(2 q)-1/s+1/2 ).

(Recall that R (τ ) (f )|R 3 × (T, ∞) is a C 1 -function by Lemma 4.6.)

Proof: Since 3/(2 q)+1/s > 3/2, the term ∞ T +µ (t-T ) -3/q-2/s+2 +(t-T ) -3/q-2/s dt

1/2
is bounded by C (µ -3/(2 q)-1/s+3/2 + µ -3/(2 q)-1/s+1/2 ). Thus the lemma follows from Lemma 5.1. Note that the largest exponent -3/(2 q) -1/s + 3/2 arises in the case α = 0, l = 0 in Lemma 5.1, and the smallest one -3/(2 q) -1/s + 1/2 if α = 0, l = 1.

In order to deal with ∂

1/2 t R (τ ) (f )(x, t)
, we need a preparatory result:

Lemma 5.3 Let q ∈ (1, 2], F ∈ L q (R 3 ) 3 and d ∈ (0, 3]. Then, for r ∈ (0, ∞), ∂Ω R 3 |Λ(x -y, r, τ ) • F (y)| dy 2 do x 1/2 ≤ C F q max{1, r -d/(2q ′ )-3/(2 q)+1/2 }. Proof: Choose R 0 > 0 so large that Ω ⊂ B R 0 /2 . This means that B c R 0 ⊂ B R 0 /2 (x) c and B R 0 ⊂ B 2R 0 (x) for x ∈ ∂Ω.
Let A denote the left-hand side of the estimate stated in the lemma, but with the integral over R 3 replaced by one over B R 0 . Take r ∈ (0, ∞). Then, by Hölder's inequality we see that A 2 is bounded by

C 3 j,k=1 ∂Ω B R 0 |Λ jk (x -y, r, τ )| dy 1/q ′ B R 0 |Λ jk (x -y, r, τ )| |F (y)| q dy 1/q 2 do x . But for x ∈ ∂Ω, 1 ≤ j, k ≤ 3, by Corollary 4.1 with K = 2 R 0 and because B R 0 ⊂ B 2 R 0 (x), B R 0 |Λ jk (x -y, r, τ )| dy ≤ C(R 0 ) B R 0 (|x -y| + r 1/2 ) -3 dy ≤ C(R 0 ) r -d/2 B 2R 0 (x) (|x -y| + r 1/2 ) -3+d dy ≤ C(R 0 , d) r -d/2 . Therefore A ≤ C r -d/(2q ′ ) 3 j,k=1 ∂Ω B R 0
|Λ jk (x -y, r, τ )| |F (y)| q dy 2/q do x 1/2 . Since 2/q ≥ 1, we may conclude with Theorem 2.1 that

A ≤ C r -d/(2q ′ ) 3 j,k=1 B R 0 ∂Ω |Λ jk (x -y, r, τ )| 2/q do x q/2 |F (y)| q dy 1/q .
On the other hand, again by Corollary 4.

1 with K = 2 R 0 , for y ∈ B R 0 , 1 ≤ j, k ≤ 3, ∂Ω |Λ jk (x -y, r, τ )| 2/q do x ≤ C ∂Ω (|x -y| + r 1/2 ) -6/q do x ≤ C r -3/q+1 .
As a consequence, A ≤ C r -d/(2q ′ )-3/(2 q)+1/2 F q . Let B be defined also by the left-hand side of the estimate stated in the lemma, but this time with the integral over R 3 replaced by one over B c R 0 . We get

B ≤ 3 j,k=1 ∂Ω B c R 0 |Λ jk (x -y, r, τ )| q ′ dy 1/q ′ F q 2 do x 1/2 . (5.3)
In order to estimate the integral over B c R 0 in (5.3), we recall that B c R 0 ⊂ B R 0 /2 (x) c for x ∈ ∂Ω, so we may use Corollary 4.1 with K = R 0 /2 to obtain

B c R 0 |Λ jk (x -y, r, τ )| q ′ dy ≤ C(R 0 , q) B R 0 /2 (x) c |x -y| ν(x -y) -3 q ′ /2 dy ≤ C(R 0 , q) B c R 0 /2 |z| ν(z) -3 q ′ /2 dz for x ∈ ∂Ω, 1 ≤ j, k ≤ 3.
But q ≤ 2, in particular q < 4, so 3 q ′ /2 > 2, hence with Corollary 2.2 we arrive at the inequality B c R 0

|Λ jk (x -y, r, τ )| q ′ dy ≤ C(R 0 , q). This estimate is inserted into (5.3). We then obtain B ≤ C F q . The lemma now follows with the estimate of A obtained above.

Lemma 5.4 Let s ∈ (1, ∞), q ∈ (1, 3/2) with 3/(2 q) + 1/s > 3/2. Let T, µ ∈ (0, ∞), f ∈ L s 0, T, L q (R 3 ) 3 . Then ∞ T +µ ∂Ω |∂ 1/2 t R (τ ) (f )(x, t)| 2 do x dt 1/2 ≤ C f q,s;T j∈{2, 3} µ -3/(2 q)-1/s+j/2 + µ -1/s .
(According to Corollary 4.2, the fractional derivative ∂

1/2 t R (τ ) (f )(x, t
) is well defined for any t ∈ (T, ∞) and a. e. x ∈ ∂Ω.)

Proof: For brevity we set Ψ := R (τ ) (f )|S ∞ . According to Corollary 4.2, for a. e. x ∈ ∂Ω equation (2.2) is verified with Ψ(x, • ) in the role of φ. We will estimate each term on the right-hand side of (2.2) in the norm of L 2 (S T +µ,∞ ) 3 . To begin with, we use Lemma 5.1 to obtain

∞ T +µ ∂Ω |(t -T ) -1/2 Ψ x, (t + T )/2 | 2 do x dt 1/2 (5.4) ≤ C f q,s;T ∞ T +µ ∂Ω (t -T ) -1/2 (t + T )/2 -T -3/(2 q)-1/s+1 2 do x dt 1/2 ≤ C f q,s;T ∞ T +µ (t -T ) -3/q-2/s+1 dt 1/2 ≤ C f q,s;T µ -3/(2 q)-1/s+1 ,
where the last inequality holds because -3/q -2/s + 1 < -1 due to our assumptions on q and s. Again by referring to Lemma 5.1, we get for t

∈ (T + µ, ∞), x ∈ ∂Ω that the term | t (t+T )/2 (t -r) -1/2 ∂ r v(x, r) dr| is bounded by C f q,s;T t (t+T )/2 (t -r) -1/2 j∈{0, 1}
(t -T ) -3/(2 q)-1/s+j/2 dr, and thus by C f q,s;T j∈{0, 1} (t -T ) -3/(2 q)-1/s+1/2+j/2 . As a consequence, since -3/q -2/s + 2 < -1 in view of our assumptions on q and s,

∞ T +µ ∂Ω t (t+T )/2 (t -r) -1/2 ∂ r Ψ(x, r) dr 2 do x dt 1/2 (5.5) ≤ C f q,s;T j∈{0, 1} µ -3/(2q)-1/s+1+j/2 . Moreover, ∞ T +µ ∂Ω (t+T )/2 0 (t -r) -3/2 v(x, r) dr 2 do x dt 1/2 ≤ A (1) + A (2) , (5.6) 
where A (j) for j ∈ {1, 2} is defined as the left-hand side of (5.6) with Ψ(x, r) replaced by

R (1) (x, r) := min{r,T } 0 R 3 χ (0,1] (r -σ) Λ(x -y, r -σ, τ ) • f (y, σ) dy dσ (x ∈ ∂Ω, r ∈ (0, ∞))
in the case j = 1, and by a term R (2) (x, r) differing from R (1) (x, r) insofar as χ (1,∞) (r -σ) substitutes for χ (0,1] (r -σ) in the case j = 2. In order to estimate A (1) , we exploit the integration over ∂Ω (Lemma 5.3) in order to reduce the singularity of R (1) (x, r) when r tends to zero. In a first step, we use Theorem 2.1 to obtain

A (1) ≤ ∞ T +µ B(t) 2 dt 1/2 , with B(t) := (t+T )/2 0 (t -r) -3/2 ∂Ω |R (1) (x, r)| 2 do x 1/2 dr
Let d be any number from (0, 3), for example d = 3/2. Theorem 2.1 applied once more yields that ∂Ω |R (1) 

(x, r)| 2 do x 1/2 is bounded by min{r,T } 0 χ (0,1] (r -σ) ∂Ω R 3 |Λ(x -y, t -σ, τ ) • f (y, σ)| dy 2 do x 1/2 dσ,
and hence by C min{r,T } 0 χ (0,1] (r -σ) f (σ) q (r -σ) -d/(2q ′ )-3/(2q)+1/2 dσ according to Lemma 5.3. This estimate and Hölder's inequality imply for t ∈ (T + µ, ∞) that

B(t) ≤ (t+T )/2 0 (t -r) -3s ′ /2 dr 1/s ′ • (t+T )/2 0 min{r,T } 0 χ (0,1] (r -σ) (r -σ) -d/(2q ′ )-3/(2q)+1/2 f (σ) q dσ s dr 1/s , hence with Young's inequality, B(t) ≤ C f q,s;T (t -T ) -3/2+1/s ′ R χ (0,1] (σ) σ -d/(2q ′ )-3/(2q)+1/2 dσ. But -d/(2 q ′ ) -3/(2q) + 1/2 > -1 because d < 3 and q > 1, so B(t) ≤ C f q,s;T (t -T ) -3/2+1/s ′ ≤ C f q,s;T (t -T ) -1/2-1/s , for t as before. Recalling that A (1) ≤ ∞ T +µ B(t) 2 dt
1/2 , we now obtain

A (1) ≤ C f q,s;T T +µ (t -T ) -1-2/s dt 1/2 ≤ C f q,s;T µ -1/s . (5.7)
Turning to A (2) , we deduce from Hölder's inequality that

(t+T )/2 0 (t -r) -3/2 |R (2) (x, r)| dr ≤ (t+T )/2 0 (t -r) -3s ′ /2 dr 1/s ′ R (2) (x, • ) s (5.8) ≤ C (t -T ) -3/2+1/s ′ R (2) (x, • ) s ≤ C (t -T ) -1/2-1/s R (2) (x, • ) s
for x ∈ ∂Ω, t ∈ (T + µ, ∞). But q < 3/2, hence 1 -3/(2q) < 0, so we get by Theorem 4.1 with α = 0, M = 1, ̺ = s that R (2) (x, • ) s ≤ C(q, s) f q,s;T for any x ∈ R 3 . This choice of ̺ is possible since s > 1. Thus from (5.8),

A (2) ≤ C ∞ T +µ (t -r) -1-2/s dr 1/2 f q,s;T ≤
C f q,s;T µ -1/s . The lemma follows from the preceding inequality, (5.4) -(5.6), (5.7), and from equation (2.2) as indicated at the beginning of this proof.

Corollary 5.1 Let q ∈ (1, 3/2), q ∈ [1, 3/2), s ∈ (1, ∞) with 3/(2 q) + 1/s > 3/2, f ∈ L c 0, ∞, L d (R 3 ) 3 for (c, d) ∈ {(s, q), (2, q), (2, 3/2)}. Let T ∈ [1, ∞). Then R (τ ) (f )|S T,∞ H T,∞ ≤ C f q,s;∞ (T -3/(2q)-1/s+3/2 + T -1/s ) +C f |R 3 × (T /2, ∞) q,2;∞ + f |R 3 × (T /2, ∞) 3/2, 2;∞ .
(Recall that by Theorem 4.2, we have

R (τ ) (f )|S ∞ ∈ H ∞ .) Proof: Put f (1) := χ R 3 ×(T /2, ∞) f, f (2) := χ R 3 ×(0, T /2) f.
Then by Corollary 3.2 and Theorem 4.2,

R (τ ) (f (1) )|S T,∞ H T,∞ ≤ R (τ ) (f (1) ) H∞ ≤ f (1) q,2;∞ + f (1)
3/2, 2;∞ .

(5.9)

Concerning R (τ ) (f (2) ), we use equation (4.3) with f (2) in the place of f , and then Lemma 5.2 and 5.4 with T replaced by T /2 and µ = T /2. Taking account of the assumption T ≥ 1, we find that

R (τ ) (f (2) )|S T,∞ H T,∞ ≤ C f q,s;∞ (T -3/(2q)-1/s+3/2 + T -1/s ).
(5.10) Corollary 5.1 follows from (5.9) and (5.10).

In section 8, we will need a pointwise estimate on spatial and temporal decay of R (τ ) (f ), based on Theorem 4.3 and Lemma 5.1. Contrary to the situation in Theorem 4.3, we want to avoid the assumption

f |B R 0 × (0, ∞) ∈ L 2 B R 0 × (0, ∞)
3 because it is inconvenient in the nonlinear case. The ensuing lemma allows us to replace this condition by the weaker one

f |B R 0 × (0, ∞) ∈ L 2 0, ∞, L 1 (B R 0 ) 3 .
We will apply this lemma only for ̺ = 2, but still consider the case ̺ ∈ [1, ∞) because one may hope that in future work, the decay rates obtained in the special situation of Lemma 5.5 may be recovered in a more general setting.

Lemma 5.5 Let ̺ ∈ [1, ∞), R 0 ∈ (0, ∞) and f ∈ L ̺ 0, ∞, L 1 (B R 0 ) 3 . Take R ∈ (R 0 , ∞). Then, for α ∈ N 3 0 with |α| ≤ 1, ǫ ∈ [0, 1], x ∈ B c R and t ∈ (0, ∞), |∂ α x R (τ ) (f )(x, t)| ≤ C |x| ν(x) -1/2-1/̺-|α|/2 (1 + t) -2 f 1,̺;∞ + f |B R 0 × (t/2, ∞) 1,̺;∞ ) + |x| ν(x) (-1/2-1/̺-|α|/2) (1-ǫ) (1 + t) (-1/2-1/̺-|α|/2) ǫ f 1,̺;∞ .
Proof: Take α, ǫ, x, t as above, and put f (1) 

:= χ B R 0 ×(0, t/2) f, f (2) := χ B R 0 ×(t/2, ∞) f. For y ∈ B R 0 , we get |x -y| ≥ |x| -|y| = |x| (1 -R 0 /R) + |x| R 0 /R -|y| ≥ |x|(1 -R/R 0 ) ≥ R -R 0 , (5.11) 
where R -R 0 > 0. Thus we may apply Corollary 4.1 with K = R -R 0 . Suppose that ̺ > 1. If ̺ = 1, the ensuing argument remains valid with some small modifications. Due Lemma 4.6, Corollary 4.1 used as indicated, (5.11) and Lemma 2.4, we get

|∂ α x R (τ ) (f (1) )(x, t)| (5.12) ≤ C t/2 0 B R 0 |x -y| ν(x -y) + t -σ -3/2-|α|/2 |f (y, σ)| dy dσ ≤ C t/2 0 B R 0 |x| ν(x) + t -σ -3/2-|α|/2 |f (y, σ)| dy dσ ≤ C t/2 0 |x| ν(x) + t -σ (-3/2-|α|/2) ̺ ′ dσ 1/̺ ′ f 1,̺;∞ ≤ C |x| ν(x) + t -3/2-|α|/2+1/̺ ′ f 1,̺;∞ .
In the case t ≤ 1, we thus get

|∂ α x R (τ ) (f (1) )(x, t)| ≤ C |x| ν(x) -3/2+1/̺ ′ -|α|/2 f 1,̺;∞ ,
and then multiply the right-hand side by 4 (1 + t) -2 . If t ≥ 1, it follows from (5.12) that

|∂ α x R (τ ) (f (1) )(x, t)| ≤ C |x| ν(x) (-3/2+1/̺ ′ -|α|/2) (1-ǫ) (1+ t) (-3/2+1/̺ ′ -|α|/2) ǫ f 1,̺;∞ .
As in (5.12), we obtain that |∂ α x R (τ ) (f (2) )(x, t)| is bounded by

C t t/2 |x| ν(x) + t -σ (-3/2-|α|/2) ̺ ′ dσ 1/̺ ′ f |B R 0 × (t/2, ∞) 1,̺;∞ ,
and hence by

C |x| ν(x) -3/2+1/̺ ′ -|α|/2 f |B R 0 × (t/2, ∞) 1,̺;∞ .
The lemma follows from the preceding estimates and because

-3/2 + 1/̺ ′ = -1/2 -1/̺. Lemma 5.6 Let α ∈ N 3 0 with |α| ≤ 1, q ∈ [1, 4], q, q, s ∈ [1, ∞), s, s ∈ [1, ∞] with 3/(2 d) + 1/c > 1 -|α|/2 for (c, d) ∈ {(s, q), ( s, q)}, and 3/(2 q) + 1/s < 1 -|α|/2. Suppose that R 0 ∈ (0, ∞) and f ∈ L c 0, ∞, L q (B c R 0 ) 3 for (c, d) ∈ {(s, q), ( s, q), (s, q)}. Then, for x ∈ R 3 , t ∈ [1, ∞), |∂ α x R (τ ) (f )(x, t)| ≤ C f q,s;∞ (1 + t) -3/(2q)-1/s+1-|α|/2 + f |B c R 0 × (t/2, ∞) q, s;∞ + f |B c R 0 × (t/2, ∞) q,s;∞ .
Proof: Let x, t as in the lemma, and put f (1) 

:= χ B c R 0 ×(0, t/2) f, f (2) := χ B c R 0
×(t/2, ∞) f. Lemma 5.1 with f replaced by f (1) and with T = t/2, and the assumptions t

≥ 1, 3/(2 q)+ 1/s > 1-|α|/2 imply |∂ α x R (τ ) (f (1) )(x, t)| ≤ C f q,s;∞ (1+t) -3/(2q)-1/s+1-|α|/2 .
We further note that according to Lemma 4.4, we have

|∂ α x R (τ ) (f (2) )(x, t)| ≤ A 1 + A 2 , with A 1 := t t/2 B c R 0 χ (0,1] (t -σ) |∂ α x Λ(x -y, t -σ, τ ) • f (y, σ)| dy dσ, and A 2 defined as A 1 , but with the term χ (0,1] (t -σ) replaced by χ (1,∞) (t -σ). Since 3/(2 q) + 1/s < 1 -|α|/2, Theorem 4.1 with ̺ = ∞, M = 1 yields A 1 ≤ C f |B c R 0 × (t/2, ∞) q,s;∞ . Similarly, the assumption 3/(2 q) + 1/ s > 1 -|α|/2 and Theorem 4.1, again with ̺ = ∞, M = 1, imply A 2 ≤ C f |B c R 0 × (t/2
, ∞) q, s;∞ . Lemma 5.6 follows by combining the preceding estimates.

Now we collect what we found in this section about temporal pointwise decay of R (τ ) (f ), and combine it with a pointwise spatial decay estimate. d) being anyone of the pairs (s, q), ( s, q) and (s, q). Let R ∈ (R 0 , ∞) and further suppose there is D 0 > 0 such that

Corollary 5.2 Let α ∈ N 3 0 with |α| ≤ 1, ̺ ∈ [1, ∞), q ∈ [1, 4], q, q, s ∈ [1, ∞), s, s ∈ [1, ∞] with 3/(2 d)+1/c > 1-|α|/2 for (c, d) ∈ {(s, q), ( s, q)}, and 3/(2 q)+1/s < 1-|α|/2. Suppose that R 0 ∈ (0, ∞) and the function f : R 3 × (0, ∞) → R 3 satisfies f |B R 0 × (0, ∞) ∈ L ̺ 0, ∞, L 1 (B R 0 ) 3 , f |B c R 0 × (0, ∞) ∈ L c 0, ∞, L q (B c R 0 ) 3 with (c,
|∂ α x R (τ ) f |B c R 0 × (0, ∞) (x, t)| ≤ D 0 |x| ν(x) -1/2-1/̺-|α|/2 for x ∈ B c R , t > 0. (5.13) (This condition is satisfied if, for example, ̺ = 2 and χ B c R 0 ×(0,∞) f fulfills the assumptions of Theorem 4.3 in the place of f .) Then, for x ∈ B c R , t ∈ (0, ∞), ǫ ∈ [0, 1], |∂ α x R (τ ) (f )(x, t)| ≤ C |x| ν(x) -1/2-1/̺-|α|/2 (D 0 + K 1 ) (1 + t) -2 + K 2 (t) (5.14) 
+(D 1-ǫ 0 + K 1 ) |x| ν(x) (-1/2-1/̺-|α|/2) (1-ǫ) (1 + t) -1/2-1/̺-|α|/2 + K 3 (1 + t) -3/(2q)-1/s+1-|α|/2 + K 4 (t) ǫ , with K 1 := f |B R 0 × (0, ∞) 1,̺;∞ , K 2 (t) := f |B R 0 × (t/2, ∞) 1,̺;∞ , K 3 := f |B c R 0 × (0, ∞) q,s;∞ , K 4 (t) := f |B c R 0 × (t/2, ∞) q, s;∞ + f |B c R 0 × (t/2, ∞) q,s;∞ .
Proof: Take x, t, ǫ as in the lemma. We apply Lemma 5.5 with f replaced by f (1) 1) )(x, t)| is bounded by the right-hand side of (5.14). Suppose that t ≥ 1. Starting from the equation d = d ǫ d 1-ǫ for d > 0, we use (5.13) as well as Lemma 5.6 with f replaced by f (2) 

:= f |B R 0 × (0, ∞). It follows that |∂ α x R (τ ) (f ( 
:= χ B c R 0 ×(0,∞) f . It follows that |∂ α x R (τ ) (f (2) )(x, t)
| is also bounded by the right-hand side of (5.14). In the case t ≤ 1, inequality (5.13) multiplied by 4 (1 + t) -2 yields a suitable estimate of |∂ α x R (τ ) (f (2) )(x, t)|.

6. Temporal decay of the potential I (τ ) (a).

First we consider the behaviour of

I (τ ) (a)|S T,∞ H T,∞ when T tends to infinity. Theorem 6.1 Let ǫ 0 ∈ (0, 1/2], p ∈ (1, 2], a ∈ H 1/2+ǫ 0 σ (Ω c ) ∩ L p (Ω c ) 3 and T ∈ [1, ∞).
Then

I (τ ) (a)|S T,∞ H T,∞ ≤ C a p T -3/(2p)+1/2 . (Note that I (τ ) (a)|S ∞ ∈ H ∞ due to the assumption a ∈ H 1/2+ǫ 0 σ (Ω c ); see Theorem 4.4.) Proof: Recall that I (τ ) (a) ∈ C 1 R 3 × (0, ∞)
3 according to Lemma 4.8. From (4.4) and Lemma 4.7 we get for α ∈ N 3 0 and l ∈ N 0 with |α| + l ≤ 1 that

∞ T ∂Ω |∂ l t ∂ α x I (τ ) (a)(x, t)| 2 do x dt 1/2 ≤ C a p ∞ T (t -3/p-|α|-2l + δ 1l t -3/p-1 ) dt 1/2 ≤ C a p (T -3/(2p)-|α|/2-l+1/2 + δ 1l T -3/(2p) ).
Since T ≥ 1, the right-hand side of this estimate is bounded by C a p T -3/(2p)+1/2 , so

∞ T I (τ ) (a)(t)|∂Ω 2 H 1 (∂Ω) 3 + n (Ω) • ∂ 4 I (τ ) (a)(t) 2 2 dt ≤ C a 2 p T -3/p+1 . (6.1) 
Turning to an estimate of ∂ 1/2 4

I (τ ) (a)
|S ∞ , we note that by Corollary 4.3, this fractional derivative exists, and equation (2.2) holds with I (τ ) (a)(x, • ) in the role of φ and with T replaced by T /2, for a. e. x ∈ ∂Ω. With this in mind, we find with Lemma 4.7 that

∞ T ∂Ω |(t -T /2) -1/2 I (τ ) (a) x, (t + T /2)/2 | 2 do x dt 1/2 (6.2) ≤ C(p) a p ∞ T t -1/2 (t + T /2) -3/(2p) 2 dt 1/2 ≤ C(p) a p T -3/(2p) .
We further find for t ∈ (T, ∞), x ∈ ∂Ω that by (4.4) and Lemma 4.7,

t (t+T /2)/2 (t -r) -1/2 |∂ 4 I (τ ) (a)(x, r)| dr ≤ C(p) a p t (t+T /2)/2 (t -r) -1/2 j∈{0, 1} r -3/(2p)-1/2-j/2 dr ≤ C(p) a p j∈{0, 1} (t + T /2) -3/(2p)-1/2-j/2 t (t+T /2)/2 (t -r) -1/2 dr ≤ C(p) a p t -3/(2p) ,
where the last inequality is valid because t ≥ T ≥ 1. As a consequence, since p < 3, hence

-3/p < -1, ∞ T ∂Ω t (t+T /2)/2 (t -r) -1/2 ∂ 4 I (τ ) (a)(x, r) dr do x dt 1/2 ≤ C(p) a p T -3/(2p)+1/2 . (6.3)
Next we consider the term

A := ∞ T ∂Ω (t+T /2)/2 0 (t -r) -3/2 I (τ ) (a)(x, r) dr do x dt 1/2 . ( 6.4) 
In the case p > 3/2, we have 3/(2 p) < 1, so we get with Lemma 4.7 that

A ≤ C(p) a p ∞ T (t+T /2)/2 0 (t -r) -3/2 r -3/(2p) dr 2 dt 1/2 (6.5) ≤ C(p) a p ∞ T t -3 (t+T /2)/2 0 r -3/(2p) dr 2 dt 1/2 ≤ C(p) a p T -3/(2p) .
Now suppose that p ≤ 3/2 so that 3/(2 p) ≥ 1. Then we use the splitting

A ≤ A 1 + A 2 ,
where A 1 is defined in the same way as A (see (6.4)), but with the lower bound 0 of the integral with respect to r replaced by 3/4. Similarly, the definition of A 2 follows that of A, but the integral with respect to r is to extend from 0 to 3/4. If p < 3/2, we again use the first two inequalities in (6.5), with the lower bound of the integral with respect to r being 3/4 instead of 0. Since 3/(2 p) > 1, we have

(t+T /2)/2 3/4 t -3/(2p) dr ≤ C(p), so we get that A 1 ≤ C(p) a p ∞ T t -3 dt 1/2 ≤ C(p) a p T -1 .
In the case 3/(2 p) = 1, we observe that

(t+T /2)/2 3/4 t -3/(2p) dr ≤ 3t/4
3/4 r -1 dr = ln t. Therefore, again starting as in (6.5), we obtain

A 1 ≤ C(p) a p T -1 (1 + ln T ) for p = 3/2
. By what we have seen further above, the preceding estimate is valid in the case p < 3/(2 p) as well, and thus holds if p ≤ 3/(2 p). In order to deal with A 2 , we reduce the singularity of the variable r in I (τ ) (a)(x, r) for r ↓ 0 by exploiting the integration on ∂Ω. To this end, we use Hölder's inequality and Theorem 2.1, as well as Lemma 4.1, obtaining with the abbreviation F (x, y, r) := H(x -y -τ r e 1 , r) that , and hence by C r -3/(2p)+1/2 a p for r ∈ (0, ∞). Therefore, once more by Theorem 2.1, 

∂Ω |I (τ ) (a)(x, r)| 2 do x ≤ ∂Ω R 3 F (x, y, r) dy 1/p ′ R 3 F (x, y, r) |a(y)| p dy 1/p 2 do x = ∂Ω R 3 F (x, y, r) |a(y)| p dy 2/p do x ≤ R 3 ∂Ω F (x, y, r)
A 2 ≤ C ∞ T t -3 ∂Ω 3/4 0 |I (τ ) (a)(x, r)| dr 2 do x dt 1/2 ≤ C ∞ T t -3 3/4 0 ∂Ω |I (τ ) (a)(x, r)| 2 do x 1/2 dr 2 dt 1/2 ≤ C a p ∞ T t -3 3/4 0 r -3/(2p
I (τ ) (a)|S ∞ just proved.
A pointwise estimate with respect to the asymptotics of I (τ ) (a) in time and in space is readily available, due to Theorem 4.5 and Lemma 4.7.

Corollary 6.1 Take R 0 , δ 0 , κ 0 and a as in Theorem 4.5. Let p ∈ [1, ∞] and suppose that a

∈ L p (Ω c ) 3 . Let R ∈ (R 0 , ∞), α ∈ N 3 0 with |α| ≤ 1. Then, for ǫ ∈ [0, 1], x ∈ B c R , t ∈ (0, ∞), |I (τ ) (a)(x, t)| ≤ C (δ 0 + a|Ω R 0 1 ) |x| ν(x) (-1-|α|/2) (1 + t) -2 +(δ 0 + a|Ω R 0 1 ) 1-ǫ a ǫ p |x| ν(x) (-1-|α|/2) (1-ǫ) (1 + t) (-3/(2p)-|α|/2) ǫ .
Proof: In the case t ≤ 1, Theorem 4.5 immediately yields that 7. Temporal decay of the potential V (τ ) (φ) and of the solution of the integral equation (4.8).

|I (τ ) (a)(x, t)| is bounded by C (δ 0 + a|Ω R 0 1 ) |x| ν(x) -1-|α|/2 (1 + t) -2 . If t ≥ 1,
A key element of our theory is a decay estimate of the solution to the integral equation (4.8). This element will be presented in Theorem 7.1 below. Its proof depends on certain features of the potential V (τ ) (φ), which we establish in the ensuing two lemmas.

Lemma 7.1 Let µ, T ∈ (0, ∞) and φ ∈ L 2 (S T ) 3 . Then

T +µ ∂Ω |∂ 1/2 t V (τ ) (φ)(x, t)| 2 do x dt 1/2 ≤ C (µ -3/2 + µ -1 ) T 1/2 φ 2 .
(By Corollary 4.4, the fractional derivative ∂ 1/2 t V (τ ) (φ)(x, t) exists for a. e. x ∈ ∂Ω and for t ∈ (T, ∞)).

Proof: For brevity we set v := V (τ ) (φ). By Corollary 4.4, equation (2.2) holds with v(x, • ) in the place of the function φ in Lemma 2.3, for a. e. x ∈ ∂Ω. With this reference in mind, we observe that by Lemma 4.10 and 4.2, for r ∈ (T, ∞), x ∈ ∂Ω, l ∈ {0, 1},

|∂ l r v(x, r)| ≤ T 0 ∂Ω (r -σ) -3/2-l + (r -σ) -3/2-l/2 |φ(y, σ)| do y dσ ≤ C (r -T ) -3/2-l + (r -T ) -3/2-l/2 T 1/2 φ 2 ,
where we used that φ 1 ≤ C T 1/2 φ 2 . The preceding inequality implies

∞ T +µ ∂Ω |(t -T ) -1/2 v x, (t + T )/2 | 2 do x dt 1/2 (7.1) ≤ C T 1/2 φ 2 ∞ T +µ (t -T ) -4 dt 1/2 ≤ C T 1/2 φ 2 µ -3/2 , ∞ T +µ ∂Ω t (t+T )/2 (t -r) -1/2 ∂ r v(x, r) dr 2 do x dt 1/2 (7.2) ≤ C T 1/2 φ 2 ∞ T +µ t (t+T )/2 (t -r) -1/2 (t -T ) -5/2 + (t -T ) -2 dr 2 dt 1/2 ≤ C T 1/2 φ 2 (µ -3/2 + µ -2 ).
For t ∈ [T + µ, ∞), r ∈ 0, (t + T )/2 , the inequality t -r ≥ (t -T )/2 holds. Therefore

B := ∞ T +µ ∂Ω (t+T )/2 0 (t -r) -3/2 v(x, r) dr 2 do x dt 1/2 (7.3) ≤ C ∞ T +µ (t -T ) -3 ∂Ω (t+T )/2 0 |v(x, r)| dr 2 do x dt 1/2
.

By extending the domain of integration of the variable r to (0, ∞), we may separate the integration with respect to r and t. In this way we get ∂Ω |x -y| -1 φ(y, • ) 2 do y . On applying Hölder's inequality once more, we may thus deduce from (7.4) that

B ≤ C µ -1 ∂Ω ∞ 0 |v(x,
B ≤ C µ -1 T 1/2 ∂Ω ∂Ω |x -y| -1 do y ∂Ω |x -y| -1 φ(y, • ) 2 2 do y do x 1/2 ≤ C µ -1 T 1/2 ∂Ω ∂Ω |x -y| -1 do x φ(y, • ) 2 2 do y 1/2 ≤ C µ -1 T 1/2 φ 2 .
The lemma follows from this inequality, (7.1) -( 7.3) and, as explained at the beginning of this proof, from (2.2).

Lemma 7.2 As in Lemma 7.1, let µ, T ∈ (0, ∞) and φ ∈ L 2 (S T ) 3 . Then

∞ T +µ V (τ ) (φ)(t)|∂Ω 2 H 1 (∂Ω) 3 + n (Ω) • ∂ t V (τ ) (φ)(t) 2 2 dt 1/2 (7.5) ≤ C (µ -2 + µ -1 ) T 1/2 φ 2 .
(Recall that by Lemma 4.10, we have 

V (τ ) (φ)|R 3 × (T, ∞) ∈ C 1 R 3 × (T, ∞) .) Proof: We again set v := V (τ ) (φ)
≤ C T 0 ∂Ω (t -σ) -3/2 + (t -σ) -2 + (t -σ) -5/2 |φ(y, σ)| do y dσ ≤ C (t -T ) -3/2 + (t -T ) -5/2 φ 1 ≤ C T 1/2 (t -T ) -3/2 + (t -T ) -5/2 φ 2 .
Denote the left-hand side of (7.5) by B. We may deduce from (7.6) that B is bounded by

C T 1/2 φ 2 ∞ T +µ (t -T ) -3 + (t -T ) -5 dt 1/2
, and hence by C T 1/2 φ 2 (µ -1 + µ -2 ).

Corollary 7.1 There is a constant

c 3 > 0 such that V (τ ) (φ)|S T +µ,∞ H T +µ,∞ is bounded by c 3 (1 + T ) 1/2 (1 + µ) -1 φ 2 , for T, µ ∈ (0, ∞) and φ ∈ L 2 (S T ) 3 .
Proof: First suppose that µ ∈ (0, 1]. Then Corollary 3.2 and Theorem 4.7 yield that 

V (τ ) (φ)|S T +µ,∞ H T +µ,∞ ≤ V (τ ) (φ)|S ∞ H∞ ≤ C φ 2 ≤ C φ 2 (1 + µ) -1 (1 + T ) 1/2 . If µ ≥ 1,
V (τ ) (φ)|S T +µ,∞ H T +µ,∞ is bounded by C T 1/2 φ 2 (µ -1 + µ -2
), and thus again by 

C φ 2 (1 + µ) -1 (1 + T ) 1/2 . Theorem 7.1 Let b ∈ H ∞ . Suppose there are numbers δ ∈ (0, ∞), ζ ∈ (0, 1) such that b|S T,∞ H T,∞ ≤ δ T -ζ for T ∈ (1, ∞). Let φ be the unique function from L 2 n (S ∞ ) such that V (τ ) (φ)
φ|S T,∞ 2 ≤ φ|S t 0 ,∞ 2 ≤ c 2 V (τ ) (φ|S t 0 ,∞ )|S t 0 ,∞ Ht 0 ,∞ (7.9) ≤ c 2 V (τ ) (φ)|S t 0 ,∞ Ht 0 ,∞ + V (τ ) (φ|S t 0 )|S t 0 ,∞ Ht 0 ,∞ .
where the last inequality holds because V (τ ) (φ) = V (τ ) (φ|S t 0 ) + V (τ ) (φ|S t 0 ,∞ ). Recalling that V (τ ) (φ)|S ∞ = b, and splitting V (τ ) (φ|S t 0 ) into a suitable sum, we may conclude from (7.9) that φ|S T,∞ 2 ≤ c 2 ( b|S t 0 ,∞ Ht 0 ,∞ + A 1 + A 2 + k-1 j=0 B j + A 3 ), where the terms A 1 , A 2 , B 0 , ..., B k-1 , A 3 all have the form V (τ ) (φ|A)|S t 0 ,∞ Ht 0 ,∞ , with A being defined by A = ∂Ω× t 0 -T /(2 n), t 0 , A = S t 0 -T /(2 n) \S T /4 and A = S 1 in the case of A 1 , A 2 and A 3 , respectively, and A = S (T /4) 1-j/k \S (T /4) 1-(j+1)/k in the case of B j , for 0 ≤ j ≤ k -1. The definition of B j makes sense because T ≥ 4 (see (7.7)), so (T /4) 1-j/k > (T /4) 1-(j+1)/k for j as before. But t 0 ≥ T /2, so by Corollary 3.2 and the preceding estimate of φ|S T,∞ 2 ,

φ|S T,∞ 2 ≤ c 2 ( b|S T /2, ∞ H T /2, ∞ + A 1 + A 2 + k-1 j=0 B j + A 3 ), (7.10) 
where B 0 , ..., B k-1 , A 3 are defined in the same way as B 0 , ..., B k-1 , A 3 , respectively, except that the restriction to S t 0 ,∞ is replaced by a restriction to S T /2, ∞ , and the mapping Ht 0 ,∞ by H T /2, ∞ . Corollary 4.5 and the choice of t 0 imply

c 2 A 1 ≤ c 1 c 2 φ|∂Ω × t 0 -T /(2 n), t 0 2 ≤ c 1 c 2 φ|S T \S T /2 2 n -1/2 ≤ c 1 c 2 φ|S T /2, ∞ 2 n -1/2 ,
so by (7.8) and the choice of n we get

c 2 A 1 ≤ c 1 c 2 B (T /2) -1+ǫ n -1/2 ≤ (B/10) T -1+ǫ .
Concerning A 2 , we use Corollary 7.1 with T replaced by t 0 -T /(2 n) and µ by T /(2 n), to obtain 

c 2 A 2 ≤ c 2 c 3 1 + T /(2 n) -1 1 + t 0 -T /(2 n) 1/2 φ|S t 0 -T /(2 n) \S T /4 2 . ≤ 2 c 2 c 3 n T -1 (1 + T ) 1/2 φ|S T /4, ∞ 2 . But T ≥ 1, hence (1+T ) 1/2 ≤ 2 T 1/2 ,
c 2 b|S T /2, ∞ H T /2, ∞ ≤ δ(T /2) -1+ǫ , so that c 2 b|S T /2, ∞ H T /2, ∞ ≤ (B/10) T -1+ǫ
by the choice of B in (7.8). This leaves us to estimate c 2 k-1 j=0 B j . To this end let j ∈ {0, ..., k-1}. Then Corollary 7.1 with (T /4) 1-j/k in the role of T and T /2-(T /4) 1-j/k in that of µ implies that c 2 B j is bounded by

c 2 c 3 1 + T /2 -(T /4) 1-j/k -1 1 + (T /4) 1-j/k 1/2 φ|S (T /4) 1-j/k \S (T /4) 1-(j+1)/k 2 . But T ≥ 4, so 1 + (T /4) 1-j/k 1/2 ≤ 2 1/2 (T /4) 1/2-j/(2k) and 1 + T /2 -(T /4) 1-j/k ≥ 1 + T /4 ≥ T /4. Therefore we get c 2 B j ≤ 8 c 2 c 3 T -1/2-j/(2k) φ|S (T /4) 1-(j+1)/k , ∞ 2 , so it follows with (7.8) that c 2 B j ≤ 8 c 2 c 3 T -1/2-j/(2k) B (T /4) (1-(j+1)/k) (-1+ǫ) ≤ 32 c 2 c 3 B T Z(j) T -1+ǫ .
where Z(j) := -1/2 + j/(2k) + 1/k -ǫ (j + 1)/k. But Z(j) ≤ -ϕ(ǫ) by Lemma 2.1, with ϕ(ǫ) defined there. Thus c 2 B j ≤ 32 c 2 c 3 B T -ϕ(ǫ) T -1+ǫ , hence by the choice of T in (7.7), c 2 B j ≤ T -1+ǫ B/(10 k). Since this holds for any j ∈ {0, ..., k -1}, we thus get c 2 k-1 j=0 B j ≤ (B/10) T -1+ǫ . Combining (7.10) with the preceding estimates

of b|S T /2, ∞ H T /2, ∞ , A 1 , A 2 , k-1 j=0 B j and A 3 , we get φ|S T,∞ 2 ≤ (B/2) T -1+ǫ , so we have in fact shown that if φ|S t,∞ 2 ≤ B t -1+ǫ for t ∈ [1, T ] (see (7.8)), then φ|S T,∞ 2 ≤ (B/2) T -1+ǫ .
Now, in view of a proof by induction, put T 0 := max{4, (160

c 2 c 3 n) 2 , ( 320 
c 2 c 3 k) 1/ϕ(ǫ) } and B 0 := max{40 c 2 c 3 ( φ|S 1 2 + 1), 20 δ, φ 2 T 1-ǫ 0 , 2 φ 2 }. Then for t ∈ [1, T 0 ], we find φ|S t,∞ 2 ≤ φ 2 ≤ φ 2 T 1-ǫ 0 t -1+ǫ ≤ B 0 t -1+ǫ . Suppose that m ∈ N 0 and φ|S t,∞ 2 ≤ B 0 t -1+ǫ for t ∈ [1, 2 m T 0 ]
. Since B 0 fulfills the condition on B in (7.8), as does 2 m T 0 the one on T in (7.7), we may apply the first part of this proof with 2 m T 0 and B 0 in the place of T and B, respectively. It follows that φ|S

2 m T 0 , ∞ 2 ≤ (B 0 /2) (2 m T 0 ) -1+ǫ . Thus for t ∈ [2 m T 0 , 2 m+1 T 0 ], φ|S t,∞ 2 ≤ φ|S 2 m T 0 , ∞ 2 ≤ (B 0 /2) (2 m T 0 ) -1+ǫ ≤ B 0 (2 m+1 T 0 ) -1+ǫ ≤ B 0 t -1+ǫ .
Thus we have shown by induction that φ|S t,∞ 2 ≤ B 0 t -1+ǫ for any t ∈ [1, 2 m T 0 ] and any m ∈ N 0 , so the preceding inequality is valid for any t ∈ [1, ∞). Hence, for such t we find φ|S

t,∞ 2 ≤ 2 B 0 (1 + t) -1+ǫ . But for t ∈ (0, 1], it is obvious that φ|S t,∞ 2 ≤ φ 2 ≤ 2 φ 2 (1 + t) -1+ǫ ≤ B 0 (1 + t) -1+ǫ
. This completes the proof of Theorem 7.1.

We will combine Theorem 7.1 with the following pointwise temporal and spatial estimate of V (τ ) (φ).

Lemma 7.3 Let R ∈ (0, ∞) with Ω ⊂ B R , φ ∈ L 2 (S ∞ ) 3 and α ∈ N 3 0 with |α| ≤ 1. Then, for x ∈ B c R , t ∈ (0, ∞), |∂ α x V (τ ) (φ)(x, t)| ≤ C |x| ν(x) -1-|α|/2 φ|S t/2, ∞ 2 + |x| ν(x) + t -1-|α|/2 φ 2 .
Proof: Choose R 0 ∈ (0, R) with Ω ⊂ B R 0 . Take x, t as in the lemma. For y ∈ ∂Ω, we have |y| ≤ R 0 , so we find as in (5.11) 

that |x -y| ≥ |x| (1 -R 0 /R) ≥ R -R 0 > 0,
= R -R 0 , |∂ α x V (τ ) (φ)(x, t)| ≤ C(R, R 0 , τ ) t 0 ∂Ω |x| ν(x) + t -σ -3/2-|α|/2 |φ(y, σ)| do y dσ, so |∂ α x V (τ ) (φ)(x, t)| ≤ C t 0 |x| ν(x) + t -σ -3/2-|α|/2 φ(σ) 2 dσ. By Hölder's inequality, t/2 0 |x| ν(x) + t -σ -3/2-|α|/2 φ(σ) 2 dσ ≤ t/2 0 |x| ν(x) + t -σ -3-|α| dσ 1/2 φ 2 ≤ C |x| ν(x) + t -1-|α|/2 φ 2 .
If the integral from 0 to t/2 in the preceding estimate is replaced by one from t/2 to t, the same type of estimate yields the upper bound C |x| ν(x) -1-|α|/2 φ|S t/2, ∞ 2 for this modified integral. Lemma 7.3 follows from these estimates.

Corollary 7.2 Let b ∈ H ∞ , δ ∈ (0, ∞), ζ ∈ (0, 1) with b|S T,∞ H T,∞ ≤ δ T -ζ for T ∈ (1, ∞). Let φ ∈ L 2 n (S ∞ ) with V (τ ) (φ)|S ∞ = b (Theorem 4.8), R 0 , R ∈ (0, ∞) with R 0 < R and Ω ⊂ B R 0 , and α ∈ N 3 0 with |α| ≤ 1. Then, for x ∈ B c R , t ∈ (0, ∞), ǫ ∈ [0, 1], |∂ α x V (τ ) (φ)(x, t)| ≤ C |x| ν(x) (-1-|α|/2) (1 + t) -ζ + |x| ν(x) + t (-1-|α|/2) (1-ǫ) (1 + t) (-1-|α|/2) ǫ φ 2 .
Proof: Lemma 7.3 and Theorem 7.1 yield that the estimate in the corollary holds under the additional assumption t ≥ 1. In the case t ∈ (0, 1], we deduce from Lemma 7.3 that

|∂ α x V (τ ) (φ)(x, t)| ≤ C |x| ν(x) (-1-|α|/2
) φ 2 , so we again obtain the estimate stated in the corollary.

Main results.

We begin by collecting our assumptions on the right-hand side f in the differential equations (1.12), (1.9) and (1.4), the initial data a in (1.6) and the Dirichlet boundary data b in (1.10).

Let A ∈ (2, ∞), B ∈ [0, 3/2] with A + min{1, B} > 3, A + B ≥ 7/2, ̺ 0 ∈ (2, ∞), R 1 ∈ (0, ∞) with Ω ⊂ B R 1 , γ ∈ L 2 (0, ∞) ∩ L ̺ 0 (0, ∞) , f : R 3 × (0, ∞) → R 3 measurable with f |B R 1 × (0, ∞) ∈ L 2 0, ∞, L 1 (B R 0 ) 3 and |f (y, σ)| ≤ γ(σ) |y| -A ν(y) -B for y ∈ B c R 0 , σ ∈ (0, ∞). (8.1) 
Moreover, suppose there are numbers q0 ∈ [1, 3/2), q 0 ∈ (1, 3/2),

q 0 ∈ (1, ∞), s 0 ∈ (1, ∞), s 0 ∈ [1, ∞] such that 3/(2 q 0 ) + 1/s 0 > 3/2, 3/(2 q) + 1/s < 1, f ∈ L c 0, ∞, L d (R 3 ) 3 for (c, d) ∈ {(2, 3/2), (2, q0 ), (s 0 , q 0 )} and f |B c R 1 × (0, ∞) ∈ L s 0 0, ∞, L q 0 (B c R 1 ) 3 . Further suppose there are numbers δ 1 , ζ 1 ∈ (0, ∞) such that f |R 3 × (t/2, ∞) q0 ,2;∞ + f |R 3 × (t/2, ∞) 3/2, 2;∞ ≤ δ 1 t -ζ 1 for t ∈ (1, ∞). (8.2) Note that (8.2) implies f |B R 1 × (t/2, ∞) 1,2;∞ ≤ C(R 1 ) δ 1 t -ζ 1 for t ∈ (1, ∞). Moreover, let ǫ 0 ∈ (0, 1/2], p 0 ∈ (1, 2], and assume that a ∈ H 1/2+ǫ 0 σ (Ω c ) ∩ L p 0 (Ω c ) 3 . In addition, suppose there are numbers R 2 , δ 2 ∈ (0, ∞), κ 0 ∈ (0, 1] such that Ω ⊂ B R 2 , a|B R 2 c ∈ W 1,1 loc (B R 2 c ) 3 , |∂ α y a(y)| ≤ δ 2 |y| ν(y) -1-|α|/2-κ 0 for y ∈ B R 2 c , α ∈ N 3 0 with |α| ≤ 1. (8.3)
Finally let b ∈ H ∞ , and suppose there are numbers

δ 3 ∈ (0, ∞), ζ 2 ∈ (0, 1) such that b|S T,∞ H T,∞ ≤ δ 3 T -ζ 3 for T ∈ (1, ∞). (8.4) 
Now we turn to our main result on spatial and temporal pointwise decay of solutions to (1.12), (1.10), (1.6). In view of later applications in the nonlinear case, we state this result in the form of a theorem and a corollary.

Theorem 8.1 Suppose that f, a and b satisfy the assumptions listed above. Then there is a unique function φ ∈ L 2 n (S ∞ ) verifying the integral equation (4.8). Put u := R (τ ) (f ) + I (τ ) (a) + V (τ ) (φ)|Ω c × (0, ∞) (see section 4 for the definition of the preceding potential functions). Let α ∈ N 3 0 with |α| ≤ 1. In addition to the assumptions above, suppose that 3/(2 q) + 1/s < 1 -|α|/2. Put ̺ 1 := min{ζ 1 , ζ 2 , 3/(2 q 0 ) + 1/s 0 -3/2, 1/s 0 , 3/(2 p 0 ) -1/2}, ̺ 2 := min{ζ 1 , 1 + |α|/2, 3/(2 q 0 ) + 1/s 0 -1 + |α|/2, 3/(2 p 0 ) + |α|/2}.

Let R ∈ max{R 1 , R 2 }, ∞ . (The parameters q 0 , s 0 , q 0 , s 0 , ζ 1 , ζ 2 , R 1 , R 2 , p 0 were introduced at the beginning of this section.) Then, for x ∈ B c R , t ∈ (0, ∞), ǫ ∈ [0, 1],

|∂ α x u(x, t)| ≤ C |x| ν(x) -1-|α|/2 (1 + t) -̺ 1 (8.5)

+ |x| ν(x) (-1-|α|/2) (1-ǫ) (1 + t) -̺ 2 + f |B c R 1 × (t/2, ∞) q 0 ,s 0 ;∞ ǫ .
Proof: Concerning existence and uniqueness of φ, we refer to Theorem 4.10. In order to prove (8.5), take ǫ, x, t as in the theorem. By Corollary 5.1 and assumption (8. part of a solution to (1.12), (1.10), (1.6)). This function is given by u = R (τ ) (f ) + I (τ ) (a) + V (τ ) (φ)|Ω c × (0, ∞), with φ from (4.8), and it fulfills (8.5).

In order to exhibit the best possible rate of temporal decay inherent to inequality (8.5), we consider the case that f and a are bounded functions of compact support: Proof: There are numbers q ∈ (1, 3/2), p ∈ (1, 2] and s ∈ (1, ∞) so close to 1 that 3/(2 q) + 1/s -3/2 ≥ ζ (in particular 3/(2 q) + 1/s -1 + |α|/2 ≥ 1 + |α|/2), 1/s ≥ ζ and 3/(2 p) -1/2 ≥ ζ (in particular 3/(2 p) + |α|/2 ≥ 1 + |α|/2). Moreover we may choose R 0 , T 0 ∈ (0, ∞) such that Ω ⊂ B R 0 , supp(f ) ⊂ B R 0 × [0, T 0 ) and supp(a) ⊂ B R 0 . Then f |R 3 × (t/2, ∞) = 0 for t ∈ [2 T 0 , ∞), so there is c > 0 with f |R 3 × (t/2, ∞) 1,2;∞ + f |R 3 × (t/2, ∞) 3/2, 2;∞ ≤ c (1 + t) -2 for t ∈ (0, ∞). (8.9)

Thus the assumptions on f and a stated at the beginning of the chapter are verified if we suppose that R 1 = R 0 , γ = 0, q = 1, q 0 = q, s 0 = s, p 0 = p, with q, s, p as chosen above, δ 1 = c, ζ 1 = 2, ǫ 0 = 1/2, R 2 = R 0 . The parameters A, B, ̺ 0 , q 0 , s 0 , δ 2 and κ 0 are irrelevant due to the choice of R 0 , γ and T 0 ; they may be chosen as a matter of form in any way corresponding to the specifications given at the beginning of this section.

According to the assumptions in the corollary, inequality (8.4) holds with ζ 2 = ζ. Now take R ∈ (R 0 , ∞). Then we may conclude with Theorem 8.1 that (8.5) holds. But due to (8.9) and our choice of q, s, p, ζ 1 and ζ 2 , the parameters ̺ 1 and ̺ 2 in (8.5) equal ζ and 1 + |α|/2, respectively. This completes the proof.

Turning to the nonlinear systems (1.9) and (1.4), we first specify which type of solution to the stationary problem (1.7) will be considered. In [START_REF] Deuring | Exterior stationary Navier-Stokes flows in 3D with nonzero velocity at infinity: asymptotic behaviour of the velocity and its gradient[END_REF], inequality (8.10) was deduced from the theory in [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF].

In order to deal simultaneously with initial-boundary value problem (1.9), (1.10), (1.6) on the one hand and (1.4), (1.10), (1.6) on the other, we introduce the new parameter τ , t ∈ [0, ∞). Since ̺ ≥ p ≥ 2, the preceding estimate implies

G 1 |B c R × (t, ∞) p,̺;∞ ≤ C(U ) ∞ t ∇ x u(r) ̺ 2 dr 1/̺ ≤ C ∇ x u 1-2/̺ 2,∞;∞ ∞ t ∇ x u(r) 2 2 dr 1/̺ ≤ C ∇ x u 1-2/̺ 2,∞;∞ ∇ x u|Ω c × (t, ∞) 2/̺ 2 .
Put G 2 (x, r) := U (x) • ∇ x u(x, r) for x ∈ Ω c , r ∈ (0, ∞). Then Theorem 8.3 yields that 

G 2 (r)|B c R p ≤ C U |B c R ∞ ∇ x u(r)|B c R p ≤ C(U )
G 2 |B c R × (t, ∞) p,̺;∞ ≤ C ∇ x u 2(1/p-1/̺) 2,∞;∞ ∇ x u|Ω c × (t, ∞) 2/̺ 2 .
But ∇ x u 2,∞;∞ < ∞ by (8.11), so the claims of the lemma referring to the case H = G are proved. Since by Theorem 8.3 and Corollary 2.2, there is c > 0 with u(r)|B c R ∞ ≤ c, ∇ x u(r)|B c R (1/p-1/6) -1 ≤ c for r ∈ (0, ∞), the case H = F may be handled in the same way.

For a function u which satisfies not only (8.11) and (8.12), but also the pointwise decay estimate of ∇ x u(t) 2 in (1.16), the following relations hold for the nonlinearity (u • ∇ x )u, that is, for the function F from Theorem 8.3. Lemma 8.3 In the situation of Theorem 8.3, suppose in addition that that u satisfies (1.16). Then ∇ x u(t) 2 ≤ C (1 + t) -κ 1 for t > 0; (8.13) F |Ω c × (t, ∞) q,2;∞ ≤ C (1 + t) 3κ 1 (1-1/q) for t > 0, q ∈ [1, 3/2]; (8.14) F |B c R 4 × (t, ∞) q,∞;∞ ≤ C (1 + t) -2κ 1 /q for t > 0, q ∈ [2, ∞). (8.15)

Proof: Since u ∈ L ∞ 0, ∞, H 1 (Ω c ) 3 by (8.11), the estimate in (8.13) follows immediately with (1.16). Moreover, with Theorem 2.2 and (8.13), we find that F (r) 3/2 ≤ C u(r) 6 ∇ x u(r) 2 ≤ C ∇ x u(r) 2 2 ≤ C ∇ x u(r) 2 (1 + r) -κ 1 for r ∈ (0, ∞). This implies (8.14) in the case q = 3/2. From (8.11) we get F (r) 1 ≤ C u(r) 2 ∇ x u(r) 2 ≤ C ∇ x u(r) 2 ≤ C for r ∈ (0, ∞), so that (8.14) holds for q = 1 as well. That latter estimate for q ∈ (1, 3/2) now follows by interpolation. Let q ∈ [2, ∞). Then for r as before, by the second estimate in Theorem 8.3 and (8.13), F (r)|B c R 4 q ≤ C B c R 4

|x| -q-(3/2)(q-2) |∇ x u(x, r)| 2 dx 1/q ≤ C ∇ x u(r)

2/q 2 ≤ C (1 + r) -2κ 1 /q . This proves (8.15). Now we are in a position to prove our main results about the asymptotics of solutions to the nonlinear problem (1.9), (1.10), (1.6) and (1.4), (1.10), (1.6).

[ 17 ,

 17 Theorem 1.1]). This result combined with(1.11) and the equation d = d 1-ǫ d ǫ (d ≥ 0, ǫ ∈ [0, 1]) yields the pointwise space-time estimate|∂ α x u(x, t)| ≤ C |x| ν(x) (-1-|α|/2) (1-ǫ) (1 + t) (-3/(2p)-|α|/2) ǫ

  then we use the notation q,p;b instead of L p a,b, L q (A) n . We consider the spaces L p (a, b, L p (A) n ) and L p A × (a, b) n as identical, and denote their norm by p . The term L p [a, b), B stands for the set of all functions F : (a, b) → R such that F |(a, c) ∈ L p (a, c, B) for any c ∈ (a, b).

  σ)| dy dσ < ∞. Proof: The lemma follows from a more general version of Theorem 4.1 ([10, Lemma 2.7]); see the remarks in [10, p. 898 below].

Theorem 4 . 4 ([ 10 ,Corollary 4 . 3

 441043 Theorem 3.1]) Let ǫ 0 ∈ (0, 1/2] and a ∈ H 1/2+ǫ 0 σ (Ω c ). Then the function I (τ ) (a)|S ∞ belongs to H ∞ . Let ǫ 0 and a be given as in the preceding theorem. Take T ∈ (0, ∞). Then all the conclusions stated in Corollary 4.2 for the function Ψ introduced there hold for Ψ := I (τ ) (a)|S ∞ as well.

  5), we refer to [10, Lemma 2.21]. The second part holds according to [8, Theorem 2.3, 2.4].

  the looked-for estimate holds due to Theorem 4.5, (4.4), Lemma 4.7 and because d = d ǫ d 1-ǫ for d > 0.

4 ) 0 T0

 40 But by Corollary 4.1 with K = diam Ω, the term ∞ 0 |v(x, r)| dr for x ∈ ∂Ω is bounded by C ∞ ∂Ω (|x-y| 2 +r-σ) -3/2 |φ(y, σ)| do y dσ dr. Integrating with respect to r, this triple integral, in turn, may be estimated by C T 0 ∂Ω |x -y| -1 |φ(y, σ)| do y dσ, and hence with Hölder's inequality by C T 1/2

  |S ∞ = b (Theorem 4.8). Then φ|S T,∞ 2 ≤ C (1 + T ) -ζ for T ∈ (0, ∞). Proof: For brevity, set ǫ := 1 -ζ. Let n ∈ N with n ≥ 400 c 2 1 c 2 2 , where c 1 was introduced in Theorem 4.7, and c 2 in Theorem 4.8. Let k be the unique number from N such that k ǫ < 1 ≤ (k + 1) ǫ. Define ϕ(ǫ) as in Lemma 2.1. In view of a later proof by induction, suppose that T, B ∈ (0, ∞) are such that T ≥ max{4, (160 c 2 c 3 n) 2 , (320 c 2 c 3 k)

  so it follows from the preceding estimate of c 2 A 2 and from (7.8) with t = T /4 that c 2 A 2 ≤ 4 c 2 c 3 n T -1/2 φ|S T /4, ∞ 2 ≤ 16 c 2 c 3 n T -3/2+ǫ B. By the choice of T in (7.7), we may conclude that c 2 A 2 ≤ (B/10) T -1+ǫ . Moreover, by Corollary 7.1 with T, µ replaced by T /2 -1 and 1, respectively, we get c 2 A 3 ≤ 4 c 2 c 3 T -1 φ|S 1 2 , hence c 2 A 3 ≤ (B/10) T -1 ≤ (B/10) T -1+ǫ by the choice of B in (7.8) and because T ≥ 1. Due to the assumptions on b, the definition of ǫ and because T > 2, we obtain

and by Lemma 2 . 4 ,

 24 ν(x -y) -1 ≤ C |y| ν(x) -1 ≤ C R 0 ν(x) -1 .Hence by (4.5) and Corollary 4.1 with K

1 × 8 . 1

 181 2), we have R (τ ) (f )|S T,∞ H T,∞ ≤ C T -min{3/(2q 0 )+1/s 0 -3/2, 1/s 0 , ζ 1 } for T ∈ (1, ∞). Moreover, by Theorem 6.1,I (τ ) (a)|S T,∞ H T,∞ ≤ C T -3/(2p 0 )+1/2 equally for T ∈ (1, ∞).These estimates, our assumptions on b, equation (4.8) and Corollary 7.2 yield|∂ α x V (τ ) (φ)(x, t)| ≤ C |x| ν(x) -1-|α|/2 (1 + t) -ζ 1 (8.6) + |x| ν(x) (-1-|α|/2) (1-ǫ) (1 + t) (-1-|α|/2) ǫ ,with ̺ 1 defined in the theorem. Theorem 4.3 with R 0 , f replaced by R 1 , χ B c R (0,∞) f , respectively, and (8.1) imply|∂ α x R (τ ) f |B c R 1 × (0, ∞) (y, r)| ≤ C |y| ν(y) -1-|α|/2 for y ∈ B c R , r ∈ (0, ∞). This estimate, Corollary 5.2 with ̺ = 2, ( s, q) = (2, q0 ) and assumption (8.2) yield|∂ α x R (τ ) (f )(x, t)| ≤ C |x| ν(x) -1-|α|/2 (1 + t) -ζ 1 (8.7) + |x| ν(x) (-1-|α|/2) (1-ǫ) (1 + t) -̺ 2 + f |B c R 1 × (t/2, ∞) q 0 ,s 0 ;∞ ǫ .Corollary 6.1 provides the estimate|∂ α x I (τ ) (a)(x, t)| ≤ C |x| ν(x) -1-|α|/2 (1 + t) -2(8.8)+ |x| ν(x) (-1-|α|/2) (1-ǫ) (1 + t) (-3/(2p 0 )-|α|/2) ǫ . Inequality 8.5 follows from (8.6) -(8.8). Theorem 4.9, 4.10 and 8.1 taken together yield the following Corollary Under the assumptions on f, a and b listed at the beginning of this section, there is a unique function u ∈ L 2 loc 0, ∞, H 1 (Ω c ) 3 satisfying (4.6) and (4.7) (u velocity

Corollary 8 . 2

 82 Suppose that f : R 3 × (0, ∞) → R3 is measurable, bounded and with compact support, and a ∈ H 1 σ (Ω c ) also bounded and with compact support. Let ζ ∈ [1/2, 1) and suppose that (8.4) is satisfied with ζ 2 = ζ. Let u be the solution to (4.6), (4.7). Then there is R ∈ (0, ∞) with Ω ⊂ B R such that |∂ α x u(x, t)| is bounded byC |x| ν(x) -1-|α|/2 (1 + t) -ζ + |x| ν(x) (-1-|α|/2) (1-ǫ) (1 + t) (-1-|α|/2) ǫ for α ∈ N 3 0 with |α| ≤ 1, ǫ ∈ [0, 1],x ∈ B c R and t ∈ (0, ∞).

Theorem 8 . 2

 82 Let B ∈ H 1/2 (∂Ω) 3 with ∂Ω B • n (Ω) do x = 0, Ψ ∈ L 6/5 (Ω c ) 3 , c, R ∈ (0, ∞), σ ∈ (4, ∞) such that |Ψ(y)| ≤ c |x| -σ for x ∈ B c R . Then there is U ∈ L 6 (Ω c ) 3 ∩ W 1,1 loc (Ω c ) 3 with ∇U ∈ L 2 (Ω c ) 9 , div U = 0, U |∂Ω = -e 1 + B, Ω c ∇U • ∇V + τ ∂ 1 U + τ (U • ∇)U -Ψ • V dx = 0 for any V ∈ C ∞ 0 (Ω) 3 with div V = 0. In addition, there are numbers R 3 , c ∈ (0, ∞) such that Ω ⊂ B R 3 and |∂ α x U (x)| ≤ c |x| ν(x) -1-|α|/2 for x ∈ B c R 3 , α ∈ N 3 0 with |α| ≤ 1. (8.10) Proof: For the first part of this theorem, up to but excluding inequality (8.10), we refer to [21, Theorem IX.4.1], [20, Theorem II.5.1]. As for (8.10), a slightly different version of this estimate was proved in [2] in the case Ψ = 0; see [2, p. 658 above and p. 661, (3.8)].

/p 2 .

 2 r)| 2 |x| -(3/2) (p-2) dx 1/p for r ∈ (0, ∞), so G 2 (r)|B c R p ≤ C ∇ x u(r)2Since ̺ ≥ p, hence 2 ̺/p ≥ 2, we thus get as in the estimate of G 1 that

  .

	Proof: See [12, Theorem 1.1]. Note that in [12, inequality (1.10)], it should read |β|/2 instead of |β|.

  10, Lemma 2.19] and use Lemma 4.2. According to [31, Theorem 2.3.3] and the estimates in [31, p. 362], we have

  .6) pointwise; see[START_REF] Deuring | Spatial decay of time-dependent Oseen flows[END_REF] Lemma 2.14, Theorem 2.16, Lemma 2.21]. (In[START_REF] Deuring | Spatial decay of time-dependent Oseen flows[END_REF] Theorem 2.16], there is a misprint: R (τ ) (f ) is only a C ∞ -and not a C ∞ 0 -function.) The boundary condition on ∂Ω holds according to (4.6), and the boundary condition at infinity is satisfied in the sense that u(t) ∈ H 1 (Ω c ) 3 for t ∈ (0, ∞). If the functions f, a and b decay sufficiently rapidly, this boundary condition will be fulfilled in a stronger way, on the basis of Theorem 4.3, 4.5 and Lemma 7.3 below. We will come back to this subject in section 8.

	Theorem 4.10 Let ǫ 0

  > -1, so we arrive at the inequality A 2 ≤ C a p T -1 . On combining the definition of A in (6.4), the estimate of A in the case p > 3/2 in (6.5), the inequalities A ≤ A 1 + A 2 and A 1 ≤ C a p T -1 (1+ ln T ) (see above), and the preceding estimate of A 2 , we find A ≤ C a p T ) := 1 + ln T in the case p ≤ 3/2. But T ≥ 1, so we get in any case that A ≤ C a p T -3/(2p)+1/2 . Since equation (2.2) is valid with I (τ ) (a)(x, • ) in the role of φ and with T replaced by T /2, for a. e. x ∈ ∂Ω (Corollary 4.3), we may deduce from the preceding estimate and (6.2) -(6.4) that C a p T -3/(2p)+1/2 . But by Corollary 4.3, equation (4.3) holds for Ψ := I (τ ) (a)|S ∞ , so Theorem 6.1 follows from from (6.1) and the estimate of ∂

	)+1/2 dr Since p > 1, we have -3/(2 p) + 1/2 -̺(p) σ(p, T ), with ̺(p) := 3/(2 p), σ(p, T ) := 1 if 2 dt 1/2 . T ∂Ω |∂ 1/2 4 I (τ ) (a)(x, t)| 2 do x dt 1/2 ≤ 1/2 p > 3/2, and ̺(p) := 1, σ(p, T ∞ 4

  for brevity. Lemma 4.2 and 4.10 yield for x ∈ ∂Ω and t ∈ [T + µ, ∞) that

		3		
	|v(x, t)| +	j=1	|∂ j v(x, t)| + |∂ t v(x, t)|	(7.6)

  we use Lemma 7.1, 7.2 and Corollary 4.4 to obtain that

  We want to show that φ|S T,∞ 2 ≤ (B/2) T -1+ǫ in this situation, henceφ|S t,∞ 2 ≤ B t -1+ǫ for t ∈ [1, 2 T ]. (Note that S t,∞ ⊂ S T,∞ for t ∈ [T, 2 T ].) With this aim in mind, we refer to Lemma 2.2, choosing a number i 0 ∈ {0, ..., n -1} such that the inequality φ|∂Ω × (t 0 -T /(2 n), t 0 ) ≤ φ|S T \S T /2 2 n -1/2 holds with t 0 := (T /2) 1 + (i 0 + 1)/n . Since t 0 ≤ T and φ|S t 0 ,∞ ∈ L 2 n (S t 0 ,∞ ), we obtain with Corollary 4.6 that

	B ≥ max{40 c 2 c 3 ( φ|S 1 2 + 1), 20 δ},	1/ϕ(ǫ) }, φ|S t,∞ 2 ≤ B t -1+ǫ for t ∈ [1, T ].	(7.7) (7.8)

which is to take the values 0 or τ : τ ∈ {0, τ }. Then we consider a function u with the following properties:

u(t)|∂Ω = b(t) for t ∈ (0, ∞), div x u = 0, ∞ 0 Ω c -u(x, t) • V (x) ϕ ′ (t) + ∇ x u(x, t) • ∇V (x) ϕ(t) (8.12) 3 with div V = 0. This means that u is an L 2 -strong solution to (1.9), (1.10), (1.6) if τ = 1, and an L 2 -strong solution to (1.4), (1.10), (1.6) in the case τ = 0. Of course, strictly speaking, u is merely the velocity part of such a solution. But as usual in this context, the preceding definition involves only this velocity part, which we call "solution" without any further qualification. Results on existence of this type of solutions are due to Heywood [23, p. 674], Solonnikov [START_REF] Solonnikov | Estimates for solutions of nonstationary Navier-Stokes equations[END_REF]Theorem 10.1, Remark 10.1], and Neustupa [29, Theorem 1], [START_REF] Neustupa | A spectral criterion for stability of a steady viscous incompressible flow past an obstacle[END_REF]Theorem 4.1] under smallness conditions on the data. Solutions in L p -spaces with p = 2 were constructed by Solonnikov [START_REF] Solonnikov | Estimates for solutions of nonstationary Navier-Stokes equations[END_REF], Miyakawa [START_REF] Miyakawa | On nonstationary solutions of the Navier-Stokes equations in an exterior domain[END_REF], Shibata [START_REF] Shibata | On an exterior initial boundary value problem for Navier-Stokes equations[END_REF] and Enomoto, Shibata [START_REF] Enomoto | On the rate of decay of the Oseen semigroup in exterior domains and its application to Navier-Stokes equation[END_REF]. If a solution as in (8.11), (8.12) is considered as given, and if the data f and a decay in space as specified in (8.1) and (8.3), then it can be shown without any smallness conditions that u, too, decays in space. This is the result whose essential point is stated in (1.11), and which we now formulate in detail, choosing a version which is suitable for what follows.

Theorem 8.3 Suppose that f, a and b satisfy the assumptions listed above (some of which are not relevant here because they are related to temporal decay). Let U be the function from Theorem 8.2, and assume that u satisfies (8.11) and (8.12). Put F (x, t)

Then there are constants c, R

Proof: First consider the case τ = 1. We refer to [14, Corollary 3.5, Theorem 4.6, 4.8] for the first inequality, which actually is an intermediate result in the proof of the second ([14, Theorem 1.2]). Note that in [START_REF] Deuring | Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity[END_REF], the function f is supposed to fulfill the relation

3 required here. However, the former condition enters into [START_REF] Deuring | Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity[END_REF] ×(0,∞) f , and Lemma 5.5 implies (1.11) if f ∈ L 2 0, ∞, L 1 (B R 0 ) 3 . (In these two references, the parameter R 0 is in the role of R 1 here.) Combining these two results, we end up with inequality (1.11) under the modified assumptions on f . We further remark that in [START_REF] Deuring | Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity[END_REF], we supposed Ψ = 0 and B = 0 in the analogue of Theorem 8.2 ([14, Theorem 1.1]). However, these relations are not used anywhere in [START_REF] Deuring | Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity[END_REF]; only the conclusions on U stated in Theorem 8.2 are relevant. Concerning the case τ = 0, we indicate that all the proofs in [START_REF] Deuring | Spatial decay of time-dependent incompressible Navier-Stokes flows with nonzero velocity at infinity[END_REF] also carry through, some of them in a much simpler form, if the function U in that reference vanishes. Therefore the preceding arguments remain valid if τ = 0.

In the ensuing lemmas, we collect some integrability properties of the functions F (nonlinearity) and G defined in Theorem 8.3.

Lemma 8.1 Let u be a function satisfying (8.11), and define F and G as in Theorem

Proof: First suppose that H = F . Then the statements of the lemma are well known. By the proof of [14, Lemma 3.2, estimate (3.1) with s 0 = 2, r 0 = 6] for example, we have 

so by Hölder's inequality, (U 

Proof: By Lemma 8.1, we have F + G ∈ L 2 0, ∞, L 11/10 (Ω c ) 3 , so Lemma 5.5 with ǫ = 0 and F + G|B R × (0, ∞) in the place of f yields for x, t, α as above that 3 , and 

Theorem 8.4 Suppose that f, a and b satisfy the assumptions listed at the beginning of this section. Let α ∈ N 3 0 with |α| ≤ 1, and let the parameters q 0 , s 0 introduced at the beginning of this section verify the additional condition 3/(2 q 0 ) + 1/s 0 < 1 -|α|/2. Take U as in Theorem 8.2, let τ ∈ {0, 1}, and suppose that u is given as in (8.11), (8.12), that is, u is a L 2 -strong solution to (1.9), (1.10), (1.6) if τ = 1, and to (1.4), (1.10), (1.6) in the case τ = 0. Let R ∈ (max{R 1 , ..., R 4 }, ∞), with R 3 from Theorem 8.2, R 4 from Theorem 8.3, and R 1 , R 2 fixed at the beginning of this section.

Then there is a bounded function X : (0, ∞) → (0, ∞) with X(t) ↓ 0 for t → ∞ such that

If τ = 0 and u additionally satisfies (1.16) with κ 1 > 0, and if

Assume in addition that f and a are bounded and with compact support, the parameter ζ 2 from (8.4) belongs to [1/2, 1), and δ > 0 is suffiently small. Then

with k(α) := κ 1 in the case α = 0, and k(α) := 2 κ 1 /3 if |α| = 1.

Proof: Define F and G as in the proof of Theorem 8.3. By our assumptions on f and by Lemma 8.1, we have f

From (8.11), (8.12), we obtain that u satisfies (4.7) with f + F + G in the place of f , as well as (4.6). Thus Theorem 4.10 yields there is a unique function φ ∈ L 2 n (S ∞ ) such that

and

On the other hand, since f belongs to L 2 0, ∞, L q (Ω c ) 3 for q ∈ {q 0 , 3/2}, we know

and b ∈ H ∞ by assumption. Therefore Theorem 4.8 states there is a unique function

According to Lemma 8.1, the function

. Therefore, once more by Theorem 4.8, there is

In view of the uniqueness statement in Theorem 4.8, and because of (8.19), (8.21) and (8.22), we may conclude that φ = φ (1) + φ (2) , so by (8.20) u = u (1) + u (2) , where u (1) 

By the definition of u (1) , inequality (8.5) holds with u (1) in the place of u, hence

for x, t, ǫ as in (8.16), with

Turning to u (2) , we may deduce from Lemma 7.3 that

for x, ǫ as in (8.16) and t ∈ [1, ∞), where X 2 (t) is defined by

If t ∈ (0, 1), we argue as in the proof of Corollary 7.2, referring to Lemma 7.3 to obtain

-1-|α|/2 for x, t as in (8.16). Thus we obtain (8.24) again, this time for t ∈ (0, 1). Put R := max{R 3 , R 4 }. The term

for t ∈ (0, ∞) according to Lemma 8.2. Moreover Lemma 8.1 yields that F + G ∈ L 2 0, ∞, L p (Ω c ) 3 and 

-1-|α|/2 for x ∈ B c R , t ∈ (0, ∞), hence (5.13) is valid with F + G, R in the place of f and R 0 , respectively. Due to these estimates, we may apply Corollary 5.2 with ̺ = 2, q = 4/3, s = 2, q = 11/10, s = 2, q = 6, s = 8 and R 0 , f replaced by R and F + G, respectively, to obtain

for x, t, ǫ as in (8.16), with X 3 (t) := (1 + t) -7/8 + r∈{1, 1/4} ∇ x u|Ω c × (t/2, ∞) r 2 . As a consequence of (8.24) and (8.25) and the definition of u (2) , we arrive at the estimate

ǫ for x, t, ǫ as in (8.16). Inequality (8.16) now follows with (8.23) and because u = u (1) +u (2) . Now suppose that τ = 0 so that G = 0. Further suppose that u satisfies (1.16) with κ 1 > 0.

Let q 1 , q1 and q 1 be chosen as in the theorem. Note that F ∈ L 2 0, ∞, L q 1 (Ω c ) 3 according to Lemma 8.1 By applying (8.14) with q = q1 and q = 3/2, and Corollary 5.1 with q = q 1 , s = 2, q = q1 , we get R (τ ) (F )|S T,∞ H T,∞ ≤ C T -min{3/(2q 1 )-1, 3κ 1 (1-1/q 1 ), κ 1 } for T ∈ (1, ∞). This inequality, (8.22) and Corollary 7.2 imply 

1 /q 1 for t ∈ (0, ∞). Thus Corollary 5.2 with ̺ = 2, q = 1, s = 2, q = 3/2, s = 2, q = q 1 , s = ∞ and R in the place of R 0 yields

+ |x| ν(x) (-1-|α|/2) (1-ǫ) (1 + t) -min{1+|α|/2, 2κ 1 /q 1 } ǫ for x, t, ǫ as in (8.16). The preceding estimate, (8.26) and the definition of u (2) imply |∂ α x u (2) (x, t)| ≤ C |x| ν(x) -1-|α|/2 (1 + t) -min{3/(2q 1 )-1, 3κ 1 (1-1/q 1 ), κ 1 } + |x| ν(x) (-1-|α|/2) (1-ǫ) (1 + t) -min{1+|α|/2, 2κ 1 /q 1 } ǫ , again for x, t, ǫ as in (8.16). This result combined with (8.5) with u (1) in the place of u and the equation u = u (1) + u (2) lead to (8.17).

Suppose in addition that f and a are bounded with compact support, and ζ 2 ∈ [1/2, 1).

Then ̺ 1 may be taken as ζ 2 , and ̺ 2 as 1 + |α|/2; see the proof of Corollary 8.2. Moreover 3/(2 q 1 ) ↑ 3/2 for q 1 ↓ 1, and 3κ 1 (1 -1/q 1 ) → κ 1 for q1 ↑ 3/2. If α = 0, we may take q 1 = 2. In the case |α| = 1, the relation 2κ 1 /q 1 ↑ 2 κ 1 /3 holds for q 1 ↓ 3. The term f |B c R 1 × (t/2, ∞) q 0 ,s 0 ;∞ may be estimated by C (1 + t) -2 . These remarks and (8.17) imply (8.18).