
HAL Id: hal-01581698
https://hal.science/hal-01581698

Submitted on 5 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Teaching, investigating, creating: MUSICOLL
Anne Sèdes, Alain Bonardi, Eliott Paris, Jean Millot, Pierre Guillot

To cite this version:
Anne Sèdes, Alain Bonardi, Eliott Paris, Jean Millot, Pierre Guillot. Teaching, investigating, creating:
MUSICOLL. Innovative Tools and Methods for Teaching Music and Signal Processing, 2017, 978-2-
35671-444-2. �hal-01581698�

https://hal.science/hal-01581698
https://hal.archives-ouvertes.fr

1

Teaching, investigating, creating: MUSICOLL

Anne Sèdes, Alain Bonardi, Eliott Paris, Jean Millot, Pierre Guillot

CICM

Université Paris 8

2, rue de la liberté

F-93526 Saint-Denis Cedex

MSH Paris Nord

20 avenue Georges Sand

F-93210 Saint-Denis La Plaine

anne.sedes@univ-paris8.fr

INTRODUCTION

In the Department of Music at the University of Paris 81, innovative
tools and methods to teach music and signal processing are at the
centre of our concerns, as teachers, researchers, and creators. In the
following collectively written text, after a focus on the academic
context and our recent activities, we will present our new project,
called MUSICOLL. It is centered on collaborative and portable real
time music in the context of teaching and creating sound, music,
computer and music sciences and methodologies.

1. Teaching, researching, creating
W e tackle the previously mentioned in the field of Music and
Computer Science in a Music and Musicology programme, in
1 http://www.univ-paris8.fr

interaction with the University's policy for promoting science in the
arts, science and technology, research-creation, and digital humanities.
As a minor specialization in standard Music and Musicology Bachelor
of Arts (licence), Master's and Ph.D. (doctorat) degrees, the courses
offered to our students concentrate on musical composition, an
introduction to programming languages in relation with digital audio,
and academic theoretical approaches linking research with creation.
The process of playing? electroacoustic, live electronic and mixed
music and their intermedial extensions, are at the core of our
pedagogy, where all students make their own way through the arts,
technology, science, and humanities to develop their own
specialization while supervised by a team of more advanced students,
Ph.D. students and research professors.
Mixed music is a precious field for experimentation, teaching,
creation, research and software development. Within this area, thanks
to software like Max2 and Pure Data3, a sound spatialization thematic
devised by musicians and for musicians allowed us to elaborate the
HOA4 [Sèdes & al. 2014] project . It has been developed over the
course of four years as a part of the LABEX Arts H2H5 with joint
development from the arts , software and software engineering fields.
I t gave rise to thesis projects and the completion of a set of libraries
already well-known by the international community. The project is
still in existence, continuing to develop and with the aim of enduring
operating systems' and software environments' evolutions.
The HOA project had a relatively modest goal: a C++ library for high
order ambisonics allowing for several software implementations like
plugins, to develop graphical interfaces for the field of sound
visualization, offering a 3D approach, embedding sound
transformations within the spherical harmonics domain, etc.
HOA-led workshops allow Music students to create sound spaces,
presenting questions of musical composition in programming for
pieces produced in 6the composition workshop with recognized
professional ensembles such as the Percussions de Strasbourg,
Ensemble Itinéraire, Ensemble Aleph...
Regarding software creation, doctoral students Julien Colafrancesco,
Pierre Guillot, and Eliott Paris contributed the different versions and
revisions of the project, under the direction of Anne Sedes and Alain
Bonardi at CICM.

In an informal way, the methods were based on learning through
hands-on experience, modelling, trial and error, testing and redesign,
in interaction with direct feedback from users who were connected
remotely and experienced in studio work?, composition, and
dissemination.
The limitations of MAX, with its relatively closed-source proprietary
code and the significant and unforeseen changes made by its
developers in the newer versions, and Pure Data, in open source, but
always requiring serious revisions [Guillot 2014], led the team to
consider new approaches in an environment where collaboration and
portability or the cloud are now becoming strong trends. Thus, the
MUSICOLL project was launched. Its purpose: to renew real-time
music practices, and move towards collaborative, multi-platform,
perennial patch creations.

The objectives are :

1. to produce a framework of a new collaborative and mobile real-time
processing software

2. to study the handling of this software by creators

3. to examine how to renew real-time music software teaching

4. scientific and professional dissemination

In the following, we will present the status of the project regarding its
software developments, over the course of ten months.

2. MUSICOLL: the project and its first results
after ten months
Collaboration between geographically displaced musicians through
Internet networks has become more and more popular, the origins of
which can be found in performing and playing music together
[Renaud & al. 2007]. The next step consisted of getting several people
to shape audio contents together, for instance using a collaborative
sequencer like OhmStudio developed by OhmForce7. We now

consider the collaborative design of real time sound processors
possible due to a graphic language.
The MUSICOLL project is an ANR-funded project that unites the
CICM, which is located in the Maison des Sciences de l’Homme Paris
Nord, and a company, OhmForce, specialized in collaborative digital
audio. It aims at redesigning the musical practice of real time, which is
becoming more cooperative and mobile. The project is expected to
last three years, from January 2016 to December 2018, and proposes
the development of the first draft of a musical real-time collaborative
environment enabling several creators to work simultaneously on a
process hosted online accessible from any connected terminal. This
environment for the graphic programming is called Kiwi. We will also
study how music creators become familiar with Kiwi and use it. Kiwi
will then be presented in class, for students that are beginners in real-
time processing, and observe the resulting educational renewal. Last,
but not least, we will undertake actions to disseminate the results to
the Computer Music community and to sound professionals.
The first expected result is the production of the prototype of a Kiwi
application providing an underlying kernel of sound transformations
and syntheses to respond to a first level of composers’ expectations. In
its first version to be released at the end of October 2016, Kiwi will be
a network application running on Macintosh computers, based on a
collaborative point of view on a Flip framework that is developed by
OhmForce. It is described in the third part of the present article. At the
end of the project, we should achieve a plugin version of the
application that could be integrated into digital audio workstations like
OhmStudio, enabling to embed collaboratively designed real-time
processes in a sequencer.
Concurrently with Kiwi's software development, two usage studies
will commence in 2017, directed towards two significant communities
at The University of Paris 8: composers on one side and inexperienced
students in real-time sound processing on the other.

Figure 1. Diagram of the current architecture of the Kiwi application.
This research project raises several issues: the first of which are
technical, dealing with signal processing as well as synchronization
through networks, but also design problems in collaborative
approaches, and finally those of appropriation and diffusion, trying to
encourage people to work differently, using their feedback.

3. The Kiwi application: the architecture of the
prototype
Kiwi is an application that allows one to create real-time audio effects
by connecting graphical boxes called “objects” inside a graph named
“patch”. This approach, similar to the one offered by the Max and
Pure Data software, takes another dimension due to its collaborative
and nomadic aspects. Indeed, this project allows users to design and
create audio engines together by sharing and testing their ideas in real-
time in the same “patch” and in a common workflow. The
collaborative features have been made available by OhmForce through
Flip9, a C++ framework for creating collaborative applications in a
model-view-controller (MVC) architectural pattern10, and managing
transactions over the network. The graphical and audio rendering is

carried out by JUCE11, a cross-platform framework commonly used in
the audio application industry.

The software is composed of two distinct parts, one for the client and
the other for the server. The client part is destined for the user and
there can be as many versions of it as there are users. The server is
unique and customers can communicate through it. This
communication is possible thanks to a common model shared by these
two parts, the client and the server. This model based on Flip
represents all the persistent and collaborative data of a patch. The
patch is mainly composed of a set of objects and a set of links. An
object is represented by a name, a certain number of inlets and
outlets. It is important to note that the object’s functional part, its
processor, does not belong to the model. The model is only an abstract
description of the data managed by the application. At last, a link is
represented by two objects' references and the indices of the inlet and
the outlet connected.
When the client part modifies its model (by changing a link or adding
an object to a patch for example), this model automatically sends a
transaction to the server that dispatches the modification to all the
other clients. The server part can also invalidate a modification if, for
concurrency reasons, this alteration cannot be applied (for example, if
a link has been created by a user and another user deleted one of the
objects bound to this link at the same time). In this case, the server can
choose to restore the user data model to a previous valid state and
oblige all users to apply the same modification (the object will be
deleted, and the link will not be created for example).
As has been previously suggested, the client part uses the model and
manages other components: the graphical user interface (GUI) and the
engine. The GUI part is composed of a view and a controller. The
view part of the GUI graphically renders the model by displaying the
patch, the objects and the links to the screen. When the patcher model
changes, the view receives a notification and modifies its rendering.
The controller part receives user interactions, coming from the mouse
or the keyboard for example, and translates them into model
modifications. Therefore, in the MVC architectural pattern, the GUI
part is both a view and a controller. On the other hand, the engine is
the computing kernel of the application. The fact that the engine is a

view concerning an MVC event even though it does not embed any
graphical functionality can be misleading. As explained before, the
model is autonomous and not directly linked to the engine. Thus, as
the view, the engine receives the notifications when the model
changes and interprets it. The engine owns the processors (or the brain
part) of the objects. For example, an object called "+" in the model is
in fact a name but the engine interprets it as the addition operation.
When a link is created in the model, the engine will bind these two
objects, enabling them to communicate through messages.
There are two kinds of operations an object can process. The messages
are the first ones that can result from mouse and keyboard interactions
but also MIDI events or OSC messages. The computation of these
operations happens at a relatively low rate. The other operations are
performed on digital audio signals at a high sampling rate (between
44100 and 196000 Hz). As the model doesn't have any computational
intelligence, the engine owns this functionality by checking and
sorting operations, optimizing processes and managing operations’
relationships between messages and audio signals. Therefore, the
engine creates effects, synthesizers, and even more complex sounds by
linking processors and transcribing messages into mathematical
operations.
Thus, the application possesses a multi-layer architecture with
intricate connections between the different layers which enable it to
manage the many implications produced by the collaborative and
nomadic aspects of the project. These aspects will be discussed in the
next section.

4. The implications of the collaborative
and nomadic aspects
The current release of the Kiwi application functions on a local server
with one computer that hosts the patch and several users that can
modify it. For the moment, the application only offers very basic
interactions: creation, destruction, and shifting of graphical objects
and chords. These modifications to the model are managed by a Flip
framework. Thus once the server has taken them into account, it
automatically notifies in return all the listening machines of the
changes. Nevertheless, we are just beginning to manage these

interactions, and have already encountered some concurrency
problems. Indeed, what should happen if someone deletes an object
while someone else connects it to another object? Should the object
survive and the link be created? Or does the link have to be ignored
and the object deleted? Indeed, one of these interactions should be
ignored; both cannot coexist. For the moment all these concurrency
issues remain unresolved; anticipating and foreseeing the problems
will be one of the project’s main tasks. To respond to these issues, we
plan to define use cases, to offer a set of solutions and evaluate them
utilizing user feedback (the organization of the tests is presented in the
next section of this paper). Ultimately, we hope to define a priority
system where each action is hierarchized regarding the others. For
example, if the deletion of an object has a higher priority than the
shifting of an object, deleting an object while another user displaces it
will result in its removal.
Beyond the concurrent model’s modification, other concepts are
directly linked to a collaborative workflow. The way user interfaces
are made has to be revisited in collaborative environments, finding a
way to display other users’ interactions enabling them to quickly
apprehend what is happening without increasing the information
entropy of the patch is key.

Figure 2. This capture represents three users' selections interacting in
real-time in the same Kiwi patch.

User-1 can identify his/her own selection by its dark outline, but can
also visualize other users’ selections which are outlined in grey.

An example of these interactions is the selection of an object.
Currently, the assumption is that knowing if one or more other users is
selecting an object at the same time is more important than knowing
who is selecting which object. The OhmForce team advised us to
define a scheme that highlights the outline of the object using different
colors based on the following rules: one color is assigned to the local
user selection, and another is used to show that an object has also been
selected by someone else on the network [see Figure 2]. One of this
method's advantages is that it uses only two colors, allowing other
colors to be used for displaying different information in the patch. It
also improves the patch readability. Nevertheless, this information is
partial. One might want to know which user selects which objects like
in the Google Docs application12. This can be realized by using a set of
distinct colors where each user is assigned one and their selections are
customized using it, but this approach can make reading a patch

difficult. Another idea would be to have a window appear with
information about the users making the selection as the mouse hovers
over the objects. This approach which seems satisfactory on the
surface is, in fact, a problem for tactile interfaces. Therefore, we will
once again make suggestions to a set of testers to find the solutions
that best match the needs of the Kiwi application.
This object selection feature is one among many caused by the
collaborative aspect of a patch edition. For example, the OhmForce
team's experience in the collaborative domain introduced an issue that
we would never have imagined: if a user deletes an object or moves
the object beyond the boundaries of the patch's window, these two
interactions will appear to the other users as the disappearance of the
object and none of them will be able to determine quickly what
actually occurred. In the OhmStudio application where there were
similar cases, OhmForce solved the issue by creating animations on
the graphical user interface to notify passive users of this kind of
interaction (by sliding or fading the GUI).
These problems were troublesome, but some of them were so
significant they made the the application unusable. For example, often
the user wants time to test and listen to the intermediary audio results
in the patch creation process. The problem is that it can take a long
time, and other users may want to modify the patch during their
cocreator's listening session; but any modification of the patch will
most likely result in audio glitches and artefacts. One solution we
considered but which remains to be proved is offering an option that
locks the patch and disables its updating while the audio is on. After
the listening, the patch would retrieve the information and be
synchronized again.
Thus, many issues can only be discovered while using and testing the
first releases of the application, experimenting with both the
collaborative and the portability aspects which also lead to many
issues needing resolution.

5. Use cases, elements of demonstration and validation
At present, we have started working on usages, with a first scenario
for demonstration and validation. This scenario was set in
collaboration with OhmForce, and stage two users, each of them
working with Kiwi on a common patch on his/her computer. This

scenario simulates a short workshop where user A explains to user B
how to handle a simple oscillator and then several oscillators by
duplication. It provides situations where collaboration happens either
simultaneously or successively and highlights many collaborative
issues specific to real-time graphic environments.
The Kiwi real-time environment we are developing requires validation
through different types of uses and by specific communities interested
in particular applications. A first example is teaching graphic
languages such as Max or Pure Data to beginners, and in our case,
undergraduate students in the Music Department of The University of
Paris 813. Its purpose will be to design and test the founding principles
of a course based on the Kiwi collaborative platform, by comparing
previous and newer educational practices to introduce real-time audio
programming. A Kiwi trial class shall also be introduced. Teaching
and learning practices will be documented with video recordings.
Students and teachers will also be interviewed, but the documentation
method for their responses has yet to be determined.

CONCLUSION
The MUSICOLL project and its Kiwi software have only been in
existence for ten months. Therefore, there is much work remaining,
especially concerning development. We currently have a small
number of objects available in Kiwi, and more will need to be added
to allow composers and students to test the application in a
meaningful way. As the prototype is currently only working in a local
area network, one of the next steps will be to make it accessible
online, allowing users to save their documents directly online and join
the same patcher document even when not located in the same place.
In order to be effective, these developments will have to take place in
close interaction with beta-tests to either validate or invalidate original
specifications and react to users’ feedback.
Over and beyond MUSICOLL, we have tried to demonstrate how a
team working, teaching, researching and creating within a Music
Department in a university can generate a favorable environment for
obtaining new creation tools and providing skills for students. It can
be accomplished via a software project based on informal and
experimental methodologies in complete autonomy, and outside of the
traditional industrial and engineering factoring models. We hope to

share it with potential communities adapted to teaching, investigating
and creating, in order to utilize their feedback in our work.

BIBLIOGRAPHY
Guillot, P., 2014 : « Une nouvelle approche des objets graphiques et
interfaces utilisateurs dans Pure Data » JIM2014, Bourges.
Jones, A., Kendira, A., Lenne, D., Gidel, T., Moulin, C., « The
TATIN-PIC project: A multi-modal collaborative work environment
for preliminary design », Proceedings of the Computer Supported
Cooperative Work in Design (CSCWD) 2011 Conference, pp. 154-
161.
Nam, T-J, Wright, D., « The Development and evaluation of Syco3D:
a real-time collaborative 3D CAD system », Design Studies, vol. 22,
No. 6, November 2001.
Renaud, A. B., Carôt, A., Rebelo, P., «Networked music
performance : State of the art», AES 30th International Conference,
Saariselkä, Finland, 2007 March 15–17.
Ruthmann, S. A., 2007 : « Strategies for Supporting Music Learning
Through Online Collaborative Technologies », Music Education with
Digital Technology, John Finney et Pamela Burnard (eds), London,
Continuum International Publishing Group Ltd.
Sèdes, A., Guillot P., Paris, E., 2014 :« The HOA library, review and
prospect », ICMC-SMS2014, Athens, Greece.
Schober, F. M., 2006 : « Virtual environments for creative work in
collaborative music-making », Virtual Reality, pp. 1085-94.
Salinas, E. L., 2002 : « Collaboration in multi-modal virtual worlds:
comparing touch, text, voice and video », The social life of avatars
(pp. 172-187). Springer London.
Wilson, P., 1991 : « Computer Supported Co-operated Work: An
Introduction ». Intellect Books, Oxford.
Zacklad, M., Lewkowicz, M., Boujut J.F., Darses F., Détienne, F., «
Formes et gestion des annotations numériques collectives en
ingénierie collaborative », Actes de la conférence Ingénierie des
Connaissances 2003, pp. 207-224.

1 http://www.univ-paris8.fr
2 http://cycling74.com/products/max
3 http://puredata.info/
4 http://www.mshparisnord.fr/hoalibrary/en
5 http://www.labex-arts-h2h.fr/?lang=en
6 CICM stands for “Centre de recherche en Informatique et Création

Musicale” meaning “The Centre for Research in Computer Science
and Musical Creation”. http://cicm.mshparisnord.org/ CICM belongs
to the MUSIDANSE TEAM EA 1572 of the University of Paris 8.

7 http://www.ohmstudio.com/
8 ANR stands for “Agence Nationale de la Recherche” which is the

French governmental agency for research.
9 http://irisate.com
10 http://martinfowler.com/eaaDev/uiArchs.html
11 https://www.juce.com/
12 https://www.google.com/intl/us/docs/about/
13 Approximately 20 students attend this kind of course every year.

