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ABSTRACT. A two-phase approach is proposed to model the rheology of polymer glass-fiber com-
pounds such as SMC or GMT during processing. The anisotropic behavior of the composite,
which is related to the microstructure of the fiber network, is reduced to the simple case of
transverse isotropy. The rheology of the two media, e.g. the matrix and the fiber network, as
well as their interaction follow non-linear viscous behaviors. The equations of this model are
simplified to the case of the compression of SMC, giving the formulation of a shell model whose
equations are written into a finite element code. Simple simulation examples thus show the
strong influence of material and process parameters on the phenomenon of phase separation.

RESUME. Un formalisme biphasique est proposé pour modéliser la rhéologie des composites
fibres de verre - matrice polymere de type SMC ou GMT au cours de leur mise en forme. L ani-
sotropie liee a la morphologie du réseau de fibres est simplifiée au cas de I’orthotropie de
revolution. Le comportement visqueux non linéaire régit la rhéologie des deux milieux consi-
dérés (matrice et réseau de fibres) ainsi que leur interaction. Les équations de ce modeéle sont
simplifiées et adaptées au cas du procédé de compression des SMC ; ceci aboutit a la formu-
lation d’un modele coque, dont les équations sont introduites dans un code éléments finis. Des
exemples simples de simulations permettent alors de souligner I’importance des paramétres «
matériau » et « procédé » sur le phénomene de redistribution de phases.

KEYWORDS: SMC, GMT, theory of mixture, two-phase shell model, segregation.
MOTS-CLES : SMC, GMT, théorie des mélanges, modéle biphasique coque, ségrégation.



1. Introduction

Glass fiber composites processed by compression molding are increasingly used
in the automotive and electrical industries as semi-structural parts because of their
lightweight and their cost-efficient processing. These composites are formed by a
mat of glass fibers or glass fiber bundles, which constitutes the reinforcement of the
matrix. The fibers or bundles content is high so that the composites can be seen as
highly concentrated suspensions. Their matrix may be either thermoplastic or a ther-
moset polymer. Thermoplastic based composites are called GMT for Glass Mat Ther-
moplastics, whereas thermoset based composites are called SMC for Sheet Molding
Compounds. All theses composites are produced as planar preforms before being pro-
cessed by compression molding to produce parts. During this compression stage, the
initial distributions of fiber orientation and fiber content through the produced parts
1s not maintained, strongly affecting final geometry and properties of produced parts
[OSS 94, YAG 95, THO 96]. These two kinds of phenomena have to be controlled in
order to ensure suitable mechanical and geometric properties of the produced parts.
Current rheological models entering in the scope of models for semi-dilute or concen-
trated suspensions can predict fiber orientation evolution during processing of polymer
composites [ADV 94]. However, as they assume that the fiber network and the ma-
trix have the same macroscopic velocity, these one-phase models cannot account for
fiber segregation, keeping a homogeneous fiber content during the whole compression
molding. Therefore, to describe the evolution of the fiber content in SMC or GMT,
a two-phase model based on the mixture theory is proposed in this paper. Firstly, the
paper briefly shows how the two-phase model is established. Secondly, the model is
simplified to the case of compression molding: a formulation for a two-phase "Barone
and Caulk" like shell model is proposed. Thirdly, the finite element method for solv-
ing the two-phase boundary value problem is formulated. The paper is concluded by
few numerical examples where the influence of processing parameters on segregation
phenomenon is analyzed.

2. Balance equations for a two-phase mixture

The theory of mixture that was initially developed in the pioneering works of
Truesdell and Toupin [TRU 60, BOW 76] is a general framework well suited to pre-
dict fiber segregation phenomena arising during compression molding. Within such a
theoretical framework, the following basic assumptions were stated:

— the composite is seen as the superposition of two continuous media. Each con-
tinuous medium represents immiscible constituent or phase of the material, i.e. the
fiber network f and the matrix m (polymer + filler). Hence, each material point M
of the mixture is simultaneously occupied by material points M) and M (™) of the
phases f and m, respectively'.

1. In order to be able to distinguish phenomena arising at a microscopic scale (inside the matrix
or in the fiber in our case) from those "apparently" resulting at a macroscopic scale, a specific



— Each elementary macroscopic volume element JV of the mixture (elementary
mass dm and specific mass p = g—"’}) is simultaneously occupied by the phases «

whose elementary macroscopic mass 6m ) occupies an elementary macroscopic vol-
ume 0V(,) of 6V. This enables to introduce (i) the macroscopic p{®) and the micro-
SCOPIC p(q) Specific masses:

i) =5V = [ pav 1)

and (ii) the volume fraction f(®) of the phase a:

5‘/(04) _ p(a)

f(a) —
ov p

2)

In this work, the constituents of the mixture are assumed incompressible at the micro-
scopic scale so that p(, is constant and pl) = f (O‘)p(a).

— The saturation condition for the mixture is stated:
o) 4o =1, (3)
— At last, to simplify the analysis, only isothermal situations will be considered in
this paper. Hence, only mass and momentum balances have to be considered in the
modelling (see next subsection).

2.1. Mass and momentum balance equations

Accounting for the previous assumptions the local mass balance equation written
at a given material point M (®) for each phase « is

D)
-7 [+ fPdiva @ =0, (4)
where the notation %z) is the material time derivative following materials points M (%)

of velocity v(®). Summing equations (4) written for each phase of the mixture, i.e. m
and f, and accounting for the saturation of the mixture (3) leads to an incompressibil-
ity equation for the mixture:

div(fPo® + 1 - fH)em™) = 0. (5)

notation for microscopic and macroscopic quantities is introduced: if ¢ is a scalar physical
quantity, then ¢, (with the subscript () is the microscopic (or local) value of ¢ in the phase
o, whereas ¢(®) (with the exponent (O‘)) is the macroscopic (or apparent) value of ¢ for the
same phase in the mixture.



The mixture theory defines the concept of partial stress vector T and partial
stress tensor o (@) for each phase c, writing the total force exerted from the outside on
the surface element 6.5 of 6V as :

SF = 5_F(m) +5_F(f) _ (I(m) +I(f))55 — (g(m) _|_g(f)) - nd8S, (6)

where n is an outward normal vector to 5. Assuming no external and internal spe-
cific moments, the second momentum balance equations written for each phase lead
to the symmetry of the partial stress tensor, i.e. o(® = g7(®), Moreover, rheometry
experiments performed on industrial SMC or GMT clearly reveal that during com-
pression molding these composites can reasonably be approximated as purely viscous
and incompressible anisotropic fluids [SER 02, LEC 02, DUM 03]. In this case, it can
be shown that the partial stress tensors o(® can be split into the sum of two terms
[BOW 76]: -

g(a) — —f(a)pié + ge(a), (7)

where p; is a pressure related to the incompressibility of the mixture, o™ and g/
are "extra" or viscous partial stresses. In this case, neglecting inertial effects and spe-
cific external forces, it can be shown that the local form of the first global momentum
balance equations for the matrix and the network of fibers are [BOW 76]:

divo™ — (1 — fD)gradp; +p°" =0, (8)

divg®") — fPgradp; — p*"™ = 0. 9)

(m)

where p©*""" is a viscous momentum exchange between the two phases.

3. Towards a two-phase shell model for compression
3.1. Experimental observations and consequences

The deformation of composites during industrial compression molding is usu-
ally described using two "elementary" mechanisms. The first deformation mode is
a "squeeze flow", characterized by the shearing of the composite in the thickness of
the molded sheets. It is thus assumed that there is a sticking contact between the com-
posite and the upper and lower parts of the mold: such a mechanism has been used to
establish one-phase generalized Hele-Shaw shell models [HIE 80, LEE 84, OSS 90].
The second mechanism is a "plug flow" characterized by an uniform deformation in
the thickness of the sheets, with a slipping contact at the interface between the com-
posite and the mold surfaces: this second type of flow has given rise to one-phase
Barone-Caulk shell models [BAR 86, BAR 87]. In practice, the predominance of the
first or second mechanism depends on processing conditions, thickness of the sheets,
length of fibers... In the case of SMC or GMT, where fibers are much longer than the
thickness of the sheets, experimental evidences show that within a wide range of pro-
cessing conditions, the plug flow regime leads to a rather good approximation of the



real flow patterns [BAR 85, SER 02, ODE 04]. Consequently, in order to simplify the
full 3D two-phase model introduced in the previous section, a two-phase shell model
is proposed in this section, adopting a plug flow kinematics for the composite: it is a
direct extension of the one-phase shell model of Barone and Caulk [BAR 86]. Note
that for a sake of simplicity, this approach is here restricted to the case of a plate ge-
ometry whose midplane is contained in the (e, e,) plane: the extension to a 3D shell
model would be straightforward. Hence, the velocity v(®) of each phase becomes:

h .

(67 (87 [0 h
(e aa)ey + oy (@, w)e, + g ases =)+ Tasey  (10)

where the symbol """ has been introduced to distinguish 2D-unknown fields and 2D-

operators in (e;, e5) from 3D ones, and & is the thickness of the sheets. As the shear

components D(Boé) (6 € {1,2}) of the strain rate tensor are constrained to zero, arbi-

trary reaction terms must be added to the partial stress tensor o (@),
@ = —fpd+ T\ (es 0 ey +es®ey) + Y, Befl,2). (1)

Hence, the mass balance equation for the fiber network becomes:

D £
Dt

Moreover, the incompressibility of the mixture now reads:

+ (div@<f> + h/h) —0. (12)

div(fOs) 4 (1 - fN™) + h/h = 0. (13)

Finally, the two momentum balance equations in the plane of the sheets are integrated
over the thickness h of the composite. In the case of isothermal situations they be-
come:

~ 1 ~ (M ~ (m ~ ~e(m ~
~(1— fD)gradp, + 1 (B + F)Y) +dive @ 457" =0 (19)
and |
~fDgradp;+ o (B + B) +dive) -5 =6, (5)
where
~(a)  ~(a) ()" :

E(()a) and E;a) account for possible friction effects that are generated by the slipping

on the upper (x3 = 0) and lower (z3 = h) surfaces of the mold parts [BAR 86] (cf.
next subsection).

3.2. Constitutive equations

— It seems reasonable to consider that the polymer matrix behaves like a power-law
fluid at the microscopic scale, with a power-law exponent n,,) [LEC 02, DUM 03].



Following this idea, the extra macroscopic stress tensor of the matrix is described by
a simple constitutive law:

56m) om) 1 - () 5 m) M) —1
~e(m) . 2M(m) ( ) 2 m 7 O';i())m) 2M(m) ( ) (16)

S| S

Yo Yo

with (™) = (1 — f() [o(m)» Ho(m) being the viscosity of the polymeric matrix at a
reference shear rate 4y of 1 s~!. Accounting for the current kinematical restrictions,

~ (m ~ (m . 2
5m) 2 _ 2<Q " D"+ <h/h> ) (17)

— The extra stress tensor Qe(f ) of the fiber network is a direct extension of the
one-phase mechanical model proposed by Dumont et al. [DUM 03]. Hence, the fiber
network 1s seen as a compressible power-law fluid displaying a transverse isotropy
whose axis 1s ej:

e 2 DN\"' . 2H (D" 'h
&) = p <_> D, o3 =y ( ) —, (18

= 14+ 2H \ Dy 1+2H \ Dy h’
where
2 P\’ 1+ H\ T
= - +
D(f) 2__ = D(f) : D(f) HIl= () = pf) (9
110 |2 2 Ty = s \ 47 oy ’

(19)
with n( ;) the power-law exponent, n(f ) a plane strain compression viscosity at a char-
acteristic strain rate Dg of 1 s™1, and H a rheological function that accounts for the

fiber network anisotropy. 771(,];) and H strongly depend on f(f). For example, using

the experimental results obtained on a standard SMC formulation [DUM 03], possible

(f)

expressions for 7,s” and H are

2
2 14+ 98f) +980f(F)
il =i (98F9) +980,97), H = -1, (20)

0.5 + 67f() + 6707

where 7)) 1s a constant.

=e(m) . . : . .
— The momentum exchange p is induced when there is a relative motion " =

0™ — o) of the matrix with respect to the fiber network. The expression of this term
1s such that the momentum balance for the matrix phase (8) reduces to the permeation
law of a power-law fluid trough a rigid network of fibers or bundles or fibers (in the
latter case, no permeation inside the bundles is assumed), when the matrix does not
deform at the macroscopic scale. A possible momentum exchange is [AUR 02]:

~e(m) 2" 11o(m) (GRS
=—(1—fY — r 21
p ( f )/i*k;"q(f(f),n(m))dQ ")/Od v, ( )




where d is the average diameter of the fibers (or bundles), k7, (f (f), N(m)) is the di-
mensionless permeability for transverse flow of a power-law fluid through a regular
square array of parallel fibers of diameter d and fiber volume fraction f(/), and where
Kk* 1s a constitutive parameter to determine. According to the experimental data col-
lected for various fibrous media: 0.1 < «* < 100 [JAC 86]. It can be shown that
k;‘q(f(f) ,N(m)) can be directly deduced from k;‘q(f(f), 1) [BRU 93, IDR 04]:

1—=n(m)
o

where £/}, = r/4, & = [/ #$9 . In this work, ki, (f (f),1) was approximated
by the analytical lubrication model [KEL 64], that gives rather good predictions in a
wide range of fiber volume fraction:

—1
1+V®

1_ ®)2 arctan = 1

=27 35 ( 1ﬁ)+—<1>+1 C(23)

K (fD 1)y =>+——2
s, 1) Vs JI-® 2

— In their one-phase shell-model, Barone et Caulk [BAR 86] have given a physical
meaning for the forces F apperaring in (14-15): they are related to the presence of
a thin amount of viscous matrix entrapped between the compressed sheets and the
mold, that is sheared during the relative motion of the sheets with respect to the mold.
Adopting a similar reasoning for the two-phase model, we propose to write:

n(m)—l

S(a) | m(a) 2
~ (o) ~ () « a v v ry &
F, =F, = _f( )Mo(m)/ﬁigq) (U—g) Q( )7 (24)
0

where v is a reference velocity and /-fg? are friction parameters to determine.

3.3. Initial and boundary conditions

At the beginning of the compression, i.e. for ¢ = 0, the composite occupies a
surface Q(z1,x2,t = 0) = Qp of boundary 9Q(x1,z2,0) = 0 in the principal
plane (e, e,) of the mold whose total surface and boundary are Q,; (29 C Q)
and 0€2), respectively. The initial height h(x1, z2,0) = hg and fiber volume fraction

fU (21, 29,0) = éf ) are given, and the initial velocity of each phase is zero.

During the compression, i.e. for ¢ > 0, the local thickness h(x1, z2,t) is imposed,
so that the composite of surface Q2(z1, 2, t) of boundary 0Q(z1, x2, t) fills the mold
cavity, accounting for the following set of boundary conditions:

— 5 =00nd,Q = 90N ON,,, where 7 is the unit outward normal to 2 and
9, Q@) is the part of 9Q which is in contact with the mold boundary 9Q,;;

— g(o‘) 7= 0o0nd,Q = 00 — 9,0, where 0, stands for the free surface of the
mixture.



4. FE formulation of the two-phase boundary value problem
4.1. Resolution scheme

The flow of the two-phase mixture is described by an Eulerian approach with re-
spect to a reference surface containing (e, e,). In the present application, this refer-
ence is the mid-surface of the mold €2,; that is meshed using triangular elements,
each of them having a specific height h. During compression molding, the com-
posite fills the mold cavity so that 2 grows from 2y to 2, and the evolution of
the free surface 0,¢) has to be determined. As in many mold filling applications
[DHA 92, SCA 99, SOU 01], this was achieved with an additional scalar variable
describing the local volume fraction of the composite in the mold (i.e. x = 0/1 if the
considered material point is empty/full of composite). The dynamic of the variable
x(z1, x2,t) is ruled by the following equation:

D(miw)x _

25
=0, 25)

where DT stands for the material time derivative following the mixture of velocity

™) As defined in [BOW 76]:
~(miz) __

1
v =
a FPpigy + Q= D) pm)

(f(f)@(f) F(1- f(f))ﬁ(m)> _ (26)

Thus, the scalar field y is added to the unknown fields f (", d (m>, v () and p;. All are
dependent of time ¢ and space variables x; and x5. An usual strategy is employed to
solve this problem. It consists in splitting the time and the spatial discretizations as in
many usual FE treatments. Thereby, the time interval |0, 7] of molding is subdivided
into a finite number of time steps ]¢",¢" 1] that can have different lengths 2. Given
the solution at time ™, the step n + 1 consists in (i) finding the new domain Q™!
occupied by the mixture, and (i1) determining the unknown fields v (m)" vf )
prtt fUf )" and y"+1 in Q"+, These two points are detailed below.

(i) The calculation of the new domain "t from the knowledge of Q", v(™®)”
and x" requires (a) the computation of the time increment At = At" "+ (it is
determined such as the flow front progression is of the order of a typical element
dimension), (b) the determination of ! such as "1 = " + At, (c) the calculation
of h"t1 and A"*t! for each element of the mesh, and (d) the determination of the
elements that are gained by the mixture between ¢" and "1,

(i1) The two-phase problem is then subdivided into three sub-problems:

- Sub-problem (SP1), called the pressure-velocities problem. It aims at finding
v ()" , vlf )" and p?“, and couples the incompressibility equation (13) and the

2. In the following, we will find the following notation for every function f: f(x,t") = f™(x).



two momentum balance equations (14-15). This first sub-problem would be equiv-
alent to the well-known Stokes problem in the case of a one-phase approach with a
Newtonian incompressible fluid.

- Sub-problem (SP2), called the fiber fraction problem. It consists in solving

the mass balance equation (12) to determine f(f )" Notice that the resolution of SP1
and SP2 is coupled: indeed, at "1, the pressure-velocities problem SP1 and the fiber
volume fraction evolution problem SP2 are successively solved up to convergence, i.€.

up to finding a fixed point for the velocities AR " and ol A , pressure p;’ "+ and
fiber volume fraction fields f(f )

- Sub-problem (SP3), called the free surface problem. It consists in solving the
transport equation (25) on Q7! to compute y" 1.

In what follows, the different numerical methods used to solve these problems are
presented.

4.2. FE formulation of the two-phase pressure-velocities problem

4.2.1. Weak formulation

The pressure-velocities problem SP1 is re-casted into a weak form by multiply-
ing the equations (14-15 and 13) by a set of test functions ™", 5¥)* and p* (be-
longing to appropriate spaces Vo(m), Vo(f ) and () and by integrating over () apply-
ing the divergence theorem. The problem consists now in finding the set of un-
knowns functions (Q(m) o), pi) € (VM) x V) % Q) such as V(Q(m)* o p*) €

(

~ (m)x* 1 - ~em
Q T Q h Q

/ div [(1—f<f>>@<m>*] pidQ = / 8" 2 d (9,Q),
i o

7\

/Qem iQ(f)*dQ—/ h(Féf) LB, ~<f>*dQ+/ 5 5egq -
Q T Q

/Cﬁv [f(f)@(f)*} pidQ:/ 5 5°0) j2d (8,9),
Q (8,9) -

/div [f(f)ﬁ(f)}p*dﬁik/div [(1—f<f>)g<m>]p*d9=—/ %p*dQ,
Q Q Q
(27)

It is important to underline that this system is highly non-linear due to the power-laws

used to determine ae(o‘) _e(m) nd F;La) (

\

(see subsection 3.2).



4.2.2. FE approximations

A mixed finite element method is used to discretize the previous weak formula-
tion. The considered elements are P2+ for the two velocity fields and P1 for the
in-thickness integrated pressure. The interpolation of the velocity fields is quadratic
(six degrees of freedom plus an internal velocity node) whereas the interpolation of
the pressure is piecewise linear. The use of these elements allows to circumvent the
Brezzi-Babuska compatibility condition. The following matrix formulation of the
pressure-velocities problem can be readily obtained via the standard Galerkin dis-

cretization process:
A(V) 'B V) _ [ FV)
(% S ) ()= ("¢ e

where V is the vector of nodal velocities unknowns (m and f), i.e.

N v(m)
V= , (29)
V()

P stands for the vector of integrated pressure nodal unknowns, F' is a vector that
accounts for the boundary conditions and where G contains terms arising from the
incompressibility constraint associated to h/h. More precisely, one can write :

(Ag> v)--

[ A, 0™ £ A0™ 4 AL/ AU g\
AU AL 4 AL £ ALUm| B
\ B(m) B 0 )
(30)

where the matrices A;(®, A5 and A3F/™ are "viscous" matrices arising re-
spectively from the rheology of the phases, the friction terms, and the momentum
exchange, and where B(®) stands for the incompressibility condition.

In the case of a linear system (n(,) = 1), the problem can be solved by applying
the Uzawa algorithm for decoupling the momentum equations and the incompress-
ibility constraint. To reduce the number of iterations up to convergence, the Uzawa
algorithm was modified by solving the saddle-point problem for the augmented La-
grangian function of the system (28) defined as

~

o 1, ~ ~ ~
L.(U,Q) = itUAU + 5rt(BU -~ G)BU-G)-"UF+BU-G)Q, (1)

10



where r 1s a constant [ROB 90, LIU 01]. Notice that the problem (31) can be generally
written into a linear system of equations:

t t 7 t
<A+]gBB §><¥>:<F+€;BG>' (32)

If the problem is non-linear, a Newton-Raphson method is used. To find the solution
of this linearized system, we apply the modified Uzawa algorithm used to solve the
linear problems. The general algorithm for the non-linear pressure-velocities prob-
lem combines the Newton-Raphson and Uzawa algorithms. Given r, n7 42, ENR, P
kmaz, €Uz, an arbitrary choice of P,,,.—; for Pand V,,,.—; for V:

Begin Newton-Raphson
repeat
Compute AP, , AV, :
APF=L
Begin Uzawa
repeat _
Compute AV” by solving the following equation:

(—8A(Y”T) +A(Vy,) +7'BB — —aF( ))A\/k
_ 0V OV
—(A(Vypy) + 'BB)V,,, — 'BP,,, + F(V,,,) + 'BG — "BAPF !
Then compute APF -
APE, — APE! 4 p(B(Vay + AVE,) — G)
k «— k:j— 1 _
until (|B(V,,- + AVE ) — G| < epz or k = kpaz)
End Uzawa _ B
Vnr+1 — Vnr + Avﬁr
Ppry1 «— Ppr + APZT
nr«—nr+1
until (HR(Vnra Pm")” < ENR OI T = NTmaz)
End Newton-Raphson
Vol Vv,
prtl Pnr

where nry,.., ENg are respectively the maximum number of iterations and the con-
vergence criterion, where k,,,, and ey 7 are respectively the maximum number of it-
erations and the convergence criterion of the Uzawa algorithm, and where 0 < p < 2r
is the Uzawa parameter. In practice, the components of the matrices and vectors of
the previous system are computed using a standard Gaussian quadrature integration
method [DHA 81, ZIE 00]. The solver of the matrix system given by combining the
Newton-Raphson and Uzawa algorithms is based on a biconjugate gradient algorithm.

11



4.3. Mass balance equation for the fiber phase and free surface transport

— The solution of the fiber volume fraction evolution equation (12) is obtained
trough a finite element discretization in space and a characteristic based method dis-
cretization in time. The variational formulation of the equation (12) reads V ¢* € X:

D) FH e R .
- v _|_ IVQ + _|__ =,
/ o* dQ divp /) FOgr g0 =0 (33)
o Dt 0 h

where f(F)7*1 s the solution of the fiber volume fraction field at time t"*! and ¢* a
test function defined in an appropriate space X. From (33), the characteristic method

. . . . . . f) n . . ..
is applied to approximate the material derivative % ) "1t consists in writing
the following finite difference scheme:

DW O™ _ FO @) — O (XM

ot with (34)

X" — @~ A"

where it is important to notice that X " is the first-order approximation of the position
of the particle at the time ", At = ¢"T! — t". Finding this position, which is called
the departure point (or the "foot") of the characteristic line, is the main difficulty of
the method. In the current application, an intersection method [FOU 02] is employed
to find this position. Notice that other approximation schemes based on higher orders
characteristic methods could be used [MAG 94, FOU 02, KAA 03]. The variational
formulation finally becomes V ¢* € X:

J

A standard Galerkin finite element scheme yields to a matrix global formulation,
which writes as

1+ At (divg(”"“ 4 %)

ﬂwﬂ@wm:/ﬂwﬁﬂwm.m>
Q)

(M(f)) (F(f)"+1) — (qj(f)) ’ (36)

where F(F)""" is the vector of nodal unknowns, M the mass matrix built on the left-
hand side integral of (35), and ¥(/) a vector based on the right-hand side integral
of (35). In this characteristic finite element formulation, quadratic P2 elements are
used. In practice the elements of these matrix M and vector ¥(/) are approximated
using Gaussian quadrature. More precisely, to compute U(/), the Gaussian quadrature
points of the elements have to be backtracked: the background elements that contain
the departure points of theses quadrature points have to be located. Then the scalar
values f(N)" (X n) at these departure points can be determined by interpolation from
the nodal values of the background elements at time ¢". Once the system is built, it is
solved using a conjugate gradient method.
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Figure 1. Reference geometries and boundary conditions used for the simulation ex-
amples 1 (a) and 2 (b).

— A numerical scheme which is identical to the previous one has been used to
compute x" 1. Therefore, introducing ¢* a test function defined in a appropriate
space Y, the variational formulation of equation (25) is :

/ Vet dQ = / (X", Vet ey 37)
9 Q

The characteristic Galerkin method yields the following matrix form of this problem:
(M(X)) (x" ) = (q;(x)) : (38)

with ¥t the vector of nodal unknowns, M) a mass matrix built on the left-hand
side of integral (37) and () a vector built on the right-hand side of (37). Simple
linear P1 elements are used in this discretization scheme. Here, the mixture velocity
0™ is used to determine the departure point X of the characteristic lines.

5. Numerical examples

The solver is implemented in Fortran 95 programming language and uses some
routines from the SLATEC mathematical library written in Fortran 77. This program
runs either on Windows or Unix systems. The meshes are computed following the
standard ".unv" norm available in ProEngineer or I-DEAS softwares. The meshes as
well as the input data are transmitted to the solver through a F95 interface. Results are
post-treated in Matlab interface. To illustrate the influence of material and process pa-
rameters on the segregation phenomenon, we have considered two different numerical
tests described below.

In the first example, the different phenomena arising at the beginning of a compres-
sion molding are analyzed, so that only the pressure-velocities sub-problem (SP1) is
considered. The simulation consists in submitting a rectangular sample of composite
of dimensions L x [ x h = 100 x 10 x 10 mm? in dimension to a plane strain com-

@)

pression deformation (Dé2 = 0) at a constant axial strain rate D:(,):O{) — D33 = h/h.

The sample has a uniform fiber volume fraction éf ),

13



A reference test is defined with the following parameters: fiber volume fraction

éf) = 0.2, fiber diameter d = 0.6 mm, viscosities fio(,,) = 0.055 MPa s and

771(7];) = 0.18 MPa s, power-law exponents 7n(,,) = 0.58 and n(y) = 0.44 [DUM 03],

permeability coefficient k* = 10, friction coefficients /@;?) = 0, and axial compres-
sion strain rate D33 = —0.1 s™!. Figure la displays the geometry, the boundary
conditions and the mesh used to perform the simulations. The various tests that are
carried out in the following are all based on this set of reference parameters and will
aim at revealing the influence of each parameter one by one. At last, in order to char-
acterize the fiber segregation phenomenon, a local segregation rate D, is defined

such as

Dseg =

() ] D) )
dive _ < ) f (39)

D33 D3s f(f) Dt

so that the higher D4, the higher the segregation phenomenon. On the contrary, an
one-phase behavior of the composite is observed when D, = 0.

Figure 2 shows the influence of the axial compression strain rate D33 on the fiber
segregation rate D, along the dimensionless X-coordinate x; /L of the sample for
various pairs n,,) and n ). It can be observed that the "contrast" between the rhe-
ology of the two phases plays a key role in the segregation phenomenon. In the case
where n(,,) # n(s, figures 2a and 2b depict that the segregation increases as the
axial compression strain rate decreases. This means that a large amount of matrix is
expelled from the fiber network. Conversely, for high strain rates, the mixture behaves
merely like an one-phase medium. The comparison of figures 2a with 2b underlines
the strong influence of An = n,,) — n(y): the segregation is high when the differ-
ence An is large. If An = 0, there is no influence of the axial strain rate (figures
2c¢). Figure 3a shows the strong influence of the parameter x* on the segregation rate
Dgeq. This latter parameter depends on the geometry of the microstructure of the fiber
network. Low values of x* are related to a low interaction between the two phases
of the mixture and to a two-phase behavior of the composite. On the contrary, for
high values of this parameter, the composite behaves merely as an one-phase medium:
the permeation of the polymer matrix through the fiber network is hindered. Figure

3b shows that fiber volume fraction f(gf ) also affects Dgeg. With the current set of
constitutive equations, more pronounced segregation phenomenon is observed when
the fiber volume fraction f(f) is high. Such an influence results from the competition
between the reinforcement of the fiber network and the increase of the interaction term
as f/) is increased: such result could not be easily intuited without a FEM simulation.

The second example consists in showing the evolution of segregation during the
filling of a channel. Thus, the whole two-phase problem (SP 1-2-3) is solved. The
sample is Ly x | x h = 170 x 50 x 10 mm? in dimension and is located on the side of
the rectangular mold, whose dimensions in (e;, e,) are Ly; X1 (Ly; = 500 mm). The
mesh and the boundary conditions are given in figure 1b. The reference parameters
are the same than those from the previous example except n(y) = n,,) = 1. Figure

4 shows the evolution of the fiber volume fraction f(/) along the z; coordinate of
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Figure 2. Influence of the strain rate D33 on the fiber segregation rate D, for vari-
ous pairs n,) and n(sy, L = 100 mm.

n_ =0.58

Figure 3. Influence of the permeability parameter x* (a) and the fiber volume fraction
£ (b) on the segregation rate D,.,.

the mold for three different time steps corresponding to three different positions of
the front of the mixture, respectively 200, 300 et 450 mm. Two compression molding
simulations have been carried out using two values of ji(,,): the reference one, i.e.
Ho(m) = 55000 Pa s that corresponds to the viscosity of SMC matrixes (figures 4a-4c),
and f19(,,) = 550 Pa s, corresponding to a very small viscosity of the matrix (figures
4d-4f). The figure brings up the following comments:

— At a given time, the evolution of the fiber volume fraction has a wavy form that
increases as the compression is pursued: at the core of the sample the fiber volume

fraction f(/) is higher than its initial value féf ) (fiber segregation), increases as x

increases up to a maximum value fg(zm, and finally decreases to values lower than

(gf ) near the flow front (matrix segregation).

— Fiber and matrix segregation phenomena are more pronounced when the contrast
between the matrix viscosity and the fibre network is higher: for 1(,,,) = 550 Pa s, an
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Figure 4. Fiber volume fraction profiles during the channel compression tests at var-
ious filling times and for two values of the matrix viscosities: iy(,,) = 55000 Pa s
(a-c) and pio(,m) = 550 Pas (d-f).

important segregation phenomenon is observed, whereas it is much lower for pg(,,) =
55000 Pa s, for which the composite behaves almost as an one-phase medium.

6. Conclusion

A two-phase model based on the mixture theory has been proposed to simulate the
segregation phenomenon arising during the compression molding of composites such
as SMC or GMT. These composites are seen as being formed by two interacting vis-
cous porous continuous media: the polymer matrix phase and the fiber network phase.
This model has been simplified to the case of a two-phase shell model, assuming a
plug flow for the two-phases of the composite. The model is restricted to isothermal
situations and has been implemented in a finite element software. A 2D character-
istic/FEM scheme with a moving free surface was developed. Numerical examples
given in the present work first illustrate the influence of parameters such as the axial
compression strain rate D33, the difference An = n,,) —n(y), the initial fiber volume
fraction f(f) and the permeation coefficient x* on the fiber segregation phenomenon
at the beginning of a compression stage. They also illustrate the complex fiber vol-
ume fraction f() profiles that can be expected during the compression molding of a
composite in a simple channel. Future efforts will focus on the comparison between
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the predictions of the two-phase model and results of experiments performed either on
SMC or GMT compounds.
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