
HAL Id: hal-01581628
https://hal.science/hal-01581628v1

Submitted on 4 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysing Selfishness Flooding with SEINE
Guido Lena Cota, Sonia Ben Mokhtar, Gabriele Gianini, Ernesto Damiani,

Julia Lawall, Gilles Muller, Lionel Brunie

To cite this version:
Guido Lena Cota, Sonia Ben Mokhtar, Gabriele Gianini, Ernesto Damiani, Julia Lawall, et al..
Analysing Selfishness Flooding with SEINE. The 47th IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN’17), Jun 2017, Denver, Colorado, United States. pp.603 - 614,
�10.1109/DSN.2017.51�. �hal-01581628�

https://hal.science/hal-01581628v1
https://hal.archives-ouvertes.fr

Analysing Selfishness Flooding with SEINE
Guido Lena Cota∗, Sonia Ben Mokhtar†, Gabriele Gianini∗, Ernesto Damiani∗§,

Julia Lawall‡, Gilles Muller‡, and Lionel Brunie†

∗Università degli Studi di Milano, †Université de Lyon, CNRS LIRIS INSA Lyon, ‡Sorbonne Universités/UPMC/Inria/LIP6,
§EBTIC/Khalifa University, Abu Dhabi, UAE

Abstract—Selfishness is one of the key problems that con-
fronts developers of cooperative distributed systems (e.g., file-
sharing networks, voluntary computing). It has the potential to
severely degrade system performance and to lead to instability
and failures. Current techniques for understanding the impact
of selfish behaviours and designing effective countermeasures
remain manual and time-consuming, requiring multi-domain
expertise. To overcome these difficulties, we propose SEINE,
a simulation framework for rapid modelling and evaluation of
selfish behaviours in a cooperative system. SEINE relies on a
domain-specific language (SEINE-L) for specifying selfishness
scenarios, and provides semi-automatic support for their imple-
mentation and study in a state-of-the-art simulator. We show
in this paper that (1) SEINE-L is expressive enough to specify
fifteen selfishness scenarios taken from the literature, (2) SEINE
is accurate in predicting the impact of selfishness compared
to real experiments, and (3) SEINE substantially reduces the
development effort compared to traditional manual approaches.

I. INTRODUCTION

Selfish behaviours are an inherent and critical problem of
cooperative distributed systems such as peer-to-peer (P2P),
grid and volunteer computing, and self-organising networks.
Such behaviours are performed by participants that benefit
from the system without contributing their fair share to it [13],
[14], [30]. An example of selfish behaviour in a P2P live
streaming system is to download a given video file without
sharing it with other nodes in order to save local bandwidth.
It has been measured that such behaviours may severely impact
system performance, causing a significant degradation of the
system’s reliability and efficiency [11], [18], [20]. For instance,
in the above-mentioned live streaming system, if 25% of nodes
free ride by not sharing the received video chunks, then half
of the remaining nodes receive a degraded stream [11].

In this context, understanding the impact that selfish be-
haviours have on the system performance is crucial to the
design of effective selfishness countermeasures. However, this
can be done only by modelling and injecting selfish behaviours
into the system under consideration, which is a non-trivial
task. Indeed, to carry out this task, the system designer has
to first analyse the functional specification of the considered
system and identify those steps (e.g., functions) for which
selfish nodes may behave in a non-cooperative way. Then, for
each of the identified steps, the designer has to decide what
are the possible selfish behaviours that are meaningful in the
context of her application and implement the corresponding
behaviours. Finally, the designer has to invest considerable

effort in experiments to assess the impact of the introduced
behaviours on the performance of the system.

For the purpose of these experiments, a designer can rely
on frameworks for developing and evaluating real distributed
systems [16], [19] or simulations of such systems [2], [27].
However, existing frameworks do not provide any specific
support for modelling and injecting selfishness, which has to
be done manually. In practice, the designer hard codes both
the control and logic of selfish behaviours into the parts of the
system implementation that are affected by those behaviours.
This activity typically results in generating variant implemen-
tations of the same system (i.e., one for each node behaviour),
or in creating a single implementation that incorporates all the
possible behaviours as well as the algorithmic functionalities
for their control (e.g., variables, if-clauses). The increased
complexity and redundancy of the source code reduce its
readability and maintainability. Finally, once a system imple-
mentation is available, the designer usually proceeds with an
extensive experimental campaign to quantify the harm caused
by various manifestations of different proportions of selfish
behaviours. To the best of our knowledge, such a domain-
specific evaluation has to be conducted manually by the system
designer, which is tedious and time-consuming.

In order to help system designers in this task, we propose
SEINE, a framework for modelling various types of selfish
behaviours in a given system and automatically understanding
their impact on the system performance through simulations.
SEINE relies on a Domain-Specific Language (DSL), called
SEINE-L, for describing the behaviour of selfish nodes, along
with an annotation library to associate such specifications
with a system implementation for the state-of-the-art simulator
PeerSim [27]. To design SEINE-L, we have conducted a
domain analysis on state-of-the-art papers related to building
selfish-resilient systems. SEINE-L provides a unified semantics
for defining selfishness scenarios, which allow describing ca-
pabilities, interests and behaviours of different types of nodes
participating in the system. The SEINE framework provides
a compiler and the run-time system supporting the automatic
and systematic evaluation of different selfishness scenarios in
the PeerSim simulation framework. Simulations return a set of
statistics on the behaviour of the system when in the presence
of the specified types of selfish nodes.

The use of the SEINE framework supports a clear separation
of selfishness concerns from the main logic of a cooper-
ative distributed system. This separation improves overall

maintainability, reuse, and reproducibility of both the system
implementation and experiments. Particularly, the SEINE-L
specification allows system designers to describe and easily
compare the same experimental conditions in different ver-
sions of the same cooperative system.

Overall, the present work makes the following contributions:
• We present the design of SEINE-L by conducting an anal-

ysis of 15 state-of-the-art papers related to the subject. We
evaluate the expressiveness of the language by showing
that SEINE-L can capture the semantics of the 38 selfish
behaviours described in the papers analysed.

• We assess the impact of a selfishness scenario in a Peer-
Sim simulation. Through the evaluation of three complete
use cases, namely, a gossip-based dissemination protocol,
a live streaming protocol (i.e., BAR Gossip [20]) and a
file sharing system (i.e., BitTorrent [5], [22]), we show
that the simulations enabled by SEINE are accurate with
respect to real measurements performed on these systems.

• We show that SEINE facilitates a substantial reduction
in the effort required to model, code, and evaluate selfish
behaviours in a given system. First, we evaluate the effort
quantitatively, showing that the number of lines of code
required for assessing different selfishness scenarios in
the three use cases using SEINE is almost an order of
magnitude lower than the one required by their manual
implementation. Then, we present a qualitative evalua-
tion discussing the ease of use of SEINE in the rapid
development and test of different selfishness scenarios.

The remainder of the paper is organised as follows. Sec-
tion II introduces background information on selfishness in
cooperative systems and Section III presents an exhaustive
analysis of the literature on the subject. Section IV provides
an overview of SEINE, followed by a detailed description of
its components: the DSL for modelling a selfishness scenario
(Section V) and the support tools for injecting it into a PeerSim
simulation (Section VI). Section VII presents a performance
evaluation of SEINE. Section VIII reviews related work.
Finally, the paper concludes in Section IX.

II. BACKGROUND

A cooperative system is a complex distributed system that
relies on voluntary resource contributions from its participants
to perform the system function. File sharing systems (e.g.,
Gnutella [14], eDonkey [13], BitTorrent [5]) are the most
widespread and well-known examples of cooperative systems.
Other examples include cooperative distributed computing [1],
[17], self-organizing wireless networks [24], [25], [35], anony-
mous communication protocols [29], and many others [3], [6],
[10]. Most cooperative systems are characterised by untrusted
autonomous individuals with their own objectives — that are
not necessarily aligned with the system’s objectives — and
full control over the device that they use to interact with the
system [26]. In this context, a selfish node is an autonomous,
strategic and self-interested individual that cooperates with
other nodes only if such behaviour increases its local benefits.
In practice, a selfish node may choose to stop behaving

PROPOSE

S R R

PROPOSE

SERVE

REQUEST

R

(a) (b) (c)

PROPOSE

SERVE

PROPOSE

SERVE

REQUESTREQUEST

R1

(d)

PROPOSE

×

× SERVE

REQUEST

Fig. 1: Selfishness manifestations in gossip-based live streaming
dissemination [11].

cooperatively if one or more of the following conditions occur:
(i) the cost of contributing resources to other nodes outweighs
the benefits received from the system; (ii) the system does not
impose punishments for selfish behaviours, or the punishment
is not fast, certain and painful enough to be credible; (iii) there
are economic or social reasons for cooperating only with a
restricted group of nodes; (iv) the node suffers from persistent
resource shortages, due for example to hardware or software
limitations of the device that hosts the node (e.g., battery-
powered devices).

Selfish behaviours have been observed in many cooperative
systems and may have multiple manifestations [14], [29],
[30], [35]. For instance, let us consider the gossip-based live
streaming system described by Guerraoui et al. [11], consisting
of a source node that disseminates video chunks to a set
of nodes over a P2P network. Figure 1(a) represents the
simplified interaction protocol between nodes participating
in this system: a node S periodically sends a PROPOSE

message containing the video chunks it has received to a
set of randomly chosen partners (R), and asks them to reply
with a REQUEST message that indicates the chunks they are
missing. Finally, S delivers the requested chunks with a SERVE
message.

If S is selfish, it may decide to save its bandwidth con-
sumption by reducing the number of chunks R would request.
To this end, S can provide false information to R, proposing
fewer chunks than it currently has available (see Figure 1(b)).
Another strategy for the selfish node S to reduce its bandwidth
consumption is to not serve all the requested chunks, but only
a subset of them. In the extreme, S serves no chunks (see
Figure 1(c)). Guerraoui et al. demonstrated experimentally
that if 25% of nodes make deviations like those in (b-c),
then the fraction of cooperative nodes that are not able to
view a clear stream reaches up to 50%. Lastly, Guerraoui et
al. considered the possibility of collusion among nodes. For
example, in Figure 1(d) S does not start the dissemination
protocol with nodes outside its colluding group (R1 in the
figure), so as to dedicate more bandwidth to exchanging data
with its colluders. Experiments have shown that a colluder
can decrease its contribution up to 15% without suffering any
performance degradation [11].

The examples above describe various manifestations of
selfishness in a particular system and the impact they have

Selfish deviation type a

Reference Domain D F M C O

Ben Mokhtar et al. [3] Data Distribution
√

× ×
√

×
Ben Mokhtar et al. [4] Data Distribution

√ √
× × ×

Guerraoui et al. [11] Data Distribution ×
√ √ √

×
Hughes et al. [14] Data Distribution

√
× × × ×

Li et al. [20] Data Distribution ×
√ √ √

×
Lian et al. [21] Data Distribution × × ×

√
×

Locher et al. [22] Data Distribution
√

×
√

×
√

Piatek et al. [32] Data Distribution ×
√

×
√

×
Sirivianos et al. [34] Data Distribution

√
×

√
× ×

Anderson et al. [1] Computing ×
√

×
√

×
Kwok et al. [17] Computing ×

√ √
× ×

Cox and Noble [6] Backup & Storage ×
√

× × ×
Gramaglia et al. [10] Backup & Storage

√
× × × ×

Mei and Stefa [24] Networking
√ √

× × ×
Ngan et al. [29] Anonym. Comm.

√ √
× × ×

a D: defection , F: free ride, M: misreport, C: collusion, O: other types.

TABLE I: The papers reviewed for the domain analysis, with informa-
tion about their application domain and the selfishness investigated.

on its performance. To help a designer assess the impact of
selfishness on any cooperative system, we start by presenting,
in the following section, a unified model for selfish behaviours
resulting from an extensive analysis of state-of-the-art works
on this topic.

III. DOMAIN ANALYSIS

To gather domain knowledge on the problem of selfishness
in cooperative systems, we performed a systematic analysis
of the problem domain. Our goal is to identify possible
commonalities in the motivations and executions of such
behaviours, so as to build a domain-specific terminology and
semantics for their representation and understanding.

Given the vast body of literature on the subject, we selected
as inputs of the domain analysis 15 state-of-the-art papers that
are of particular interest to the research community and that
provide detailed descriptions of concrete selfish behaviours.
Table I lists the selected papers and reports some of their
relevant aspects, namely, the application domain of the target
system (e.g., data distribution, distributed computing, net-
working) and other information to characterise the selfishness
manifestation therein investigated. The output of our analysis
is a model for the specification of selfishness scenarios in
cooperative systems, whose formal representation is given
by the feature diagram in Figure 2.1 A selfishness scenario
consists of a non-empty set of node models, which describe
interests and capabilities of types of nodes, and a set of
selfishness models, which describe selfish behaviours. We
present each of these components below.

1) Node model: The participants of a cooperative system
constitute a heterogeneous population both in their personal
interests and capabilities. A node model describes a type
of participant in the system and specifies their interests and
capabilities in terms of resources. A resource is a physical or

1The feature diagram in the figure is a cardinality-based extension of the
FODA notation [7].

Actor Selfish Behaviour

DeviationActivation Rule

Resource Capability

[1..*] [1..*][0..*][1..*]

[0..*][1..*]

[1..*]

SELFISHNESS SCENARIOSELFISHNESS SCENARIO

Node ModelNode Model Selfishness ModelSelfishness Model

Fig. 2: Feature diagram of a selfishness scenario.

logical commodity that increases the personal utility of the
nodes that possess it. A physical resource represent a node’s
capacity, such as bandwidth, CPU power, storage space, or
energy. A logical resource can be a high-level and application-
specific service offered by the cooperative system (e.g., file-
sharing, message routing), or the incentive created by a coop-
eration enforcement mechanism (e.g., money, level of trust).
The capability of a node defines a constraint over a resource.
For example, mobile nodes usually have lower communication
and computation capabilities than desktop nodes, which can be
expressed as a stricter constraint on the bandwidth and CPU
resource, respectively.

2) Selfishness model: A node can be the actor of one or
more selfish behaviours. In a selfishness model, a behaviour
is described as the implementation of a non-empty set of
deviations from the intended execution of protocols in the
cooperative system. We define a deviation point as the step of a
system protocol in which a deviation may take place. The wide
range of motivations behind selfish behaviours, as well as the
application-specific nature of their implementation, generates
a tremendous number of possible deviations for any given
cooperative behaviour. Nevertheless, based on our review of
the available literature, we could identify four recurring types
of deviations, named defection, free-riding, misreporting, and
collusion. As shown in the last columns of Table I, these types
match almost all the selfish behaviours analysed in our review.
The only exception is the rarest-first policy for requesting
file pieces, which is very specific to the implementation of
BitTorrent [22].

A defection is an intentional omission in the execution
of a system protocol. A selfish node performs a defection
to stop the protocol execution, so as to prevent requesters
from consuming or even asking for its resources. Free-riding
is a reduction in the amount of resources contributed by a
node without stopping the protocol execution. The literature
on cooperative systems offers other definitions of free riding,
such as the complete lack of contribution [22], [29], [34],
or downloading more data than what is uploaded [14]. Our
definition is more general because it applies to any resource,
and it is more precise because it can be clearly distinguished
from deviations that achieve a similar result by stopping the
system protocols. A misreport consists in the communication
of false or inaccurate information, to avoid contribution or
gain better access to resources. Finally, a collusion is the
coordinated execution of a selfish behaviour by a group of

Simulation
Config.

Simulation
Config.CC

 PeerSim

AnnotationsAnnotations SSPeerSimSSPeerSim

Selfishness Scenario GeneratorSelfishness Scenario GeneratorSEINE

SEINE-L CompilerSEINE-L Compiler

C*C*

Selfishness
Scenario
Selfishness
Scenario SSInput

Output Experiment results (selfishness scenario evaluation)Experiment results (selfishness scenario evaluation)

Config. ManagerConfig. Manager

PeerSim
Protocol

PeerSim
ProtocolPP

Run-Time PeerSim

Fig. 3: Overview of the SEINE framework.

nodes that act together to increase their benefits. Collusions
are more difficult to detect than individual deviations [3], [11],
because colluders can reciprocally hide their misbehaviours.
Examples of misreporting and collusion have been discussed
in the previous section and shown in Figure 1(b) and (d).

In the selfishness model, the activation rule describes the
conditions that motivate a node to start behaving selfishly.
Examples of activation rules are exceeding a threshold amount
of resource consumption or the delivery of a service (e.g., a
file download). Another typical situation consists in providing
false information to a monitoring mechanism to cover up
previous deviations. Thus, a selfish behaviour may be the
activator of other selfish behaviours.

IV. SEINE OVERVIEW

The SEINE framework aims to help cooperative system
designers to evaluate the impact of selfish behaviours on the
system performance. The framework builds on the lessons
learnt from the domain analysis presented in Section III,
providing designers with modelling and simulation tools to
describe and experiment with selfishness scenarios in a given
system. SEINE relies on the PeerSim open-source simulator
for large-scale distributed systems [27]. The results of the
simulation experiments are the output of SEINE.

Figure 3 provides an overview of the SEINE framework. To
begin, the system designer (hereafter “Designer”, for brevity)
produces the input files required by the framework, namely,
a selfishness scenario (S in the figure) specified using the
SEINE-L DSL, a configuration file to set up the simulation
(C), and a Java implementation of the protocols underlying
the system (P). The clear separation between selfishness and
implementation concerns facilitates maintenance and reuse of
the S and P artefacts. To associate the DSL declarations to the
affected protocol implementation components (e.g., classes,
variables, methods), the Designer decorates such components
using a library of Annotations provided by the SEINE frame-
work.

Upon creating all the input files, the Designer uses SEINE
to study the behaviour of the system defined by C and P when
faced with the selfishness scenario described in S. First, the
SEINE-L Compiler generates the configuration file C*, which
extends C with instructions for injecting selfish behaviours into
P as well as for monitoring the system performance. Second,

SEINE calls the Configuration Manager included in the Peer-
Sim library to build the experiment at run-time via reading C*
and instantiating the specified simulation components. These
components are Java classes that implement (i) the nodes that
compose the network, (ii) the set of protocols hosted by each
node (including P), (iii) the observers that monitor or modify
the behaviour of the simulated system, and (iv) the Selfishness
Scenario Generator that injects the selfishness scenario into
the simulation run-time. In particular, the Selfishness Scenario
Generator uses Aspect-Oriented Programming techniques [8]
and relies on a library of Java classes (SSPeerSim, in Figure 3)
to interact with the PeerSim simulator. Finally, the SEINE
framework presents the results of the simulation as a collection
of statistics describing the behaviour of the simulated cooper-
ative system for the given selfishness scenario.

V. MODELLING SELFISHNESS IN SEINE-L

SEINE-L provides a clear and concise description of the
capabilities, interests and behaviours of different classes of
nodes participating in the protocols of a cooperative system.
The semantics of the DSL builds on the domain analysis
presented in Section III, while its syntax is based on Java
property files, i.e., collections of pairs associating a property
name to a property value.

Figure 4 illustrates the outline of a SEINE-L program.
The entry point is the keyword seine followed by a dot
and the name of the selfishness scenario. Then, the DSL
provides five top-level language constructs: resources of in-
terest, indicators of the system state, node models, selfish-
ness models, and observers to monitor the system behaviour.
The declarations of the first four constructs have the format
keyword.[construct_name], whereas the observers are
defined inside a block of statements in curly braces.

seine.[selfishness_scenario_name] {

 resource.[r1_name]
 ...

 indicator.[i1_name]
 ...

 node.[n1_name] { ... }
 ...

 selfishness.[s1_name] { ... }
 ...

 observers { ... }

}

Fig. 4: The outline of a SEINE-L specification.

We illustrate the usage of the SEINE-L constructs by de-
scribing in detail the specification of a selfishness scenario
for the live streaming system presented in Section II and
originally described by Guerraoui et al. [11]. Listing 1 shows
the SEINE-L specification of this scenario, called LSS, which
we refer to in the remainder of this section. In LSS, a node
can be either mobile or desktop, depending on its device
type (lines 6-11). The scenario shows that mobile nodes have
severely constrained resources, and, particularly, their upload
bandwidth capacity is half of the desktops’ capacity (line 9).
The selfish behaviours declared in the LSS example are based
on those illustrated in Figure 1, which aim to reduce the

1 # Three-phase gossip-based live streaming
2 seine.LSS {
3 resource.bwCapacity uniform(1000) # kbps
4 indicator.batteryLeft

6 node.mobile {
7 fraction 0.3
8 selfish 0.5
9 capability bwCapacity(500)

10 }
11 node.desktop { selfish 0.1 }
12 node.exclude 0 # the source of the streaming

14 selfishness.smMobile {
15 actor mobile(0.8)
16 behaviour.bhvAggressive {
17 activation batteryLeft < 30
18 freeriding { degree 0.8 on send_SERVE }
19 }
20 behaviour.bhvWeak {
21 freeriding { degree 0.3 on send_SERVE }
22 misreport { degree 0.3 on send_PROPOSE }
23 }
24 }
25 selfishness.smColluders {
26 actor desktop mobile(0.2)
27 behaviour.bhvCollusive {
28 collusion.probability 0.15
29 }
30 }
31 observers {
32 period 100
33 name package.path.LSSObserver
34 }
35 }

Listing 1: A SEINE-L specification of a selfishness scenario
for the live streaming system described in [11]. Keywords are
shown in bold.

bandwidth dedicated to other nodes (lines 14-24 in Listing 1)
or to non-colluders (lines 25-30).

1) Comments: Comments begin with # and continue to the
end of the line, as illustrated in lines 1, 3, and 12.

2) Resources: The keyword resource introduces the dec-
laration of a physical or logical resource. The declared re-
sources must be associated with a value, which can function
as an indicator of its current state. Line 3 of the LSS scenario
declares the bwCapacity resource, which refers to the upload
bandwidth capacity of nodes. A resource declaration can also
provide instructions to initialize its values. In our example,
all nodes are initialised with the same upload capacity (mode
uniform) of 1000 kbps. SEINE-L allows other two initialisa-
tion modes: random and linear (i.e., a linearly increasing
distribution of values within a specified range).

3) Indicators: An indicator declaration specifies a quan-
tifiable attribute of either the system or a node type that
depends upon its current state. For instance, the batteryLeft
indicator in line 4 of Listing 1 can be used to guard the battery
level of mobile nodes. Indicators cannot be initialised within
a SEINE-L program.

4) Node model: Each node model is declared using the
node keyword followed by a name and a block of properties
delimited by curly braces. The LSS scenario declares mobile
and desktop nodes, respectively, in lines 6-10 and line 11. The
properties that can characterise a node model are listed below:

• fraction is the proportion of nodes in the system that
hold this node model. If omitted, the fraction is set evenly
by the preprocessor so that all node fractions sum up to
1. For instance, desktop nodes in the considered scenario
will have the fraction set to 0.7.

• selfish is the fraction of selfish nodes within this node
model. The default value is 1, i.e., all nodes holding this
model are selfish.

• capability is a list of constraints over the values
of the declared resources. Line 9 of the LSS scenario,
for example, halves the upload bandwidth capacity of
mobile peers, to 500 kbps. The DSL syntax prevents
the definition of capabilities on resources that are not
specified in the program.

There might be reasons to exclude a given set of nodes from
the scope of the selfishness scenario, for instance because they
represent special devices or trusted parties. In SEINE-L, this
can be achieved using the node.exclude keywords followed
by the identifiers (i.e., integers) of the nodes to exclude. As
an example, line 12 of Listing 1 excludes the first node from
the LSS scenario, because it represents the streaming source,
which is assumed to be always cooperative.

5) Selfishness model: The selfishness declaration spec-
ifies the selfish behaviours adopted by a certain configuration
of nodes. Such a configuration is expressed by the actor

keyword followed by a list of terms, each defining the fraction
of nodes of a given model to associate with the selfishness
under specification. In Listing 1, the selfish behaviours of the
LSS scenario described above are grouped into two selfishness
declarations, namely, smMobile and smColluders. The actors
of the smMobile model are defined in line 15 as 80% of the
selfish population of the mobile nodes. In practice, given that
15% of nodes in the live streaming system were described in
lines 7-8 as selfish mobile nodes (i.e., 50% of 30% of the
overall population), the percentage of nodes that adopt the
smMobile selfishness model is 12%. Notice that in the actor

declaration in line 26 in Listing 1, the fraction of desktop
nodes is not specified. In this case, the default value is 1,
which means that all selfish desktop nodes are actors of the
smColluders model.

Each selfish behaviour that constitutes a selfishness model
is described by a behaviour declaration. A behaviour is
a list of selfish deviations from the correct execution of a
system protocol; such deviations are strategically interrelated
and triggered by the same activation rule, which is introduced
in SEINE-L by the activation keyword. An activation rule
defines a condition (e.g., greater than or equal to) over the
current value of a resource or indicator declared in the selfish-
ness scenario. The LSS specification, for example, indicates in
line 17 that every mobile node with a smMobile selfishness
model switches to a more aggressive behaviour to reduce
bandwidth consumption when it is running out of battery (i.e.,
the battery level drops below 30%). In contrast, if no activation
rule is specified, then the selfish behaviour is always triggered.
This is the case of the bhvWeak (lines 20-23) and bhvCollusive
(lines 27-29) behaviours. Support for the specification of

logical expressions to combine multiple activation rules is left
to future work.

A selfish behaviour specifies a non-empty set of devia-
tions from the correct execution of certain steps (deviation
points) of the system protocols. The SEINE-L syntax allows
to declare five types of deviations, based on the classifi-
cation developed from the domain analysis. Each deviation
type is introduced by its own keyword, namely, defection,
freeriding (free-riding is also accepted), misreport,
collusion, and other, if none of the previous types applies.
The execution of a deviation can be further characterised by
the following additional properties of the deviation declaration:

• probability indicates the probability to deviate if the
activation rule of the corresponding behaviour is met. The
default value is 1.

• on constrains the possible deviation points of a devia-
tion. For instance, in the free-riding declaration of the
bhvAggressive behaviour (line 18), the on property ties
the execution of this deviation to the deviation point
named send SERVE (see Figure 1(c)). Multiple deviation
points can be listed as illustrated below, separated by
whitespace.

on send_PROPOSE send_REQUEST send_SERVE

SEINE-L also allows specifying the steps of a system
protocol execution in which the deviation cannot take
place, by preceding the name of a deviation point with an
exclamation mark. For instance, the code fragment below
specifies a free-riding deviation that affects all deviation
points except the one named send SERVE.

freeriding { on !send_SERVE }

• degree is a real value between 0 and 1 that specifies the
intensity of free riding and misreport deviations (default
value 1). In particular, the degree quantifies the reduction
in the amount of resources contributed by a node in the
case of a free-riding deviation, and the reduction in the
reliability of the information provided in the case of a
misreport deviation.

Different deviations of the same type may affect the same
deviation points. For instance, in the LSS scenario, the sm-
Mobile model includes two behaviours that specify a free-
riding deviation on the send SERVE deviation point. Note
that if the value of the batteryLeft indicator is below 30%,
then both behaviours are active. These conflicts are resolved
by triggering the first deviation in order of appearance in
the program. The development of more sophisticated conflict
resolution strategies is another area of future study.

To conclude, SEINE-L also allows a compact declaration
for deviations with only one property, that is, the declaration
used in line 28 of Listing 1.

6) Observers: The language constructs presented so far
focus on the description of a selfishness scenario. In addition,
SEINE-L provides a means to set-up monitoring components
for assessing the performance of a cooperative system under
that scenario. This can be done using the observers decla-
ration. In practice, an observer is a Java object that collects

statistics on the system performance during its simulation with
PeerSim (see Section VI for more details). The observers

declaration specifies the full class names of each observer ob-
ject to enable, as well as the period between two monitoring
events in terms of simulated seconds (the default value is 100).
For instance, the LSS scenario sets up the periodic execution
of the LSSObserver object every 100 simulated seconds. This
can also be specified using the compact form below.

observers.name package.path.LSSObserver

VI. INJECTING SELFISHNESS IN PEERSIM USING SEINE

The SEINE framework comprises the PeerSim simula-
tor [27], a library of annotations for linking the SEINE-L
specification of a selfishness scenario to the source code of
PeerSim protocols, a compiler for SEINE-L, and a generator
of simulation components for modelling, executing and mon-
itoring a selfishness scenario in PeerSim. In the remainder of
this section, we present each of the novel tools developed for
SEINE.

A. Library of Annotations

Annotations are the means to link a selfishness scenario
for a given system to the concrete implementation of that
system, i.e., a set of PeerSim protocols. More precisely, the
Designer can associate declarations of a SEINE-L specifica-
tion to the affected program elements (e.g., classes, fields,
methods) by decorating an element definition with annota-
tions. This operation requires small and simple modifications
of the original code. The SEINE framework provides eight
types of annotation. @Seine decorates the declaration of
each class implementing a PeerSim protocol to associate with
the SEINE-L specification. In other words, it specifies which
protocols are affected by the selfishness scenario. @Resource
and @Indicator declare a field modelling a resource or
indicator in SEINE-L, respectively.

The remaining annotation types allow indicating deviation
points in PeerSim protocols. Concretely, a deviation point is
the Java method that implements the part of the protocol
behaviour in which one or more deviations may take place.
These annotations are named after their deviation type (i.e.,
@Defection, @Freeriding, @Misreport, @Collusion,
and @OtherDeviation) and target method declarations. As
an example, let Listing 2 be a fragment of the PeerSim
implementation of the live streaming system to experiment
with the LSS selfishness scenario presented in Section V. The
annotations in lines 4 and 8 indicate the default deviation
points for any declarations of the corresponding deviation
type provided in LSS. For instance, the collusion deviation
in line 28 in Listing 1 is implicitly associated with any
method that has been annotated with @Collusion, such as
send_PROPOSE in Listing 2.

The annotations to indicate deviation points can have dif-
ferent attributes, depending on the deviation type that it repre-
sents. For instance, the @Collusion annotation in Listing 2
(line 4) specifies the attribute ref_arg, which indicates what
argument of the send PROPOSE method is the reference to

1 @Seine
2 public class LSS {
3 ...
4 @Misreport @Collusion(ref_arg = 1)
5 public void send_PROPOSE
6 (List cnksId, LiveStreaming req) { ... }
7 ...
8 @Freeriding
9 public void send_SERVE

10 (List cnks, LiveStreaming req) { ... }
11 }

Listing 2: A fragment of the PeerSim protocol implementing
the system to associate with the LSS scenario in Listing 1.

the protocol instance that might be run by a potential colluder.
This is the first argument by default. The same attribute is also
supported by the @Freeriding and @Misreport annotation
types, identifying the argument of the deviation point that
may be affected by the deviation. For instance, the free riding
annotation in line 8 of Listing 2 can modify the value of the
list of chunks cnks to deliver to the requester req. For reasons
of space, an exhaustive overview of all annotation attributes
is beyond the scope of this paper.

B. SEINE-L Compiler

As shown in Figure 3, the SEINE-L compiler performs a
source-to-source transformation of the SEINE-L specification
(S, in the figure) into the PeerSim configuration file format.

The SEINE-L compiler performs statically various consis-
tency checks on the selfishness scenario specification. Due to
the declarative nature of the DSL, it is possible to verify the
consistency of a specification with respect to the following
properties: no omission (i.e., each referenced construct must
be declared), no double declaration, correctness of the node
model distribution (i.e., the proportions of the declared node
models must sum to 1), and of the selfishness model distri-
bution (i.e., for each node model, the proportions of selfish
nodes adopting a selfishness model must sum to 1). If any of
these properties is not fulfilled, then the compiler reports the
error and stops.

In addition to the detection of errors in the SEINE-L
specification, the SEINE-L compiler can also verify whether
there are inconsistencies in the association between the DSL
program and the annotated PeerSim protocol. More precisely,
it verifies that (i) the protocol class is decorated with the
@Seine annotation, (ii) for each resource and indicator in the
specification there exists a class field with the same name
that has been properly annotated, and (iii) for each deviation
point explicitly defined in a deviation declaration (using the
on property) there exists a method declaration with the same
name that has been consistently annotated.

C. Selfishness scenario generation

The configuration file generated by the SEINE-L compiler
enables the Configuration Manager of the PeerSim simulator
to initialise the native simulation objects (e.g., nodes, pro-
tocols, monitors) as well as the selfishness scenario objects
(e.g., resources, node models, deviations). Specifically, each

language construct of the SEINE-L syntax is implemented in
a Java class in the SSPeerSim Java library, which is included
in the SEINE framework.

At run time, the Configuration Manager gives instructions to
the Selfishness Scenario Generator to properly instantiate the
classes in SSPeerSim so as to generate the objects that support
the simulation of the selfishness scenario. Also, the Selfish-
ness Scenario Generator uses Aspect-Oriented Programming
(AOP) [8] techniques to modify the execution of the PeerSim
protocol components that have been annotated by the Designer,
in such a way as to inject selfish behaviours and node model
capabilities. For coherence with the SEINE and PeerSim
frameworks, both written in Java, we chose AspectJ [15] as the
aspect-oriented language. In AspectJ, cross-cutting behaviours
are described in class-like modules, called aspects. An aspect
includes advice constructs for describing code to be inserted
at given locations (joinpoints) of a standard Java program.
Such locations are specified by pointcut constructs. Advice
can insert the code before or after such locations, or it
can replace existing code (around advice). The Selfishness
Scenario Generator includes the aspects listed below.

• SeineProtocolAspect can extend PeerSim protocol
classes by adding fields for storing selfishness-related
information (e.g., the name of the node model imple-
mented, the selfish behaviours that can be performed) as
well as methods for behaving according to the selfishness
scenario provided. The pointcut of this aspect intercepts
all the classes decorated with the @Seine annotation.

• ResourceIndicatorAspect replaces getters/setters of
the fields decorated with @Resource and @Indicator

annotation types with a new implementation that (i)
checks the fulfilment of each activation condition that
may trigger a selfish behaviour, and, only for resources,
(ii) constrains the values to the range specified by a
capability condition.

• SelfishInjectionAspect specifies the advice that
replaces the correct implementation of an annotated devi-
ation point with that of a selfish deviation. More precisely,
first it checks whether the deviation can take place,
by verifying that the node executing the method can
perform a deviation of that type and that the deviation
is currently activated. If these conditions are verified,
then the deviation implemented in the advice can be
executed; otherwise, the execution proceeds according to
the reference implementation.

The code snippet in Listing 3 illustrates the integration
of deviation code by the SelfishInjectionAspect into
the send SERVE method. According to the LSS selfishness
scenario presented in Listing 1, this method is a deviation
point only for selfish mobile nodes that adopt the smMobile
selfishness model, i.e., 12% of the overall system population
(see Section V).

Another type of simulation component instantiated by the
Selfishness Scenario Generator is the set of observers that
monitor and gather statistics on the system performance. The

1 @Freeriding
2 public void send_SERVE(...) {
3 /** SelfishInjectionAspect advice */
4 boolean can_deviate = /* Verification */ ;
5 if(can_deviate) {
6 /* Execution of the deviation code */
7 }
8 /** End of SelfishInjectionAspect advice */

10 /* reference method implementation */ ...
11 }

Listing 3: A code fragment representing code injection into the
send SERVE method.

SEINE framework aids the Designer in creating application
domain-specific observers, by providing in the SSPeerSim
library an abstract class that defines the methods that need to
be implemented. The execution of the Designer’s observers is
coordinated by a configurable controller that is automatically
operated by the Selfishness Scenario Generator. The set-up of
the controller is specified by the observers declaration of
the SEINE-L program (see Section V).

D. SEINE Implementation

All tools and components in SEINE are written in Java.
The entire implementation consists of almost 4000 lines of
code, not including third-party components (i.e., the PeerSim
simulator) and automatically generated code (i.e., the SEINE-L
parser, built using ANTLR [31]). We developed the SEINE
framework in a modular and loosely coupled manner, which
promotes extensibility and reuse of its core components. For
example, the interaction with the PeerSim simulator is imple-
mented in a separate and independent module (the SSPeerSim
library), which is less than 25% of the entire source code.

VII. EVALUATION

In this section, we demonstrate the benefits of using SEINE
to describe selfish behaviours and evaluate their impact on
cooperative systems. We start by assessing the generality and
expressiveness of the SEINE-L language by outlining some
of our experiences in describing selfishness scenarios with
our DSL. Then, we evaluate the accuracy of the SEINE
output, developing and testing three use cases selected from
our literature review, namely, a gossip-based live streaming
protocol, a selfish-resilient media streaming protocol, and a
selfish client for the BitTorrent protocol. Also, we assess the
effort required by a Designer to implement and test the use
cases. Finally, we show that SEINE imposes a small time
overhead on the normal execution of the PeerSim simulator.

The SEINE framework is available, publicly and freely, at
http://glenacota.github.io/seine/. To facilitate the reproducibil-
ity of our results, the configuration files related to the ex-
periments reported in this section will also be available for
download on the project website.

A. Generality and expressiveness of SEINE-L

We have used SEINE-L to express all of the selfishness
scenarios described in the studies reviewed for the domain

analysis (see Section III). Many of these works present various
strategies to save bandwidth in data distribution applications,
such as Gnutella [14], BitTorrent [22], and PPLive [32]. Other
works investigate selfishness in different domains, like the
paper of Kwok et al. [17] that studies Grid computing systems,
and specifically the impact of task dispatching policies within
a Grid site that allocates resources only to local tasks. Overall,
the number and variety of the cooperative systems considered,
as well as the different degrees of complexity of the selfishness
scenarios therein described, demonstrate the general applica-
bility and the expressive power of SEINE-L.

Table II shows that SEINE-L files are concise: the selfishness
scenarios specified are between 14 and 38 Lines of Code
(LoC), with an average of 25 LoC.

Reference LoC Reference LoC

Ben Mokhtar et al. [3] 29 Sirivianos et al. [34] 24
Ben Mokhtar et al. [4] 34 Anderson et al. [1] 17
Kwok et al. [17] 24 Cox and Noble [6] 14
Guerraoui et al. [11] 25 Gramaglia et al. [10] 35
Hughes et al. [14] 19 Mei and Stefa [24] 28
Li et al. [20] 38 Ngan et al. [29] 30
Lian et al. [21] 17 Piatek et al. [32] 18
Locher et al. [22] 23

TABLE II: Lines of Code for expressing the selfishness scenarios of
the papers considered in the domain analysis review.

B. Accuracy of SEINE-R

To validate the accuracy of SEINE, we compared the results
produced by our framework with those published in three use
cases selected from the literature review. We discuss each use
case separately below.

1) Live Streaming: We consider the gossip-based stream-
ing system presented by Guerraoui et al. [11] and already
described in Section V. Despite its simplicity, this system is
realistic enough to serve as a representative example of a prac-
tical live streaming application. Guerraoui et al. deployed the
system over PlanetLab,2 in which a source node streams video
chunks with a bit rate of 674kbps to 300 nodes having upload
bandwidth limited to 1000kbps. They tested one scenario with
only cooperative nodes and another scenario with a quarter
of the nodes being selfish, performing the selfish behaviours
described in Section II. To assess the system performance
in both scenarios, Guerraoui et al. considered the fraction of
cooperative nodes perceiving a clear stream (i.e., viewing at
least 99% of the streamed chunks) when varying the playout
deadline from 0 to 60 seconds.

We developed the gossip-based live streaming system as a
PeerSim protocol and we used SEINE to describe and simulate
the same selfishness scenario as well as the same experiment
setting as investigated by Guerraoui et al. [11]. We ran ten
simulations for each set of parameters, obtaining a fairly low
standard deviation (0.02 on average), and we used the mean
value to compare with the reference results. Figure 5 shows

2PlanetLab: https://www.planet-lab.org/

http://glenacota.github.io/seine/
https://www.planet-lab.org/

25% freeriders Guerraoui et al. [11]
25% freeriders SEINE

No freeriders Guerraoui et al. [11]
No freeriders SEINE

%
 n

od
es

 v
ie

w
in

g
a

cl
ea

r
st

re
am

Playout deadline (s)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Fig. 5: Comparison between the results published by Guerraoui et
al. [11] and the results obtained with SEINE.

the high level of accuracy of SEINE-R, with an almost perfect
match of the curves representing the scenario with selfish
nodes and a satisfactory correspondence also in the selfish-
free scenario.3 Note that in the latter scenario our results
show high accuracy when the playout deadline is above 7
seconds, whereas, below this time limit, SEINE simulations
indicated better results. This is mainly due to the lower, real-
world reliability of the PlanetLab network compared with the
perfect but simulated reliability of the PeerSim network.

2) BAR Gossip: Proposed by Li et al. [20], BAR Gossip
is a P2P live streaming system designed to tolerate both
Byzantine and selfish peers. To this end, BAR Gossip includes
mechanisms to enforce cooperation, namely, verifiable partner
selection and data exchange mechanisms that make non-
cooperative behaviours detectable and punishable. We select
this use case to show that SEINE can also be used as a tool
for testing performance and robustness of selfish-resilient pro-
tocols. For instance, BAR Gossip has been proven vulnerable
to colluding nodes [3], which exchange video chunks only
among each other, thereby decreasing the system efficiency
and particularly the streaming experience of non-colluding
nodes.

We assessed the accuracy of SEINE in reproducing the BAR
Gossip selfishness scenario that was presented and experimen-
tally studied by Ben Mokhtar et al. [3]. That study deployed
400 nodes in the Grid’5000 testbed,4 each node running either
a compliant version of BAR Gossip or a collusion-enabled
implementation. We developed BAR Gossip [20] in PeerSim
and set up its protocols using the configuration reported by Ben
Mokhtar et al. [3]. Then, we simulated the system when vary-
ing the proportion of colluding nodes, from 0 to 50, and we
measured the fraction of missed updates by cooperative nodes.
Again, we ran ten simulations for each setting, obtaining an
average standard deviation below 0.01. As clearly depicted in
Figure 6, the accuracy of the results output by SEINE-R with
respect to the ones provided by the authors of the reported
study is very high (0.996 Pearson correlation score). The gap
between the results when the proportion of colluders is above
50% is due to some missing parameters in the description of

3Our results are plotted over a copy of the figure published in [11].
4Grid’5000: https://www.grid5000.fr/

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

% of colluders

%
 o

f
m

is
se

d
up

da
te

s

Ben Mokhtar et al. [3]

SEINE

Fig. 6: Comparison between the results published by Ben Mokhtar
et al. [3] and the results obtained with SEINE.

the experiment setting, especially the maximum of chunks that
can be exchanged during the optimistic push protocol.

3) BitThief: Locher et al. [22] developed and released
software to download files in the BitTorrent protocol without
uploading any data. Specifically, they implemented and openly
distributed a selfish client, BitThief, capable of attaining fast
downloads without contributing. The purpose of this use case
is twofold. First, it shows the accuracy of SEINE on empirical
experiments performed on real-world applications. Second,
it proves the simplicity of using SEINE when a PeerSim
implementation of the system is already available. Specifically,
we used the BitTorrent code published on the PeerSim project
website.5

We used SEINE to reproduce the real world experiment
described by Locher et al. [22], which consists in monitoring
the download times for one torrent in a BitTorrent network
with 5% BitThief clients. BitThief exploits several features of
the BitTorrent protocol by means of a set of selfish deviations
from the default client implementation. For example, a Bit-
Thief client can open up to 500 connections with other peers
(the default value is 80), to increase its probability of receiving
useful file pieces. In their experiment, Locher et al. showed
that such deviations allow BitThief clients to download a file
with performance comparable to (if not better than) the default
clients, while not contributing any file pieces to other peers.
The same results have been obtained in our experiment using
SEINE, as can been observed in Figures 7(a)-(b).

C. Development effort

To show the benefits of using SEINE in terms of design
and development complexity, we discuss the effort required
to describe, implement and maintain selfish behaviours in our
use cases. Using SEINE, the specification of the selfishness
scenario to test is clearly separated from its actual integration
into the cooperative system code. Such separation of concerns
facilitates description and maintenance of node models and
selfish behaviours, allowing the Designer to focus only on the
SEINE-L program and on a few annotations of the system
code. On the contrary, without using SEINE, the selfishness

5http://peersim.sourceforge.net/code/bittorrent.tar.gz.

https://www.grid5000.fr/
http://peersim.sourceforge.net/code/bittorrent.tar.gz

(a) % of clients that have
downloaded the file

min

(b) File pieces uploaded by
the clients

0 10 20 30 40 50 60
0

20

40

60

80

100

BitThief BitTorrent

0 10 20 30 40 50 60
0

50

100

150

200

250

Fig. 7: Performance and contribution of BitTorrent and BitThief when
downloading the same file, measured using SEINE.

scenario must be hard coded into the PeerSim Java programs
and configuration files.

As can be noted from Figure 8(a), implementing a self-
ishness scenario using SEINE is not only easier but also
extremely concise regarding Lines of Code. The bars in the
figure provide a graphical representation of the volume and
distribution of code to modify with respect to the faithful
implementation of the cooperative system (the white part of
the bar). The figure also reports the exact number of LoC
to add for each use case. We can derive two observations
from these results. First, implementing a selfishness scenario
using SEINE requires writing four to five times less code than
without using our framework. Second, when not using SEINE,
the implementation (i.e., parameters, variables and methods)
is scattered across the code of the PeerSim Java program and
configuration file; on the other hand, the annotation library
included in SEINE-R requires the Designer only to annotate
existing fields and methods of the PeerSim program, and to
write a SEINE-L program directly into a configuration file.

To illustrate the gain in flexibility and maintainability of
testing selfishness scenarios using SEINE, we propose simple
modifications to the scenarios of our use cases and we discuss
the effort required to adapt the input files.

• Live Streaming: we duplicate a selfishness model specify-
ing a different activation policy and deviation parameters
(i.e., a higher degree of free riding and misreporting).

• BAR Gossip: we remove a selfishness model.
• BitThief : we remove a resource and we add a probability

of execution to all deviations.
Figure 8(b) illustrates the number of Lines of Code to mod-

ify (i.e., add, remove, or edit) in each use case to implement
the modifications listed above. Using SEINE, modifying the
Java class requires modification of at most 1 line, which cor-
responds to inserting or dropping an annotation. Furthermore,
when updating the configuration file, the Designer operates
on coherent and consecutive blocks, such as the selfishness
model block. In contrast, as can be observed in Figure 8(b),
implementing the modifications to the selfishness scenarios
when not using SEINE leads to more LoC to modify, which
are scattered across the sources.

To demonstrate how SEINE facilitates fast development and
testing of different selfishness scenarios, we present two test

LiveStreaming

no SEINESEINE no SEINESEINE

BarGossip

no SEINESEINE

BitThief

6 110 14 179 6 120Java
class

Config
file

19 18 37 19 21 14

(a)

LiveStreaming

no SEINESEINE no SEINESEINE

BarGossip

no SEINESEINE

BitThief

Java
class

Config
file

8 3

0 41 1 45 1 43

5 12 5 4

(b)

Fig. 8: Number and distribution of Lines of Code (a) to integrate the
selfishness scenario into the faithful implementation of the use cases
and (b) to modify such scenarios, with and without using SEINE.

cases for the BAR Gossip cooperative system. In the first
test case, we start from the selfishness scenario described
in [3] and we evaluate the impact of the size and number
of colluding groups. More precisely, we fix the fraction of
selfish nodes in the system to 20%, and we evaluate the
quality of stream perceived by selfish and cooperative nodes
when varying from one big colluding group to 10 smaller
groups of equal size. Results depicted in Figure 9(a) show that
the percentage of updates missed by selfish nodes increases
as they form colluding groups of smaller size. This is due
to the lower probability for colluders to meet, given the
random nature of the underlying gossip protocol for chunk
dissemination, which cannot be cheated in BAR Gossip by
design. On the contrary, the absence of significant changes
in the performance for cooperative nodes indicates that they
are not affected by how colluders organise themselves into
groups. The system Designer can implement this test case
using SEINE without modifying a single line of code in the
PeerSim implementation of BAR Gossip, but only operating
on the SEINE-L code. Specifically, the Designer first duplicates
the selfishness model describing the collusive behaviour as
many times as the number of colluding groups she wants to
create. Then, the Designer modifies the fractions of the actor
declarations.

As a second test case, we investigate the impact of mobile
nodes with lower bandwidth capabilities on the performance of
BAR Gossip. Similarly to the previous test case, this scenario
modification does not change the system implementation but
only the SEINE-L description of the selfishness scenario. In

(a)

Number of colluding groups

(b)

1 2 4 6 8 10
0

5

10

15

20

25

30

0 10 20 30 40
0

5

10

15

20

25

Coop. Desktop

Coop. Mobile

% of mobile nodes

Selfish

Cooperative

%
 o

f
m

is
se

d
up

da
te

s

%
 o

f
m

is
se

d
up

da
te

s

Fig. 9: Performance of BAR Gossip when varying (a) the number of
colluding groups and (b) the fraction of resourceless mobile nodes.

particular, the Designer has to create a new node model block
(i.e., mobile) which limits the bandwidth capacity with respect
to the original node model (i.e., desktop). For example, the
bandwidth capacity of desktop nodes is 1000 kbps, whereas
it is capped to 300 kbps for mobile nodes. This modification
to the scenario corresponds to adding 4 lines to the SEINE-L
program and changing a few numeric values (e.g., refactoring
the fraction of desktop nodes). Figure 9(b) reports the results
of this test case, showing that the percentage of updates that
are missed by cooperative nodes decreases as the fraction of
mobile nodes increases. This result can be explained by the
lower contribution that mobile nodes make to the chunk dis-
semination protocols, due to their limited resource capabilities.

To conclude, the test cases demonstrate how the devel-
opment and testing of cooperative systems greatly benefited
from the SEINE functionalities. Evaluating a new selfishness
scenario in a complex system like BAR Gossip only took less
than an hour, including the simulation time.

D. Simulation time

In this section, we evaluate the extra execution time imposed
by SEINE on the regular PeerSim performance. To this end,
we defined 10 different selfishness scenarios for each use case
described in Section VII-B, and we ran 40 simulations for
each scenario. The results, summarised in Table III, show
that SEINE imposes an average extra execution time of 5%
(standard deviation 0.03), ranging from the 1.6% extra time
achieved by the BAR Gossip use case to the 7.8% extra time
of BitThief. Such a short duration increase — 11 seconds out
of 154 seconds, at most — appears to be reasonable in light
of the benefits provided by the SEINE framework.

Use Case Execution time (ms) Extra time (ms)

Live Streaming 86,900 4,791
BAR Gossip 15,088 238
BitThief 154,604 11,176

TABLE III: Average execution time to evaluate a selfishness scenario
using SEINE and the additional time it imposes.

VIII. RELATED WORK

The ways selfishness has been evaluated in the literature
of cooperative systems can be broadly divided into analytical
and experimental approaches. Analytic analysis, especially

game theory [28], provides mathematical tools to reason about
selfishness and cooperation in competitive situations like those
underlying a cooperative system [3], [4], [10], [20]. However,
applying formal approaches to study real systems tends to
be complex [23], [33]. Particularly, game theory approaches
require manually creating a mathematical model of the system
(the game), including the alternative strategies available to the
system participants (the players) and their preferences over the
possible outcomes of the system. Then, game-theoretic argu-
ments have to be formulated to assess what strategy is the most
likely to be played by the players. In addition to being complex
and time-consuming, carrying out this process is also prone
to modelling errors, due to assumptions and simplifications
to make the model tractable [33]. Finally, and most relevant
to our work, game theory can be helpful in understanding
the decision-making process of system participants, but not to
estimate the impact of their decisions on the system.

Adopting an experimental approach, like in SEINE, can
be an appropriate solution to overcome the shortcomings
of analytical modelling. Concretely, an experiment consists
in implementing a selfish behaviour in a real or simulated
instance of the system [12]. Testbeds such as Grid’5000 and
PlanetLab provide the physical infrastructure to perform ex-
periments with real distributed applications on real networks,
in a configurable and monitorable manner. On the other hand,
like many other authors [4], [10], [17], [20], [24], [29], we
consider simulations a more practical tool for conducting
comprehensive evaluation campaigns on large-scale systems
such as cooperative systems. The use of simulations allows
for a perfect control over the experimental conditions, high
reproducibility, faster execution time, and the possibility of
simulating millions of nodes on a single host [2]. These
features come at the price of a high level of abstraction,
which can introduce some bias in the experimental results [12].
Relying on a well-established and extensively tested simulator
— e.g., PeerSim [27], used by SEINE — provides more
certainty about the accuracy of the results.

Although a number of the existing frameworks suitable for
the experimental evaluation of cooperative systems have the
ability to script and inject events into the system, we find
that almost none of them explicitly support the generation and
assessment of selfish behaviours. Indeed, in most cases, the
support for scripted events allows to specify system dynamics
(e.g., churn management [19], [27]) or to inject simple fault
events into specific system components [2], [12].

SEINE is also related to a significant body of work in the
area of languages and tools for building and testing dependable
distributed systems. In particular, practical frameworks such as
Mace [16], Splay [19], and MOLStream [9] provide language
support that enables developers to work on the different con-
cerns that comprise a distributed system in isolation, thereby
simplifying the overall process. Although performance and
dependability concerns are also taken into account by these
frameworks (e.g., fault handling support, performance and cor-
rectness analysis), there is no explicit guidance for addressing
selfishness-related issues. To the best of our knowledge, the

only exception is RACOON [18], a framework for designing
and configuring selfishness countermeasures for P2P systems.
RACOON includes a custom built simulation environment
that allows assessing the selfish-resilience of the designed
system against a fixed set of three simple deviations. On
the contrary, SEINE supports a considerably more expressive
power and customisation of selfish behaviours, allowing it to
cover most of the state-of-the-art selfishness manifestations,
including the small subset supported by RACOON. Further-
more, SEINE supports the automatic injection of the specified
behaviours into a PeerSim implementation of the system,
while in RACOON such behaviours need to be manually
implemented for a custom built simulator [18].

IX. CONCLUSION

In this paper, we presented SEINE, a semi-automatic frame-
work for fast modelling and evaluation of selfish behaviours in
cooperative distributed systems. At the heart of SEINE is the
selfishness scenario model that we built through a systematic
domain analysis on the subject. Based on this model, we
developed an expressive domain-specific language (SEINE-L)
and run-time support for the specification, implementation,
and study of selfish behaviours in the state-of-the-art simulator
PeerSim. We illustrated the generality of SEINE-L by showing
that it can be used to describe the 15 selfishness scenarios
extracted from the domain analysis. Then, we showed the
accuracy and ease of use of SEINE in evaluating the im-
pact of selfish behaviours in three use cases selected from
the literature. The SEINE framework is freely available at
http://glenacota.github.io/seine/.

Our future work includes the extension of the framework
to offer new selfish deviations (e.g., computation or commu-
nication delays) and activation policies (e.g., game-theoretic
strategies), as well as to support experiments on different
simulators or real testbeds. We will also study how to design
a convenient language workbench for SEINE-L to further ease
the specification, reuse and evolution of selfishness scenarios.

REFERENCES

[1] D. P. Anderson. BOINC: A system for public-resource computing and
storage. In Proc. of IEEE/ACM Int. Workshop on Grid Computing, 2004.

[2] A. Basu, S. Fleming, J. Stanier, S. Naicken, I. Wakeman, and V. K.
Gurbani. The state of Peer-to-Peer network simulators. ACM Computing
Surveys (CSUR), 45(4), 2013.

[3] S. Ben Mokhtar, J. Decouchant, and V. Quéma. AcTinG: Accurate
freerider tracking in gossip. In Proc. of SRDS. IEEE, 2014.

[4] S. Ben Mokhtar, A. Pace, and V. Quéma. FireSpam: Spam resilient
gossiping in the BAR model. In Proc. of SRDS. IEEE, 2010.

[5] B. Cohen. Incentives build robustness in BitTorrent. In Workshop on
Economics of Peer-to-Peer systems, 2003.

[6] L. P. Cox and B. D. Noble. Samsara: Honor among thieves in Peer-
to-Peer storage. In Proc. of the ACM Symp. on Operating Systems
Principles, SOSP, 2003.

[7] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged configuration using
feature models. In Int. Conf. on Software Product Lines. Springer, 2004.

[8] R. Filman, T. Elrad, S. Clarke, and M. Akşit. Aspect-Oriented software
development. Addison-Wesley Professional, 2004.

[9] R. Friedman, A. Libov, and Y. Vigfusson. MOLStream: A modular rapid
development and evaluation framework for live P2P streaming. In Proc.
of ICDCS. IEEE, 2014.

[10] M. Gramaglia, M. Urueña, and I. Martinez-Yelmo. Off-line incentive
mechanism for long-term P2P backup storage. Computer Communica-
tions, 2012.

[11] R. Guerraoui, K. Huguenin, A.-M. Kermarrec, M. Monod, and S. Prusty.
Lifting: lightweight freerider-tracking in gossip. In Proc. of the ACM/I-
FIP/USENIX Int. Conf. on Middleware. Springer-Verlag, 2010.

[12] J. Gustedt, E. Jeannot, and M. Quinson. Experimental validation in
large-scale systems: a survey of methodologies. Parallel Processing
Letters, 2009.

[13] S. B. Handurukande, A.-M. Kermarrec, F. Le Fessant, L. Massoulié,
and S. Patarin. Peer sharing behaviour in the eDonkey network, and
implications for the design of server-less file sharing systems. In Proc.
of the ACM SIGOPS/EuroSys, 2006.

[14] D. Hughes, G. Coulson, and J. Walkerdine. Free riding on Gnutella
revisited: the bell tolls? IEEE Distributed Systems Online, 2005.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. In European Conf. on Object-
Oriented Programming. Springer, 2001.

[16] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vahdat.
Mace: language support for building distributed systems. SIGPLAN
Conf. on Programming Language Design and Implementation, 2007.

[17] Y.-K. Kwok, K. Hwang, and S. Song. Selfish grids: Game-theoretic
modeling and NAS/PSA benchmark evaluation. IEEE TPDS, 2007.

[18] G. Lena Cota, S. Ben Mokhtar, J. Lawall, G. Muller, G. Gabriele,
E. Damiani, and L. Brunie. A framework for the design configuration
of accountable selfish-resilient Peer-to-Peer systems. In Proc. of SRDS.
IEEE, 2015.

[19] L. Leonini, É. Rivière, and P. Felber. SPLAY: Distributed systems
evaluation made simple (or how to turn ideas into live systems in a
breeze). In Proc. of NSDI. USENIX Association, 2009.

[20] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin. BAR gossip. In Proc. of OSDI. USENIX Association, 2006.

[21] Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li. An empirical
study of collusion behavior in the Maze P2P file-sharing system. In Proc.
of ICDCS. IEEE, 2007.

[22] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free riding in
BitTorrent is cheap. In Proc. of Workshop on Hot Topics in Networks.
Citeseer, 2006.

[23] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Experiences
applying game theory to system design. In Proc. of the ACM SIGCOMM
workshop on Practice and Theory of Incentives in Networked Systems,
2004.

[24] A. Mei and J. Stefa. Give2Get: Forwarding in social mobile wireless
networks of selfish individuals. IEEE TDSC, 2012.

[25] H. Miranda and L. Rodrigues. Friends and foes: Preventing selfishness
in open mobile ad hoc networks. In Proc. of ICDCS Workshop on Mobile
Distributed Computing. IEEE, 2003.

[26] J. C. Mitchell and V. Teague. Autonomous nodes and distributed
mechanisms. In Software SecurityTheories and Systems. Springer, 2003.

[27] A. Montresor and M. Jelasity. PeerSim: A scalable P2P simulator. In
IEEE Int. Conf. on Peer-to-Peer Computing. IEEE, 2009.

[28] R. B. Myerson. Game Theory. Harvard university press, 2013.
[29] T.-W. Ngan, R. Dingledine, and D. S. Wallach. Building incentives

into Tor. In Int. Conf. on Financial Cryptography and Data Security.
Springer, 2010.

[30] J. F. Oliveira, Í. Cunha, E. C. Miguel, M. V. Rocha, A. B. Vieira, and
S. V. Campos. Can Peer-to-Peer live streaming systems coexist with
free riders? In Proc. of IEEE P2P, 2013.

[31] T. Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
[32] M. Piatek, A. Krishnamurthy, A. Venkataramani, Y. R. Yang, D. Zhang,

and A. Jaffe. Contracts: Practical contribution incentives for P2P live
streaming. In Proc. of NSDI. USENIX Association, 2010.

[33] R. Rahman, T. Vinkó, D. Hales, J. Pouwelse, and H. Sips. Design
space analysis for modeling incentives in distributed systems. In ACM
SIGCOMM Conference, 2011.

[34] M. Sirivianos, J. H. Park, X. Yang, and S. Jarecki. Dandelion:
Cooperative content distribution with robust incentives. In USENIX
Annual Technical Conference, 2007.

[35] Y. Yoo and D. P. Agrawal. Why does it pay to be selfish in a MANET?
IEEE Wireless Communications, 2006.

http://glenacota.github.io/seine/

	I Introduction
	II Background
	III Domain Analysis
	III-1 Node model
	III-2 Selfishness model

	IV SEINE Overview
	V Modelling selfishness in SEINE-L
	V-1 Comments
	V-2 Resources
	V-3 Indicators
	V-4 Node model
	V-5 Selfishness model
	V-6 Observers

	VI Injecting selfishness in PeerSim using SEINE
	VI-A Library of Annotations
	VI-B SEINE-L Compiler
	VI-C Selfishness scenario generation
	VI-D SEINE Implementation

	VII Evaluation
	VII-A Generality and expressiveness of SEINE-L
	VII-B Accuracy of SEINE-R
	VII-B1 Live Streaming
	VII-B2 BAR Gossip
	VII-B3 BitThief

	VII-C Development effort
	VII-D Simulation time

	VIII Related Work
	IX Conclusion
	References

