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Résumé

Dans ce papier, nous proposons une méthode d’ap-
prentissage automatique avec garanties théoriques
pour générer des sphères maximales d’exclusion sur des
données binaires présentant un fort déséquilibre. Notre
objectif est d’apprendre un ensemble de sphères locales,
centrées sur les exemples de la classe minoritaire, qui
excluent les exemples de la classe majoritaire. Notre
contribution est double : 1) le problème est abordé
comme un problème d’apprentissage de métrique et 2)
nous démontrons des résultats de stabilité uniforme
sur le rayon et la métrique apprise par notre algo-
rithme. Nos expériences sur des jeux de données réelles
montrent l’intérêt de notre approche.

Mots-clef : Données déséquilibrées, Support Vector
Data Description (SVDD), Pb de cercles minimum.

1 Introduction

The study of unbalanced data is an active and im-
portant supervised machine learning domain due to its
huge economical impact, for example in anomaly or
fraud detection in applications related to banks, medi-
cine or industrial processes [AA15, KCP11].

Unbalanced problems are challenging for classic su-
pervised machine learning methods which aim at mini-
mizing an error-based loss function. If one class is rare,
the algorithm will struggle to capture any useful infor-
mation about this class and will obtain a high accu-
racy by simply predicting all (possibly new) examples
as being of the majority class(es).

To tackle the issue, classic methods consist in over or
under-sampling the data in order to get more balanced
representations of the classes [Agg13]. Then, combina-
tion of classifiers (e.g. random forests [KCP11]) that
can perform another sampling step or can focus on lo-
cal subspaces of the data where the minority classes are
more represented, are often preferred to standard ma-
chine learning techniques. For example, in computer vi-
sion, Viola and Jones [VJ01] introduced a cascade lear-
ning approach to achieve, through a boosting process,
high detection and low false positive rate in an object
detection context. A variant of the Support Vector Ma-
chines called one-class SVM (OCSVM) [HSKS03] has
also been developed for two class problems where the
minority class examples are so scarce that they are not
taken into account in the learning process. OCSVM is
an example of a more general approach called Support
Vector Data Description (SVDD) [ALC14]. In general,
SVDD methods learn one ball which includes all the
training data and excludes all examples lying in the
tail of the distribution, which are considered as ano-
malies. To capture non linearity, SVDD can make use
of the kernel trick that can be computationally expen-
sive to store and compute on large datasets.

In this paper, we aim at benefiting from the SVDD
setting while taking into account the examples of the
minority class. To do so, we learn local models cente-
red at each minority class example which exclude the
examples of the majority class(es). This allows us to
consider settings where the minority class examples do
not necessarily behave as anomalies but may be hidden
within one of the mode of the data (e.g fraud data). Si-
milarly to SVDD, we also resort to a change of space
by learning, for each local model, a linear projection
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using a Mahalanobis metric learning-based approach
[BHS13, Kul13]. The data are locally projected in smal-
ler spaces which allow us to capture non linearity in a
much cheaper way than SVDD. We show that these
projections can be expressed in closed form which en-
sures (for free) the positive definiteness of the learned
metrics. We derive theoretical guarantees both on the
metric and on the parameters of the models showing
the stability of our algorithm with respect to changes
in the training set.

In Section 2, we introduce the classic Support Vector
Data Description technique which will be the basis of
our method. In Section 3, we present a primal and dual
version of our optimization problem as well as a closed
form solution of the linear transformation of the data.
Section 4 gives a theoretical study of the algorithm.
Our experimental results on unbalanced datasets are
presented in Section 5. We conclude in Section 6.

2 Support Vector Data Descrip-

tion

The method presented in this article is inspired
from the Support Vector Data Description (SVDD)
[PA11, TD04] which consists in learning the smallest
enclosing ball of the learning data. It can be used to
detect anomalies by solving the following constraint op-
timization problem given a sample of n supposedly non
abnormal instances :

min
R,c,⇠

R2 +
µ

n

Pn
i=1 ⇠i,

s.t. kxi � ck2  R2 + ⇠i, 8i = 1, . . . , n,
⇠i � 0,

(1)

where R and c are respectively the radius and the
center of the ball and ⇠i is the slack variable associa-
ted to the ith example. µ is tuned in order to control
the proportion of data outside the sphere (considered
as anomalies). Note that in [PA11], the authors have
shown that using the radius instead of the square of
the radius in this formulation is often preferable.

Several refinements of the SVDD method can be
found. In [LZ06], the SVDD are used in binary clas-
sification problems. The authors want to find the mi-
nimum enclosing ball of a first class and the maximum
excluding ball of the second one. This gives better re-
sults than solving the Minimum Enclosing Ball Pro-
blem presented in Eq. 1 and makes the parallel between
SVDD and SVM where the width of the ring represents
the margin of the SVM.

In [LTM13], the aim is to learn a set of hyper-spheres
that can describe the entire distribution of the data. In
this method, the author also apply a non linear trans-
formation to the data (here, a Gaussian kernel) to im-
prove the overall accuracy in their experiments. The
idea of learning several hyper-spheres will be exploited
in our formulation. A similar idea is used in [BJZ12]
for either binary or multi-class classification problems.
They combine the idea of Fuzzy theory with the kernel
trick to propose a new decision function.

Even if the previous kernel-based methods are e↵ec-
tive, the computation of the kernel is often expensive
(according to the number of examples in the dataset)
and does not scale well on most real dataset. An inter-
esting approach, which does not su↵er from this draw-
back, is presented in [WGP10]. The authors include a
linear transformation of the data, in the form a PSD
matrixM in the SVDD optimisation problem. To avoid
high computational costs, they set M to the covariance
matrix that allows the induction of ellipsoids rather
than spheres. Such objects are able to cover a larger
volume in the input space compared to the spheres.

In this paper, we exploit the idea of learning multiple
local models to capture non linearity at a cheap cost as
in [LTM13] and combine it with a metric learning for-
mulation. Unlike [WGP10], we optimize both the shape
and the orientation of the ellipsoid by learning a Ma-
halanobis distance based on a PSD matrix M . A nice
property of our approach is that M can be obtained in
closed-form solution ensuring directly the positive de-
finiteness of M [SBS14, PH15]. Therefore, we prevent
the algorithm from having to check the positiveness of
the eigen values of M , which has a cubic complexity
in the size of M , as required by many metric learning
algorithms [BHS13]. All in all, our approach is simple

- it learns local models (that can be done in parallel)
by solving a simple optimization problem, theoreti-
cally founded - we derive generalization guarantees,
and e�cient compared to the state of the art.

3 Problem Formulation

Let S = {xi}ni=1 be a sample of n negative instances
and P = {cj}pj=1 a set of p positive examples (our mi-

nority class) where each xi, cj are feature vectors of Rd.
We aim at maximizing ellipsoids centered at each posi-
tive c 2 P excluding the negative data xi, i = 1, ..., n.
Learning such ellipsoids boils down to optimizing a
Mahalanobis distance, that is finding a positive semi-
definite (PSD) d ⇥ d matrix M projecting the data
linearly in a new space and allowing to obtain balls
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centered at each positive example of maximum radius
R. Note that the size of the projection space is equal
to the rank of matrix M . Therefore, it can be much
smaller that d if the features are strongly correlated.
Let B be an upper bound of the possible expected ra-
dius, the primal formulation of the problem is defined
as follows :

min
R,M ,⇠

1

n

Pn
i=1 ⇠i + µ(B �R)2 + �kM� Ik2F ,

s.t. kxi � ck2M � R� ⇠i, 8i = 1, . . . , n,
⇠i � 0,
B � R � 0,

(2)

where kxi � ck2M is the learned Mahalanobis dis-
tance between a negative example xi and a positive
center c ; ⇠ is the vector of the slack variables and
µ(B �R)2 + �kM� Ik2F is a regularization term with
µ,� > 0 the corresponding regularization parameters.
We choose two di↵erent parameters for each part of the
regularization term to control the size of the sphere in
the transformed space and the complexity of the matrix
M independently. The parameter � gives the possibility
to control the entries of the learned matrix, and there-
fore the shape of the ellipsoid. In practice, the bigger
�, the closer kxi � ck2M to the Euclidean distance (i.e.
the ellipsoid looks like a ball). On the other hand, the
parameter µ controls the size of the learned ellipsoids.

An illustration of our algorithm, called ME2 for
Maximum Excluding Ellipsoids, based on Problem 2,
is given in Figures 1 and 2. We represent the behavior
of the solution with and without learning the matrix
M. As we can see, by learning local Mahalanobis dis-
tances, we are able to cover a larger space which gives
us the possibility to capture more examples from the
rare class.

Note that the previous problem can also be expressed
in its dual form which leads us to a closed form solution.
We provide more details about our dual formulation
in Appendix A and give here necessary elements to
understand the formulation of our approach.

Figure 1 – Illustration of the behavior of our algo-
rithm when � is very small, that is, inducing a (almost
not learned) matrix M close to the identity matrix.
Each sphere is centered at a positive example (in red)
and is learned using the negative ones (in blue).

The Lagrangian of Problem 2 is given by :

L(↵,�, �,�, R, ⇠,M) =
1

n

nX

i=1

⇠i + µ(B �R)2

�
nX

i=1

�i⇠i �
nX

i=1

↵i

�
kxi � ck2M �R+ ⇠i

�

+ �kM� Ik2F � �R+ �(B �R), (3)

where ↵ = (↵i)i=1,...,n, � = (�i)i=1,...,n, � and � are
the dual variables. We now write the derivatives of (3)
with respect to the primal variables :

rRL =
nX

i=1

↵i + 2µR� 2µB � �, (4)

r⇠iL =
1

n
� �i � ↵i, 8i = 1, . . . , n, (5)

The derivative of the Frobenius norm is :

@kM� Ik2F
@M

= 2(M� I).

This last equality implies :

@L
@M

= �
nX

k=1

↵k

⇥
(xk � c)(xT

k � c

T )
⇤
+2�(M�I). (6)
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Figure 2 – Illustration of the behavior of our algo-
rithm when the shape and the orientation of the ellip-
soids are optimized.

Setting all the derivatives equal to zero, we get :

(4) ) R =
� � � + 2µB �

Pn
i=1 ↵i

2µ
,

(5) ) 0  ↵i 
1

n
,

(6) ) M = I +
1

2�

nX

k=1

↵k(xk � c)(xk � c)T .

The last equality shows that M is, by construction,
positive semi definite as it is a convex combination of
positive semi definite matrices of rank 1. Furthermore,
because of the addition of the Identity matrix to the
previous matrices, M is positive definite.

Let us now insert the closed form solution of M and
R in (3) in order to have the dual formulation of Pro-
blem 2.

min
↵,�,�

↵

T

✓
1

4�
G

0 +
1

4µ
1d⇥d

◆
↵+

�2

4µ
+

�2

4µ
+

↵

T

✓
diag(G)�

✓
B +

�

2µ
� �

2µ

◆
1d

◆

+�

✓
B � �

2µ

◆
,

s.t. 0  ↵i 
1

n
, 8i = 1, . . . , n,

�, � � 0,
(7)

where G is the Gram matrix defined by Gij = h(xi �
c), (xj � c)i and G

0 is the Hadamard product of G

with itself. 1d (respectively 1d⇥d) represents a vector
of length d (respectively a matrix of size d⇥ d) where
entries are equal to 1.

4 Generalization Guarantees

In this section, we provide generalization guarantees
for our approach. We prove a generalization bound on
the capacity of our method to exclude negative ins-
tances from the learned balls. We propose to derive
this bound according to the framework of uniform sta-
bility [BE02].

4.1 Uniform Stability

Roughly speaking, an algorithm is stable if its out-
put does not change significantly under a small modi-
fication of the training sample. This variation must be
bounded in O(1/n) in terms of infinite norm where n
is the size of the training set S i.i.d. from an unknown
distribution P .

Definition 1 ([BE02]) A learning algorithm has a
uniform stability in �

n with respect to a loss function
` and a parameter set ✓, with � a positive constant if :

8S, 8i, 1  i  n, sup
x

|`(✓S ,x)� `(✓Si ,x)|  �

n
,

where S is a learning sample of size n, ✓S the model
parameters learned from S, ✓Si the model parameters
learned from the sample Si obtained by replacing the ith

example xi from S by another example x

0
i independent

from S and drawn from P . `(✓S ,x) is the loss su↵ered
at x.

In this definition, Si represents the notion of small
modification of the training sample. From Definition 1,
one can obtain the following generalization bound 1 :

Theorem 1 (from[BE02], Thm 12) Let � > 0 and
n > 1. For any algorithm with uniform stability �/n,
using a loss function bounded by K, with probability
1� � over the random draw of S :

L(✓S)  L̂S(✓S) +
2�

n
+ (4� +K)

r
ln 1/�

2n
,

where L(·) is the true risk and L̂S(·) its empirical es-
timate over S.

1. This result was proposed in the context of regression and
classification tasks. However, one can easily check that it also
holds for the setting considered in this section.
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4.2 Generalization Bound

Given a centroid c (representing a positive instance)
and a learning sample S = {xi}ni=1 of negative ins-
tances drawn i.i.d. from an unknown probability dis-
tribution P�, the set of parameters to be learned by
ME2 is the pair (R,M). For convenience, we consider
the following optimization problem that is equivalent
to Problem 2 :

min
R,M

Pn
i=1 `(R,M,xi) + µ(B �R)2 + �kM� Ik2F ,

s.t. B � R � 0.
(8)

where `(·) represents the loss such that `(R,M,xi) =
1

n
[R2 �kxi � ck2M ]+ with [·]+ the hinge loss function :

[a]+ = max(a, 0).
The true risk is defined by L(M, R) =

E
x⇠P�`(M, R,x) and its empirical estimate over

the sample S by L̂S(M, R) = 1
n

Pn
i=1 `(M, R,xi).

We also denote the regularization term as
N(M, R) = µ(B � R)2 + �kM � Ik2F . B is set
such that B � max

x⇠P� kxk and B � kck. FS

represents the objective function to be minimized,
i.e. :

FS(M, R) = L̂(M, R) +N(M, R).

Note here that it can easily be checked that our loss
function ` is convex with respect to M and R.

To prove a generalization bound on our algorithm
ME2, we need to prove that our setting verifies the
definition of uniform stability. For this purpose, we first
prove that our loss function is actually k-lipschitz in its
two first arguments.

Lemma 1 The loss l is k-lipschitz w.r.t to M and R
with k = max(1, 4B2), i.e. : For any (M, R), (M0, R0),
8x :

|`(M, R,x)� `(M0, R0,x)|  kk(M, R)� (M0, R0)k

where k(M, R)� (M0, R0)k = |R�R0|+kM�M

0kF .

Proof 1

|`((M, R),x)� `((M0, R0),x)|
= |

⇥
R� kx� ck2M

⇤
+
�
⇥
R0 � kx� ck2M0

⇤
+
|,

 (|R�R0|+ |kx� ck2M � kx� ck2M0 |), (9)

= (|R�R0|+ |(x� c)T (M�M

0)(x� c)|),
 (|R�R0|+ 4B2kM�M

0kF ), (10)

 max(1, 4B2)(|R�R0|+ kM�M

0kF ).

Line 9 uses the fact that the hinge loss is 1-lipschitz
and a property of the absolute value. Line 10 can be
obtained by the Cauchy-Schwarz inequality and classic
properties on norms. ⇤

We now need a technical lemma on the objective
function FS .

Lemma 2 Let S be a learning sample, let FS and FSi

be two objective functions with respect to sample S and
Si and let (M, R) and (Mi, Ri) be their respective mi-
nimizers. We also define �(M, R) = (Mi, Ri)�(M, R)
and recall that N(M, R) = µ(B � R)2 + �kM � Ik2F .
We have, for all t 2 [0, 1] :

N(M, R)�N((M, R) + t�(M, R))

+N((Mi, Ri)�N((Mi, Ri)� t�(M, R))

 2tmax(1, 4B2)

n
k�(M, R)k.

The proof of this Lemma can be found in Section B
of the appendix. With this result, we are able to prove
the stability of our algorithm.

Proposition 1 It exists a positive constant  such
that the algorithm ME2 is uniformly stable with � =
2(max(1, 4B2))2

min(µ,�)
.

Proof 2 Setting t =
1

2
we have from previous Lemma :

µ✓(R) + �⌧(M)  max(1, 4B2)

n
k�(M, R)k,with (11)

✓(R) = (B �R)2 + (B �Ri)2

� (B� (R+
1

2
(Ri�R)))2� (B� (Ri� 1

2
(Ri�R)))2,

(12)

and

⌧(M) = kM� Ik2F � kM+
1

2
(Mi �M)� Ik2F

+ kMi �Mk2F � kMi � 1

2
(Mi �M)� Ik2F . (13)

By developing Equation (12) we get :

✓(R) = (B �R)2 + (B �Ri)2 � 2(B � 1

2
(R+Ri))2,

= 2B2 � 2B(R+Ri) +R2 +Ri2

�2

✓
B2 �B(R+Ri) +

1

4
(R+Ri)2

◆
,

=
1

2

⇣
R2 +Ri2 � 2RRi

⌘
=

1

2
(R�Ri)2.
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Similarly for Equation (13), we have :

⌧(M) = kM� Ik2F + kMi � Ik2F

�k1
2
(M+M

i)� Ik2F

�k1
2
(M+M

i)� Ik2F ,

= kM� Ik2F + kMi � Ik2F

�1

2
k(M� I) + (Mi � I)k2F ,

=
1

2

�
kM� Ik2F + kMi � Ik2F

�

+
1

2

0

@+
X

i,j

((M� I) ⇤ (Mi � I))(i,j)

1

A ,

=
1

2

X

k,j

((mkj � �kj)
2 + (mi

kj � �kj)
2)

+
1

2

X

k,j

((mkj � �kj)(m
i
kj � �kj)),

=
1

2
kM�M

ik2F .

We can then write the Inequality (11) as :

µ(Ri�R)2+�kMi�Mk2F  2max(1, 4B2)

n
k�(M, R)k.

(14)
Recall that : k�(M, R)k = |R � Ri| + kMi �MkF .

Because we are working in a finite space, all the norms
are equivalent, i.e. there exists a positive constant 
such that, 8(R,Ri) 2 R+, 8(M,Mi) 2 Rd⇥d we have :

(|R�Ri|+ kMi �MkF )  (R�Ri)2 + kMi �Mk2F .

Finally, by combining the previous inequality with
Equation (14) and with a reorganization of the terms,
we have :

k�(M, R)k  2max(1, 4B2)

nmin(µ,�)
.

Let x 2 R, starting from the left-hand side of Defi-
nition 1 and applying Lemma 2 once and the previous
inequality leads to our result :

|`((M, R),x)� `((Mi, Ri),x)|
 2max(1, 4B2)k�(M, R)k,

 2

nmin(µ,�)
(max(1, 4B2))2.

⇤

To prove the generalization bound, it remains to
show that our loss function ` is bounded. First we prove
a bound on the Frobenius norm of any matrix M in-
duced by our algorithm.

Lemma 3 Let (M, R) be an optimal solution of
Problem 8, we have :

kMkF 
r

µB2

�
+ d.

Proof 3 Since (M, R) is an optimal solution of Pro-
blem 8, we have :

FS((M, R),x)  FS((I, 0),x).

Developing the expression of both sides and using the
fact that

⇥
R� kx� ck2M

⇤
+
+µ(B�R)2 � 0, we have :

�kM� Ik2F  µB2,

, kM� Ik2F  µB2

�
,

, kMk2F � kIk2F  µB2

�
, (15)

, kMkF 
r

µB2

�
+ d. (16)

For line 15, we simply use the triangle inequality, and
the last line 16 is based on the fact that kIk2F = d and
application of the square root function. ⇤

Lemma 4 The loss function ` is bounded by B +

4B2

r
µB2

�
+ d.

Proof 4

`((M, R),x) =
⇥
R� kx� ck2M

⇤
+
,

 R+B2kMkF ,

 B + 4B2

r
µB2

�
+ d.

For the first inequality, we use the fact that [a]+ 
|a|, we apply the triangle inequality, we use the fact
that R  B by assumption and that kx � ck2M 
(2B)2kMkF . Then we use Lemma 3 to get the result.
⇤

Given the stability constant and the fact that the
loss is bounded, using Theorem 1, we obtain our final
result :
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Theorem 2 Let � > 0 and n > 1. There exists a
constant  > 0, such that with probability at least 1� �
over the random draw over S, we have for any (M, R)
solution of Problem 8 :

L(M, R)  L̂S(M, R) +
4max(1, 4B2)

nmin(µ,�)

+

 
8max(1, 4B2)

min(µ,�)
+B + 4B2

r
µB2

�
+ d

!r
ln 1/�

2n

Proof 5 We simply combine Proposition 1, Lemma 4
and Theorem 1. ⇤

This generalization bound holds for any positive cen-
ter c. If one has p positive centers, by the union bound,
we can extend the previous result for each of the p cen-
ters with probability 1� �/p showing that the models
output can control negative instances with high pro-
bability. We can notice here that the bound suggests
a dependency on the dimensionality of the data d, but
this generally holds for any Mahalanobis-based metric
learning [VB15].

5 Experiments

We evaluate the behaviour of our approach on seven
real datasets coming from the UCI and KEEL data-
bases 2. We are interested in binary supervised clas-
sification tasks where the classes are unbalanced. In
these settings, the classic accuracy is often irrelevant
(as explained in Section 1). We thus evaluate our algo-
rithm ME2 with a performance measure that is espe-
cially dedicated to deal with unbalanced scenarios : the
F-measure which is the harmonic mean of the Preci-
sion and Recall criteria : 2⇥Precision⇥Recall

Precision+Recall , where :

Precision = TP
TP+FP and Recall = TP

TP+FN , with TP
the number of true positives, FP the number of false
positives and TN the number of true negatives.

5.1 Datasets

The characteristics (number of examples, features
and the imbalance ratio (I.R.)) of our datasets are
described in Table 1. The rate of positive examples in
each dataset is between 0.76 (for Abalone 19) and 10.9
(for Yeast3). Because our algorithm does not directly

2. These datasets can be found either on the UCI Re-

pository (https ://archive.ics.uci.edu/ml/datasets.html)
or the KEEL website in the “Imbalan-
ced data sets for classification” repository
(http ://sci2s.ugr.es/keel/imbalanced.php ?order=ir#sub60).

handle categorical variables, such attributes have been
replaced by as many binary attributes as the number of
modalities of the original feature. For example, in the
Abalone datasets the following transformation is made
for the attribute V = {M, I, F} : M=(1,0,0), I=(0,1,0)
and F=(0,0,1).

Dataset Nb. ex. Nb. feat. I.R. Rate
Yeast3 1 484 8 8.1 10.9%
Abalone 4 177 8 8.32 10.7%
Wine 1 599 11 29.16 3.3%

Abalone 17 2 338 8 39.31 2.5%
Yeast6 1 484 8 41.4 2.4%

Abalone 20 1 916 8 72.69 1.4%
Abalone19 4 174 8 129.44 0.76%

Table 1 – Number of instances, number of features,
Imbalance ratio (i.e. number of negative examples for
one positive example) and rate of positives of each real
dataset.

5.2 Experimental setup

For each series of experiments, the dataset is separa-
ted into a training/validation (S) (80%) set and a test
set (20%). We use then a 2-fold cross-validation on the
set S while preserving the same I.R in each fold to tune
the di↵erent methods. Each experiment is repeated 10
times.

Remember that we learn an ellipsoid centered at each
positive example of S. This ellipsoid defines in some
way the local region of the projection space which is
under the influence of the considered positive example.
Therefore, this is closely related to the notion of nearest
neighborhood. Each ellipsoid depends on two hyper-
parameters µ and � as used in our optimization pro-
blem (8). To tune these parameters with our 2-fold
validation procedure, and according to our previous
remark, we associate each example of the validation
set to its closest positive example (with respect to the
Euclidean distance) in the training set to make use of
the specificities of our local models. We use the same
strategy at test time. Then, the labeling of new data is
predicted as follows (for both validation and test pro-
cedure) : it is labelled positive if 1) it belongs to the
ellipsoid of its associated positive example in the trai-
ning set and 2)if it is at most the mth closest nearest
neighbour of the ellipsoid’s center. Otherwise, the data
is classified as negative.Note that the value of m in step
2) allows ME2 to control the FP rate especially in sce-
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narios where the imbalance ratio is large. In practice,
a small value of m has to be considered, in our experi-
ments we will take the value m = 3 for all the datasets
for the sake of simplicity.

The hyper-parameters µ and � are tuned by maxi-
mizing the F-Measure for each local model according
to the previous classification rule. Note that this
is only possible when both positive and negative
examples belong to the local validation set. In the case
where there are only negative examples, we keep the
pair (µ,�) which minimizes the FP Rate. At training
time, µ and � are tuned respectively in the range
{0.75, 0.8, 0.85, 0.9, 0.95, 1, 2, 10} and {10�6:2}.

ME2 is compared with the following methods :
• A random forest (RF) classifier (with 10 trees).
• A classic decision tree (DT) where we allow the

tree to have one example in its leafs.
• To deal with the unbalanced datasets, a deci-

sion tree DTO (resp. DTU ) with an oversam-
pling (resp. undersampling) strategy consisting
in multiplying (resp. dividing) the number of po-
sitive (resp. negative) examples by a factor of five
(resp. two). We also combine the two previous ap-
proaches by learning a DTOU decision tree.

• Two Support Vectors Machines, one with a linear
kernel (LSVM) and another one with an RBF
kernel (RBFSVM). In order to adapt the SVMs
to unbalanced datasets, we have given the same
global weight to the two classes. The hyperpara-
meters are tuned using the validation set (with
both negative and positive examples).

All the classifiers are trained using the correspon-
ding machine learning packages in R 3. All the methods
considered are summarized in Table 2 as well as their
hyper-parameters and the related R package. Note that
the optimisation problem of ME2 is solved using the
package Rsolnp of R.

5.3 Results

The results are reported in Table 3. The datasets
are sorted from the least to the most imbalance ratio
to see the e↵ect of ME2 with a decreasing rate of po-
sitives. If we look at the first two datasets (i.e. Yeast3
and Abalone) where the rate of positive examples is
greater than 10%, our method is less e↵ective than the
other baselines. In fact a simple decision tree (with or
without sampling) gives the best results (a F-Measure
equal to 0.82 for DT while our method outputs 0.60). If

3. https ://www.r-project.org/

Algorithm R Package Hyper-parameter
RF RandomForest 10 trees
DT C50 -
DTO C50 positive examples ⇥5
DTU C50 negative examples /2
DTOU C50 pos. ⇥5 and neg. /2
LSVM e1071 cost 2 {10�1:3}

RBFSVM e1071
cost 2 {10�1:3}
� 2 {0.5, 1, 2, 4}

ME2 Rsolnp
B = 4

� 2 [10�6, 100]
µ 2 [0.75, 10]

Table 2 – Algorithms used in our experimental com-
parison.

ME2 achieves a similar Recall (0.87) the precision re-
mains too low to get a high F-Measure. This behavior
can be easily explained by the fact that many ellip-
soids are learned, inducing a large overlapping leading
to an important number of FP. ME2 is more devo-
ted to deal with highly unbalanced scenarios. This is
confirmed on the other five datasets. A decision tree in
its simple version is no more able to detect any posi-
tive examples at test time. Even a combination of trees
(RF ) cannot detect positive examples when the rate is
less than 2%. On the other hand, our ME2 algorithm
gets the best results on those five datasets. By learning
both the shape and the orientation of the ellipsoids,
our algorithm is able to adapt to the local peculiari-
ties of the space. Said di↵erently, the capacity of the
family of hypotheses induced by ME2 is better than
the others, especially the decision tree-based methods
which constrain the learning of hypercubes parallel to
the axis.

To go deeper in the analysis of ME2, Figure 3 illus-
trates the behavior of the 8 methods on the Yeast6
dataset where we have artificially decreased more and
more the rate of positive examples. For each rate, we
have evaluated the mean value of the F-Measure over
five runs. We can see that ME2 algorithm (the top
curve on both graphs of the Figure) still gives the best
results while some most of the other methods (5 over
7) are no more able to detect positive examples while
reaching a 98.75% rate of negative examples.

8



Algorithm Score Yeast3 Abalone Wine Abalone17 Yeast6 Abalone20 Abalone19

RF
Pre. 0.84 (0.04) 0.76 (0.04) 0.05 (0.15) 0.43 (0.34) 0.10 (0.20) 0 (0) 0 (0)
Rec. 0.76 (0.06) 0.60 (0.05) 0.009 (0.03) 0.14 (0.10) 0.028 (0.06) 0 (0) 0 (0)

F-Mea. 0.79 (0.03) 0.67 (0.04) 0.015 (0.05) 0.20 (0.15) 0.044 (0.09) 0 (0) 0 (0)

DT
Prec. 0.76 (0.12) 0.74 (0.04) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Rec. 0.88 (0) 0.68 (0.04) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

F-Mea. 0.82 (0.12) 0.71 (0.04) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

DTO

Prec. 0.67 (0.05) 0.59 (0.03) 0.061 (0.07) 0.34 (0.07) 0.093 (0.08) 0.017 (0.05) 0.019 (0.04)
Rec. 0.91 (0.02) 0.77 (0.06) 0.063 (0.07) 0.36 (0.09) 0.086 (0.07) 0.020 (0.06) 0.033 (0.067)

F-Mea. 0.77 (0.03) 0.67 (0.02) 0.061 (0.07) 0.35 (0.08) 0.089 (0.08) 0.018 (0.06) 0.024 (0.05)

DTU

Prec. 0.75 (0.03) 0.68 (0.08) 0.11 (0.09) 0.28 (0.08) 0.099 (0.10) 0.17 (0.15) 0 (0)
Rec. 0.90 (0.03) 0.73 (0.09) 0.072 (0.06) 0.43 (0.22) 0.086 (0.07) 0.18 (0.14) 0 (0)

F-Mea. 0.82 (0.02) 0.69 (0.02) 0.082 (0.06) 0.33 (0.13) 0.088 (0.08) 0.18 (0.11) 0 (0)

DTOU

Prec. 0.61 (0.04) 0.50 (0.03) 0.065 (0.04) 0.23 (0.06) 0.14 (0.09) 0.12 (0.13) 0.024 (0.03)
Rec. 0.94 (0.03) 0.83 (0.05) 0.12 (0.07) 0.47 (0.18) 0.21 (0.13) 0.22 (0.21) 0.083 (0.11)

F-Mea. 0.74 (0.03) 0.62 (0.03) 0.084 (0.05) 0.31 (0.08) 0.17 (0.10) 0.15 (0.16) 0.037 (0.05)

LSVM
Prec. 0.51 (0) 0.47 (0) 0.049 (0.01) 0.17 (0.012) 0.090 (0) 0.12 (0) 0.020 (0)
Rec. 0.88 (0) 0.93 (0) 0.49 (0.25) 0.81 (0) 0.43 (0) 0.80 (0) 0.68 (0.12)

F-Mea. 0.64 (0) 0.62 (0) 0.087 (0.01) 0.29 (0.02) 0.15 (0.01) 0.21 (0) 0.038 (0.01)

RBFSVM
Pre. 0.67 (0.07) 0.59 (0.01) 0.78 (0.20) 0.29 (0.12) 0.087 (0.07) 0 (0) 0 (0)
Rec. 0.78 (0.15) 0.67 (0.07) 0.091 (0) 0.13 (0.08) 0.10 (0.09) 0 (0) 0 (0)

F-Mea. 0.70 (0.07) 0.63 (0.04) 0.16 (0.01) 0.17 (0.10) 0.092 (0.08) 0 (0) 0 (0)

ME2
Prec. 0.46 (0.02) 0.50 (0.02) 0.11 (0.03) 0.25 (0.03) 0.19 (0.04) 0.14 (0.07) 0.024 (0.02)
Rec. 0.87 (0.02) 0.83 (0.02) 0.29 (0.08) 0.71 (0.12) 0.43 (0.06) 0.44 (0.14) 0.13 (0.10)

F-Mea. 0.60 (0.02) 0.62 (0.02) 0.16 (0.04) 0.37 (0.05) 0.26 (0.05) 0.21 (0.09) 0.040 (0.03)

Table 3 – Comparison of ME2 with seven methods on the UCI and KEEL datasets described in Table 1.
The values represent the mean of each criterion (P : Precision, R : Recall, F : F-Measure) over the 10 runs ; the
value between parenthesis is the corresponding standard deviation. A standard deviation equal to zero indicates
a value smaller than 10�2. The best results are indicated in bold font.

6 Conclusion

We have presented a method to learn Maximum
Excluding Ellipsoids in the context of unbalanced bi-
nary classification tasks. Our algorithm, calledME2, is
simple, because based on local linear models, and theo-
retically supported by generalization guarantees that
have been derived by using the uniform stability frame-
work. We have shown that our method is particularly
e�cient and robust when the rate of positive examples
is very small. The reason comes from the fact thatME2

is able to learn decision boundaries in the form of el-
lipsoids (via a metric learning-based strategy) that are
optimized locally to fit the best the specificities of the
space.

ME2 is based on a very simple decision rule looking
for the nearest ellipsoid to a test query. We think that
this rule may benefit from further investigation, e.g. by
considering a combination of ellipsoids to predict the
label of a test data. From a theoretical point of view,

we have derived a guarantee on the learned matrix M
and radius R. Since our decision rule is closed to that
of a nearest neighbor classifier, it would be interesting
to establish a link between the quality of M and R and
the generalization error of such a classifier.
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[BHS13] Aurélien Bellet, Amaury Habrard, and Marc
Sebban. A survey on metric learning for fea-
ture vectors and structured data. CoRR,

abs/1306.6709, 2013.

[BJZ12] M. El Boujnouni, M. Jedra, and N. Zahid.
New decision function for support vector
data description. In Snd Int. Conf. on In-
novative Computing Technology (INTECH
2012), pages 305–310, 2012.

[HSKS03] Katherine A. Heller, Krysta M. Svore, An-
gelos D. Keromytis, and Salvatore J. Stolfo.
One class support vector machines for detec-
ting anomalous windows registry accesses.
In ICDM work. on Data Min. for Computer
Security, 2003.

[KCP11] Mohammed Khalilia, Sounak Chakraborty,
and Mihail Popescu. Predicting disease risks
from highly imbalanced data using random
forest. BMC Medical Informatics and Deci-
sion Making, 11(1) :51, 2011.

[Kul13] Brian Kulis. Metric learning : A survey.
Foundations and Trends in Machine Lear-
ning, 5(4) :287–364, 2013.

[LTM13] Trung Le, Dat Tran, and Wanli Ma. Fuzzy
multi-sphere support vector data descrip-
tion. In 17th Pacific-Asia Conference
(PAKDD), Part II, pages 570–581. Sprin-
ger, 2013.

[LZ06] Yi Liu and Y.F. Zheng. Minimum enclosing
and maximum excluding machine for pat-
tern description and discrimination. In 18th
IEEE International Conference on Pattern
Recognition (ICPR06), 2006.

[PA11] Eric J. Pauwels and Onkar Ambekar. One
class classification for anomaly detection :
Support vector data description revisited.
In Industrial Conference on Data Mining,
pages 25–39, 2011.

[PH15] M. Perrot and A. Habrard. Regressive vir-
tual metric learning. In Proc. of Annual
Conference on Neural Information Proces-
sing Systems (NIPS), 2015.
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A Dual Formulation

We give further details about how to get the dual for-
mulation of Problem 2. Let us first recall the expression
of the Lagrangian for the sake of clarity :

L(↵,�, �,�, R, ⇠,M) =
1

n

nX

i=1

⇠i�
nX

i=1

�i⇠i+µ(B�R)2

�
nX

i=1

↵i

�
kxi � ck2M �R+ ⇠i

�

+ �kM� Ik2F � �R+ �(R�B),

We now set : A =
Pn

i=1 ↵ikxi � ck2M and N =
Tr((M � I)T (M � I)) and we develop these two ex-
pressions.

By developing the expression of A, we get :

A =
nX

i=1

↵i(xi � c)T (xi � c)

+
1

2�

nX

i=1

nX

k=1

↵i↵k(xi�c)T (xk�c)(xk�c)T (xi�c),

so that, using the previous notations :

A = ↵

T diag(G) +
1

2�

nX

i=1

nX

k=1

↵i↵kGikGki,
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T diag(G) +
1

2�
↵

T
G

0
↵

where G is the Gram matrix defined by Gij = h(xi�
c), (xj�c)i andG

0 is the Hadamard product ofG with
itself. Because G is positive semi definite, so is G0.

From now on, we set yk = xk � c for convenience.
Let us denote by yki = (xk � c)i the ith element of the
vector xk � c.
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We do the same by replacing R by its expression in
(3). For the sake of simplicity, we only consider the
terms of the Lagrangian where R appears and set D =
µ(B�R)2 +R

Pn
k=1 ↵k + �(R�B)� �R. We obtain :
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The second line is obtained by developing each terms
and the last by reducing and factorizing each terms.
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We then have :
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We can now express our Lagrangien (3) with respect
to ↵,� and � only as :
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We then have the dual formulation 7 by minimi-
zing the opposite of the Lagrangian with the associated
constraints.

B Proof of Lemma 2

In this section we give the technical proof of Lemma
2.

Proof 6 Since ` (the hinge loss) is convex, so is the
empirical risk and thus for all t 2 [0, 1] we have the two
following inequalities :

L̂Si((M, R) + t�(M, R))� L̂Si(M, R)

 tL̂Si((Mi, Ri)� tL̂Si(M, R).

and

L̂Si((Mi, Ri))� t�(M, R))� L̂Si(Mi, Ri)

 tL̂Si((M, R)� tL̂Si(Mi, Ri)

We get the second inequality by switching the role of
(M, R) and (Mi, Ri). If we sum these two inequalities,
the right hand side vanishes and we obtain :

L̂Si((M, R) + t�(M, R))� L̂Si(M, R)

+ L̂Si((Mi, Ri))� t�(M, R))� L̂Si(Mi, Ri)

 0. (17)

By assumption on (M, R) and (Mi, Ri) we have :

FS((M, R))� FS((M, R) + t�(M, R))  0,

FSi((Mi, Ri))� FSi((Mi, Ri)� t�(M, R))  0,

then, summing the two previous inequalities and
using (17), we get :

L̂Si((M, R) + t�(M, R))� L̂S((M, R) + t�(M, R))

� L̂Si(M, R) + L̂S(M, R)+

µ[(B�R)2+(B�Ri)2�(B�(R+t�R))2�(B�(Ri�t�R))2]

+�[kM�Ik2F+kMi�Ik2F�kM+t�M�Ik2F�kMi�t�M�Ik2F ]
 0. (18)

Let us set : H = L̂Si((M, R) + t�(M, R)) �
L̂Si(M, R)� L̂S((M, R)+ t�(M, R))+ L̂S(M, R). We
will use Lemma 1 to bound this term :

H  |L̂Si((M, R) + t�(M, R))� L̂Si(M, R)

�L̂S((M, R) + t�(M, R)) + L̂S(M, R)|,

 | 1
n

X

xi2Si

`((M, R) + t�(M, R),xi)

� 1

n

X

xi2S

`((M, R) + t�(M, R),xi)

+
1

n

X

xi2S

`((M, R),xi)�
1

n

X

xi2Si

`((M, R),xi)|,

 1

n
|`((M, R) + t�(M, R),xi)� `((M, R),xi)

�`((M, R) + t�(M, R),x0
i) + `((M, R),x0

i)|,

 1

n
|`((M, R) + t�(M, R),xi)� `((M, R),xi)|

+
1

n
|`((M, R) + t�(M, R),x0

i)� `((M, R),x0
i)|,

H  2tmax(1, 4B2)

n
k�(M, R)k.

We successively apply the definition of the empirical
risk and triangle inequality to get the previous inequa-
lities. The last one is obtained using Lemma 1. ⇤
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