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ABSTRACT
Local Spectral Unmixing (LSU) methods perform the unmixing of
hyperspectral data locally in regions of the image. The endmembers
and their abundances in each pixel are extracted region-wise, instead
of globally to mitigate spectral variability effects, which are less se-
vere locally. However, it requires the local estimation of the number
of endmembers to use. Algorithms for intrinsic dimensionality (ID)
estimation tend to overestimate the local ID, especially in small re-
gions. The ID only provides an upper bound of the application and
scale dependent number of endmembers, which leads to extract irrel-
evant signatures as local endmembers, associated with meaningless
local abundances. We propose a method to select in each region
the best subset of the locally extracted endmembers. Collaborative
sparsity is used to detect spurious endmembers in each region and
only keep the most influent ones. We compute an algorithmic reg-
ularization path for this problem, giving access to the sequence of
successive active sets of endmembers when the regularization pa-
rameter is increased. Finally, we select the optimal set in the sense
of the Bayesian Information Criterion (BIC), favoring models with a
high likelihood, while penalizing those with too many endmembers.
Results on real data show the interest of the proposed approach.

Index Terms— Hyperspectral imaging, local spectral unmixing,
binary partition tree, collaborative sparsity, regularization path

1. INTRODUCTION
Spectral Unmixing (SU) is one of the most important applications
in hyperspectral imaging for remote sensing [1]. Because of the
limited spatial resolution of hyperspectral images (HSI), observed
pixels can account for the contribution of several materials present
in the field of view of the sensor during the acquisition. SU is a
source separation problem whose goal is to automatically identify
the spectral signatures of the materials present in the observed scene
(called endmembers) and then to estimate their proportions in each
pixel (called abundances). Most SU algorithms assume a Linear
Mixing Model (LMM), in which the observations are modeled as
linear combinations of the endmembers’ spectra, weighted by the
fractional abundances [2]. The abundances are additionally subject
to the abundance nonnegativity constraint (ANC) and a sum to one
constraint (ASC). Therefore they lie in the probability simplex, and
the data lie in another simplex whose vertices are the endmembers.
The main two limitations of this approach have been identified as
nonlinearities and spectral variability. Nonlinear mixing can hap-
pen locally when the incident light undergoes multiple reflections
(e.g. in urban scenarios, tree canopies, or particulate media such as

This work has been partially supported by the European Research
Council under the European Community’s Seventh Framework Programme
FP7/2007–2013, under Grant Agreement no.320684 (CHESS project), as
well as the Agence Nationale de la Recherche and the Direction Générale
de l’Armement, under the project ANR-DGA APHYPIS.

sand) [3]. Spectral variability [4, 5] can affect the endmembers’ sig-
natures locally depending on the geometry of the scene (topography
and changing illumination conditions) or because of changes in the
physico-chemical composition of the materials (e.g. soil moisture
content) [6, 7, 8]. Local Spectral Unmixing (LSU) is a technique
in which the unmixing is performed in local regions of the image,
instead of a whole HSI. The idea is that in smaller local regions, the
effects of spectral variability are not so severe. Another motivation
is that nonlinear effects are usually very localized in space. The key
issue is then to choose the regions on which to perform LSU in an
appropriate way. The first methods of the literature to perform the
unmixing locally were using sliding windows [9, 10]. Segmentations
of the HSI could also be used. The more recent work of [11] uses
Binary Partition Trees (BPT) [12] to compute an unmixing-driven
hierarchical segmentation of hyperspectral datasets. An optimal par-
tition of this hierarchy in the sense of local reconstruction perfor-
mance is computed, providing meaningful regions for LSU. How-
ever, one of the drawbacks of this approach is that the Intrinsic Di-
mensionality (ID) of each region has to be estimated with one of the
algorithms of the literature [13], to choose the local number of end-
members to use. As shown in [14], the ID can be severely overesti-
mated in small regions of the image, or for a large number of spectral
bands. Besides, the ID only provides an upper bound of the number
of endmembers to use in practice (even for large regions or full im-
ages), which is subjective, application and scale dependent. As a
result, it often happens that irrelevant endmembers are extracted in
many regions, and are associated to very sparse abundance maps. To
avoid this, we propose an automatic method to identify and discard
irrelevant endmembers in each region during the segmentation step.
We make use of collaborative sparsity [15], allowing us to retain
only the significant endmember contributions in the region. There is
no need to tune any parameters, because we are able to compute a
regularization path for the underling optimization problem. The re-
mainder of this paper is organized as follows: section 2 introduces in
more detail the LSU scheme of [11]. We present our contribution in
section 3. Section 4 presents the results of the proposed approach on
a real dataset. Finally, section 5 gathers some concluding remarks.

2. BINARY PARTITION TREE BASED LSU
In this section, we briefly summarize the BPT-based LSU approach
of [11], which is the basis of the present work. The construction
of a BPT is conceptually simple: starting from an initial partition
of the image (typically an oversegmented partition, obtained using a
segmentation algorithm), the two most similar adjacent regions are
iteratively merged, building a tree structure. An example is shown
in Fig. 1 (a). To obtain an unmixing driven process, we model each
region by the set of endmembers extracted by any endmember ex-
traction algorithm (EEA) of the literature (here the Vertex Compo-
nent Analysis (VCA) [16]). This implies to estimate the ID of each
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Fig. 1. Example of the construction (a) and pruning (b) of a Binary
Partition Tree.
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Fig. 2. RGB representation of the Washington DC mall dataset (a),
and Local ID of the regions of the BPT (on a logarithmic scale for
the x-axis), estimated with the RMT algorithm (b).

region prior to the endmember extraction. One can for instance use
the Random Matrix Theory (RMT) based algorithm of [17], with the
recommendations of [14] for its use in local settings. The similarity
measure used to compare regions is a distance between endmember
matrices, proposed in [18]. The abundance maps of each region are
also estimated, assuming the LMM holds locally, in each regionR:

XR = SRAR +ER, (1)
We denote by XR ∈ RL×NR the hyperspectral pixels of the region
(L and NR are the number of spectral bands, and the number of
pixels in the region, respectively). SR ∈ RL×dR is the local end-
member matrix, extracted by VCA, and AR ∈ RdR×NR is the
abundance matrix, estimated using the classical Fully Constrained
Least Squares Algorithm (FCLSU) [19]. dR is the estimated ID in
region R. ER ∈ RL×NR is an additive noise, usually assumed to
be Gaussian. The BPT is a hierarchical representation of the regions
of the image, and in order to get a single partition out of all those
possible using the BPT structure, the tree has to be pruned, as shown
in Fig. 1 (b). Here, we are able to recover an optimal partition us-
ing an optimization process on the hierarchy defined by the BPT. We
obtain a partition with a desired number of regions which minimizes
an energy based on the reconstruction errors in each region (see [11]
for details). In this sense, this segmentation is optimal in terms of
SU performance. The local endmembers and abundances can then
be recovered for each region of this partition.

3. PROPOSED REGION MODEL
3.1. Motivation
The BPT based LSU scheme described in the previous section has
proved useful, but due to the ID overestimation issue in local re-
gions, and to the fact that the ID does not always match the expected
number of endmembers in an image, the extraction of spurious end-
members is frequent. To show this, we built a BPT on the Washing-
ton DC mall dataset (shown in Fig. 2 (a)) acquired by the HYDICE
sensor, in the visible and near infrared, with a spatial resolution of
2.8m. The initial segmentation was obtained using a mean shift clus-
tering algorithm [20], giving an initial partition with 5760 regions.
From the BPT, we show in Fig. 2 (b) a plot of the estimated ID as
a function of the region size (before the pruning). The estimated ID
seems relatively high, up to 70 for the largest regions of the BPT,
and regularly over 10 for small regions, (even for regions of 100
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Fig. 3. Two regions of a BPT built on the Washington dataset (top
row), and the associated extracted endmembers (bottom row).

pixels or less). To provide more evidence for this phenomenon, we
compare visually in Fig. 3 two regions of the optimal segmentation
obtained by keeping around 500 regions. Although a visual inspec-
tion can be misleading, we do not expect more than three, perhaps
four endmembers in the region on the left, and one or two on the
region on the right. However, the estimated IDs were respectively
of 20 and 9. The local endmembers extracted by VCA are shown
in the bottom row. They clearly show that many signatures are very
similar and are probably associated to the same materials. For in-
stance, on the left there are at least 6 signatures with a very low
spectrum, all associated to shadowed areas of the region. For the
rooftop region, only 3 signatures are significantly different from one
another in terms of spectral distance (neglecting scaling effects of
the signatures). Therefore, most of the abundance maps of these two
regions are very sparse (sometimes only non negligible in extremely
small regions or isolated pixels), or only there to fit the noise. This
means that most of them do not correspond to significant instances of
the same materials, and are then not meaningful in terms of spectral
variability. However, because they are given the same weight as le-
gitimate endmembers in the region model, they can affect the whole
BPT construction and pruning. To get better interpretable results in
local regions, these dummy endmembers should be discarded in the
BPT construction process.
3.2. Collaborative sparsity in LSU
In order to solve this issue, we propose a modified region model for
the BPT construction which eliminates the spurious endmembers ex-
tracted in a given region. To select the endmembers which should be
discarded in the unmixing process, we want to force the ones whose
abundance maps are already very sparse or low in most pixels to be
zero everywhere, for each region.
To do that, we are going to replace the abundance estimation step
within a region with FCLSU by a collaborative sparse unmixing
step [15, 21]. Indeed, the mixed L2,1 norm [22] (||AR||2,1 =∑dR
p=1 ||aR,p||2, where aR,p is the pth row of AR) used in this type

of sparse regression problems encourages row-wise sparsity in the
abundance matrix. This means that some endmembers in the region
will have zero abundance maps for all the pixels of the region. Then
we will only have to discard those from the set of local endmem-
bers. Unmixing the region with collaborative sparsity boils down to
solving the following convex optimization problem:

arg min
AR

1

2
||XR − SRAR||2F + λR||AR||2,1 + I∆dR

(AR), (2)

where I∆P is the indicator function of the probability simplex (0
inside the simplex, +∞ otherwise), applied independently to each



column of AR, and λR is a regularization parameter. This prob-
lem can be relatively easily solved using proximal methods, such as
the Alternating Direction Method of Multipliers (ADMM) [23]. To
use it, we introduce split variables to decouple the different terms in
the optimization. We then rewrite problem (2) in the equivalent for-
mulation using linear constraints, which is suitable for the ADMM:

arg min
AR

1

2
||XR − SRAR||2F + λR||UR||2,1 + I∆dR

(VR)

s.t. UR = AR, VR = AR. (3)

The ADMM then minimizes an augmented Lagrangian w.r.t. to all
the blocks of variables involved, alternatively and iteratively, before
updating the Lagrange multipliers (called CR and DR in Algo-
rithm 1) in a so-called dual update.
However, there are two problems with this approach. The first is that
since the linear constraints of the ADMM are only satisfied asymp-
totically, in practice the entries of the supposedly discarded rows
of the abundance matrix are often not exactly zero, but very small
values. Then an arbitrary thresholding step is required to eliminate
endmembers with a small contribution [15, 21]. The second is that
to obtain the appropriate sparsity level, the regularization parameter
λR needs to be tuned in every region. A grid search over a set of
parameters in each region would be very computationally costly and
would require a criterion to select the best run of the algorithm. We
will see that we can find solutions for both issues.
3.3. Obtaining an algorithmic regularization path
In order to tackle both the regularization parameter issue and the
inexact sparsity of the collaborative sparse regression at once, we
would like to obtain the regularization path of the solution, as a
function of λR. Regularization paths can sometimes be computed
easily, for instance on the LASSO (for Least Absolute Shrinkage
Selection Operator) problem [24]. However, for more complex prob-
lems, such as ours, there is no way, to our knowledge, to obtain this
regularization path easily. A convenient workaround for this is to
compute a so-called ADMM algorithmic regularization path, intro-
duced in [25]. This approach is able to use the ADMM to quickly
approximate the sequence of active supports of the variable of inter-
est, when the regularization parameter increases, for certain sparsity
regularized least squares problems. Even though there are as of to-
day no theoretical guarantees on the efficiency of this algorithm, it
was experimentally shown to be able to efficiently approximate the
true sequence of active sets on several problems [25], including the
LASSO. Here, we propose to extend this algorithm to collaborative
sparsity. Since exactly solving the optimization problem for a large
number of regularization parameters would be too time consuming,
we are more interested in finding the active set of endmembers when
the weight of the sparsity term increases w.r.t. this of the data fit
term. The idea is, for each region involved in the construction of
the BPT, to find a sequence of endmember matrices, whose number
of endmembers are decreasing from dR to zero (when the model is
fully sparse). Each new matrix contains the same endmembers as
the previous one, except for one, which is the next endmember to
be discarded when the weight of the sparsity term gets more impor-
tant. To do that, we modify the ADMM in order to quickly obtain
the support of the regularization path, for each region. An iteration
of the ADMM is carried out for a very small value of the regular-
ization parameter (guaranteeing a fully dense solution). Then, the
variables obtained after this iteration are used as a warm start for
another iteration with a new slightly higher regularization parame-
ter. By repeating this for several iterations with higher and higher
regularization parameters, the split variable UR, which undergoes a
block soft thresholding (the proximal operator of theL2,1 norm [23])

becomes increasingly sparse. Since we are using warm starts, and
because regularization parameters vary slowly, even if the ADMM
is not fully converged at each iteration, the support of the active set
is encoded in UR, often in one iteration only, long before this active
set is propagated to AR (this will be the case only at convergence,
when the constraints of problem (3) are satisfied). With these mod-
ifications, we obtain Algorithm 1. The notation ||Ui

R||2,0 denotes
the number of nonzero rows of the matrix Ui

R, and ρ is the barrier
parameter of the ADMM. soft· denotes the block soft thresholding
operator with scale parameter in index, and proj∆dR

denotes the
projection on the probability simplex, performed with the algorithm
of [26]. These operators are applied columnwise. Here, we are us-
ing a geometric progression for γR (we changed the notation of this
regularization parameter, because we do not completely solve the op-
timization problem (3)), whose common ratio is t. This value should
be small to approximate the active sets of the regularization path
well enough. The regularization space can be explored very quickly
since the algorithm provides at most dR endmember subsets of the
full endmember set extracted by VCA, that need to be tested after
this process. In practice we chose γ0

R = 10−4 and t = 1.04, which
allows γR to sweep from 10−4 to 5.104 in 500 iterations (less than
what is usually required in practice to reach a fully sparse model).

Data: XR, SR
Result: The sequence of Ui

R, i = 0, ..., imax
Initialize A0

R and choose γ0
R and t > 0 ;

while ||Ui
R||2,0 6= 0 do

γiR ← tγi−1
R ;

Ui
R ← softγiR/ρ(A

i−1
R −Ci−1

R ) ;

Ai
R ← (S>RSR + 2ρIdR)−1(S>RXR + ρ(Ui

R +
Vi−1
R +Ci−1

R +Di−1
R )) ;

Vi
R ← proj∆dR

(Ai
R −Di−1

R ) ;

Ci
R ← Ci−1

R +Ui
R −Ai

R ;
Di
R ← Di−1

R +Vi
R −Ai

R ;
i← i+ 1

end
Algorithm 1: Algorithmic regularization path for problem (3).

3.4. Selecting the best model
Using the active sets, we can store a sequence of dR sparser and
sparser candidate endmember matrices (denoted as SiR). The last
step is to select the optimal active set in the sense of some criterion.
We used the Bayesian Information Criterion (BIC) [27], which helps
choosing from a set of candidate models, by favoring those with an
important likelihood, and penalizing those with a high number of pa-
rameters. This criterion assumes that the noise is spectrally and spa-
tially white, a strong but still widely used assumption. A candidate
modelMi is made of one of the SiR and the corresponding estimated
abundances with FCLSU. For our problem, the BIC writes [28]:

BICi = ln(L)Pi + L ln

(
||XR − SiRÂ

i
R||2F

L

)
, (4)

where Pi is the number of endmembers in SiR ∈ RL×Pi . Âi
R is the

abundance matrix estimated by FCLSU using the data and the end-
member matrix SiR. The best model is simply the one minimizing
the BIC value. In our case, to alleviate the computational load, we
perform these FCLSU steps from the smallest endmember matrices
to the bigger ones, and stop when the BIC value has increased for
three consecutive iterations, to avoid performing numerous useless
abundance matrix estimations in each region. The flowchart of the
proposed region model is shown in Fig. 4.

4. RESULTS
To assess the impact of the proposed modifications to the region
model, we built two BPTs on the Washington Mall dataset, one with-
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Fig. 5. Optimal segmentations whose number of regions is the clos-
est to 500, when no sparsity is considered (a), using the proposed
modifications to the region model (b), and number of endmembers
in the regions of the BPT with no sparsity (in blue), and with the
proposed BPT construction (in red) (c).

out sparsity, and one with the proposed region model. We show the
effect of collaborative sparsity on the local number of endmembers,
in Fig. 5 (c). We can see that using the BIC criterion on the sequence
of models extracted by the modified ADMM significantly reduces
the number of endmembers used in each region. We also computed,
in each case, the optimal segmentations whose number of regions is
closest to 500 (Fig. 5 (a) and (b)). The regions of these segmenta-
tions can correspond to actual structures in the data, but not always,
since we are looking for partitions minimizing the RMSE, not for ho-
mogeneous regions. The segmentations are relatively similar, with
some differences, which shows that we have been able to discard
the useless endmembers without significantly impacting the aver-
age RMSE. To compare more precisely the local unmixing results
on the same regions, we apply the proposed endmember elimination
scheme on regions of the BPT obtained without sparsity. We did this
on the region on the right of Fig. 3. The average RMSE of this region
without sparsity is 0.0061, using 9 endmembers. The proposed ap-
proach (for a given run) only retains 3 endmembers, with a RMSE of
0.0064. This shows that we have been able to discard irrelevant end-
members by removing the redundant or meaningless information in
the region. The proposed region model also significantly impacts the
interpretability of the results. For the region on the left of Fig. 3, we
show the difference in abundance maps with or without collaborative
sparsity (Fig. 6). When no sparsity is applied, at least 8 abundance
maps (out of the 20 abundance maps associated to the 20 endmem-
bers) have negligible values on almost all the support of the region.
Only around 5 abundance maps are really meaningful at the scale
of the region. There seems to be 2 instances of grass, 2 instances
of trees and one endmember associated to the gravel pathway. With
the proposed scheme, only four endmembers are retained: one for
grass, two for trees (including one for shadowed parts of the trees),
and one for gravel. The different terms involved in the computa-
tion of the BIC are displayed in Fig. 7. These plots confirm that

(a)

(b)

Fig. 6. Abundance maps in the region on the left of Fig. 3, without
sparsity (a) and with the proposed model selection (b).
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Fig. 7. Likelihood (a) and the parameter (b) terms of the BIC (c)
for the sequence of endmember matrices obtained with the proposed
method, for the region on the left of Fig. 3.

the likelihood term (very related to the mean RMSE in the region)
does not decrease much when more than 4 endmembers are retained,
while the parameter term increases linearly. The sparsity only kept
the most relevant signatures, making the results more easily inter-
pretable at the region scale.
It may also happen in some visually relatively homogeneous regions
that even with sparsity a significant number of endmembers are re-
tained, for instance in the water pond in the center of the upper part
of the image. In the most central region, the estimated ID is 5, and no
endmember was discarded after the collaborative unmixing. In this
region, comprising a shallow water pond (around 50cm deep), and
some kind of concrete at the bottom, the mixing process is likely to
be highly nonlinear. The BPT approach allowed to isolate this region
from the rest of the image, by segmenting it, avoiding the propaga-
tion of the errors due to the endmembers of this region. Similarly, in
regions which visually correspond to one macroscopic material (e.g.
in the region on the right of Fig. 3), several endmembers (around 3
to 6 in this case, depending on the VCA runs) can be retained, be-
cause the LMM does not explicitly account for spectral variability,
and several endmembers are necessary to fit the data well.

5. CONCLUSION
We have proposed a new region model for local spectral unmixing
(LSU) based on binary partition trees (BPT). This model still com-
pares the local endmembers extracted in each region, but is able to
cope with the extraction of spurious endmembers due to local ID
estimation. We get rid of those endmembers by using collaborative
sparsity, and avoid parameter tuning in each region by computing an
algorithmic regularization path for the resulting optimization prob-
lem. We are then able to select the best sparse model by using the
Bayesian Information Criterion (BIC). The results show that the pro-
posed modifications allow to eliminate the redundant information in
each region, without penalizing the unmixing performance. Future
work will include an extension of the proposed method for the un-
mixing of complete images rather than regions for LSU. In combi-
nation with the ideas of [21], a completely blind and parameter free
algorithm for simultaneous SU and ID estimation can be designed.
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