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Bertrand Rivet, Massoud Babaie-Zadeh, Senior Member, IEEE and Christian Jutten, Fellow, IEEE

Abstract—Hyperspectral image unmixing is a source separa-
tion problem whose goal is to identify the signatures of the
materials present in the imaged scene (called endmembers), and
to estimate their proportions (called abundances) in each pixel.
Usually, the contributions of each material are assumed to be
perfectly represented by a single spectral signature and to add
up in a linear way. However, the main two limitations of this
model have been identified as nonlinear mixing phenomena and
spectral variability, i.e. the intraclass variability of the materials.
The former limitation has been addressed by designing non linear
mixture models, while the second can be dealt with by using
(usually linear) space varying models. The typical example is a
linear mixing model where the sources can vary from one pixel
to the other. In this letter, we show that a recent variability
model can also estimate the abundances of nonlinear mixtures
to some extent. We make the theoretical connection between
nonlinear models and this variability model, and confirm it with
experiments on nonlinearly generated synthetic datasets.

Index Terms—Hyperspectral imaging, remote sensing, spectral
unmixing, nonlinear mixtures, endmember variability

I. INTRODUCTION

HYPERSPECTRAL imaging is a nonconventional imaging
technique which acquires information in many narrow

and contiguous wavelengths of the electromagnetic spectrum,
usually in the visible and near infrared domains. Every pixel of
the resulting multivariate images is a complete reflectance
spectrum. This fine spectral resolution allows an accurate
identification of the materials present in the observed scene [1].

However, the spatial resolution of such images is more
limited than conventional color or gray level images. As a result,
several materials of interest are often present in the field of
view of a given pixel. The observed spectrum is then a mixture
of the contributions of each material. The inverse problem
which consists in finding, for a new image, the signatures of
the materials of the scene, and to estimate their proportions in
each pixel is called spectral unmixing [2], [3]. This problem
can be seen as a blind source separation problem.

Usually, a linear mixing model (LMM) is assumed to model
the relationship between the observed data, the spectra of
the pure materials (called endmembers), and the proportions
(called abundances). The hyperspectral image is represented
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as a matrix X ∈ RL×N , where L is the number of considered
wavelengths, and N is the number of pixels in the image.
The endmembers are gathered in the columns of a matrix
S ∈ RL×P , where P is the number of considered materials.
The abundance coefficients for each pixel and each material
are stored in a matrix A ∈ RP×N . Then, for a given pixel n,
the observed spectrum xn ∈ RL, the LMM writes:

xn =

P∑
p=1

apnsp + en (1)

where en is an additive noise, often assumed to be zero mean
Gaussian-distributed, with an isotropic covariance matrix. The
endmembers, being reflectance spectra, are constrained to be
nonnegative. In addition, the abundances are proportions, so
they are usually constrained to be positive, and to sum to one
in each pixel. Geometrically, the LMM constrains the data to
live in a simplex spanned by the endmembers. In many cases,
the LMM is a reasonable approximation of the physics of the
mixtures. However, in more complex cases nonlinear mixture
models are necessary, for instance when rays of light undergo
multiple reflections before reaching the sensor (e.g. in tree
canopies) [4], [5].

This issue fostered research on nonlinear mixing models
and the corresponding unmixing algorithms (e.g. [6]–[8]). A
popular choice is the class of linear-quadratic models, which
takes into account second order interactions between materials,
under the form of product spectra sp � sq, where � is the
Hadamard (elementwise) product:

xn =

P∑
p=1

apnsp +

P∑
p=1

P∑
q=p

bpqnsp � sq + en (2)

where bpqn are positive quadratic interaction coefficients for
each pixel n and each pair of materials (p, q). The higher order
interactions are usually omitted, since they are considered to
have a low contribution to the final at-sensor reflectance. The
data is now bound to lie in a nonlinear manifold which is more
complex than a simplex. A similar, but more restrictive model
is given by the Generalized Bilinear Model (GBM) [9], which
assumes that the coefficient of a nonlinear interaction term is
proportional to the abundances of the materials involved:

xn =

P∑
p=1

apnsp +

P∑
p=1

P∑
q=p

γpqnapnaqnsp � sq + en (3)

where the importance of a nonlinear term is now governed by
the abundances and parameter γpqn.
The other limitation comes from the representation of a single
endmember by a unique spectral signature. This is a very
convenient approximation, but an endmember is actually more
accurately described by a collection of signatures, which
account for the intra-class variability of that material [10].
Each pixel can now be explained by different variants of the
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materials. Many physical phenomena can induce variations
on the spectra of pure materials, be it a change in their
physico-chemical composition, or the topography of the scene,
which locally changes the incidence angle of the light and the
viewing angle of the sensor. This phenomenon is referred to as
endmember variability [11]–[13]. A physics-inspired model to
explain illumination induced variability is the Extended Linear
Mixing Model (ELMM) [14], which writes:

xn =

P∑
p=1

apnψpnsp + en (4)

where ψpn is a positive scaling factor whose effect is to rescale
locally each endmember, the variations between variants of the
same material due to changing illumination conditions being
reasonably well explained by a scaling variation. Geometrically,
the data may now lie inside a convex cone spanned by the
endmembers. More specifically, each pixel belongs to a simplex,
whose vertices can slide on lines (passing through the origin)
which correspond to the edges of the convex cone.

Spectral variability and nonlinear mixtures are physically
very different phenomena. Mathematically, spectral variability
essentially amounts to using a space varying (usually linear)
mixing model, while a general nonlinear mixing model is
spatially invariant. Both phenomena have been considered
simultaneously in recent works, e.g. by incorporating scaling
factors in a bilinear mixing model [15], or by considering
a residual based-model for the deviations from the LMM
[16]. In [17], the joint consideration of both nonlinearities
(through a linear-quadratic model) and spectral variability was
experimentally shown not to give substantially better abundance
estimation results than considering endmember variability alone.
Since the dataset used was acquired over a urban area, where
both phenomena were expected to be nonnegligible, results
of [17] suggest that using a nonlinear model along with a
variability model was not necessary, and that the latter can
already handle nonlinear effects to some extent.

In this letter, following the ideas of [18], we provide
theoretical insight to these results, by showing that there is a
mathematical connection between both approaches. We show
that a local Taylor expansion of a generic nonlinear model can
be related to a variant of the spatially varying ELMM. This
derivation, as well as the experiments, show that the ELMM
has the ability to recover abundances from nonlinear mixtures,
even though it was derived from physical considerations about
endmember variability in linear mixtures.

The remainder of this letter is organized as follows: Sec-
tion II shows the mathematical relationships between a general
nonlinear model and the ELMM. Then, section III presents
some results on synthetic datasets to experimentally confirm the
theoretical derivation. Concluding remarks are finally gathered
in section IV.

II. CONNECTION BETWEEN NONLINEAR MODELS AND
VARIABILITY MODELS

A generic (noise free) nonlinear mixing model can be
expressed, for a given pixel n and wavelength l, as:

xln = fn(sl1, sl2, ..., slP ) (5)

where slp is the value of endmember p at wavelength l, and
fn : RP → R is a generic nonlinear function, which does not

depend on the considered spectral band. Assuming the nonlinear
function fn is sufficiently smooth, and that the sources are
allowed to vary, we can perform an M th order Taylor expansion
in (0, 0, ..., 0):
xln = fn(0) + s>l:∇fn(0) + s>l:∇2fn(0)sl:

+ · · ·+ o(‖sl:‖M ) (6)

=

P∑
p=1

∂fn
∂slp

(0)slp +

P∑
p=1

P∑
q=1

∂2fn
∂slp∂slq

(0)slpslq

+ · · ·+ o(‖sl:‖M ) (7)
where we have discarded the constant term (i.e. we assume
that fn(0) = 0), and where sl: = [sl1, ..., slP ]> ∈ RP . Note
that even though this expansion is performed in 0, the error
term o(||sl:||M ) is likely to be small, because linear-quadratic
and multilinear mixing models approximate the physics of
hyperspectral imaging well. If the underlying nonlinear function
is close to polynomial, we expect the coefficients of the
expansion to be very close to the actual coefficients of the
polynomial. In addition, even with a more general model, the
expansion will also be valid in the neighborhood of sl: with a
high enough order M of the expansion.

We change the notation of the coefficients of the expansion,
keeping in mind their dependence with respect to the different
variables of the model, and also change the indexing such that
the identical second order terms are gathered in only one term:

xln =

P∑
p=1

αpnslp+

P∑
p=1

P∑
q=p

βpqnslpslq + · · ·+o(‖sl:‖M ). (8)

There is no dependence of the coefficients on the spectral band
since we assumed the nonlinearity affects all spectral bands
equally. If, following the physics of the problem, we assume
the true nonlinear model is close to a multilinear model, that is
a generalization of model (2) to higher order interaction terms,
then we can safely assume that αpn ≈ apn and βpqn ≈ bpqn,
and then model (2) is a truncation at the second order of

xln =

P∑
p=1

apnslp +

P∑
p=1

P∑
q=p

bpqnslpslq + · · ·+o(‖sl:‖M ). (9)

On the other hand, if we factorize coefficient αpnslp in the
terms of Eq. (8), we obtain

xln =

P∑
p=1

αpn

(
1 +

P∑
q=p

βpqn
αpn

slq + · · ·+ o(‖sl:‖M )

)
slp.

(10)
In order to make this factorization possible, we had to assume
that all materials have a nonzero linear coefficient in pixel n.
If the true model is multilinear, then these coefficients corre-
spond to the abundances, and we simply have to remove the
endmembers with zero abundance in pixel n from the equation.
By denoting the factor between the parentheses by ψlpn, and
again by assuming the true model is close to multilinear, the
first order coefficients are close to the abundances. Then, by
factoring this coefficient and the endmember term slp, the rest
of the expansion can be seen a scalar factor which depends
on the pixel, band and material considered:

xln =

P∑
p=1

apnψlpnslp (11)
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which is formally close to the variability model (4), with the
notable exception that the scaling factor ψlpn now depends
on the wavelength. The ELMM is essentially a linear model
where each endmember is allowed to vary spatially according
to the law spn = ψpnsp, where sp is a reference signature
for material p. The scaling factor ψpn does not depend on the
wavelength here. Note that model (11) is very general and
may be too flexible to provide reliable performance without
additional well chosen regularizations. Still, this shows that
the space invariant (in terms of the endmembers) nonlinear
model (5) can be locally approximated by a spatially varying
linear model.

Finally, note that model (11) is more general than truncating
model (9) at the second order, since the scaling factor
incorporates information about the linear and quadratic terms
of the expansion, but also about higher order terms.

III. EXPERIMENTAL RESULTS
In this section, we present experimental evidence of the fact

that in certain situations, the ELMM can indeed estimate the
abundances when the mixing model is nonlinear.
A. Experimental setup

We generated six different nonlinear synthetic datasets to test
the three different models and different experimental conditions.
First, we randomly selected three endmembers with 224 spectral
bands from the USGS spectral library [19]. The abundances
were generated using 200× 200 Gaussian random fields and
comply with the positivity and sum-to-one constraints. The
endmembers and abundances used (shown in the top row of
Fig. 1) are the same for all the tested models. We considered
two levels of nonlinearity (moderate and high, depending on
the magnitude of the coefficients) for each model.

All the resulting hyperspectral images are then of size 200×
200 × 224. We used the three following models to generate
the datasets: the linear-quadratic Generalized Bilinear Model
(GBM) (3), a a third order (trilinear) model, which extends
model (3) to third order interactions, and the Multi-Linear
Mixing (MLM) model of [20].

For the GBM, for each material, the nonlinear interaction
coefficients γpqn were generated using mixtures of Gaussians
(so as to give them a spatial coherence), and are positive.

For the third order model, we used the same second order
coefficients as in the previous case. The third order interaction
coefficients were generated using mixtures of Gaussians.

The MLM considers interactions of possibly any order, but
was derived from very different considerations than the linear-
quadratic or third order models. For instance, the derivation of
this model leads to higher order interactions which result in a
decrease of the total reflectance, rather than in the addition of
a positive term to the linear model. This dataset will be used
to test the performance in situations where the expansion (8)
may be a worse approximation of the data than with a purely
polynomial model. A pixel is generated using the following
equation:

xn =
(1− Pn)San
1− PnSan

+ en (12)

where Pn, if positive, represents the probability that, within the
field of view of pixel xn, any ray of light (after any number
of nonlinear interactions) undergoes an additional nonlinear

interaction. In this case, we expect the polynomial model-based
algorithms to provide poor results, because the constraints on
the parameters cannot model decreases in total reflectance, but
only increased reflectance w.r.t. the linear model. This case is
possible in the MLM, by considering negative values for Pn

(see [20] for possible physical explanations). Values for Pn

were generated using mixtures of Gaussians, with values in the
range [-0.5,0] for the low nonlinearity level ([-0.75,0] for high
nonlinearity level) for negative Pn, and in the range [0,0.5]
([0,0.75] for the high nonlinearity level) for positive Pn. In
all cases, the noise was assumed to be Gaussian distributed
with an isotropic covariance matrix, such that the signal to
noise ratio is 30dB. Values are in the range [0,0.5] for the low
nonlinearity level ([0, 0.75] for the high nonlinearity level) for
all nonlinear coefficients.

We run and compare four different unmixing algorithms to
estimate the abundances (assuming the endmember matrix S
is known beforehand).

The Fully Constrained Least Squares Unmixing (FCLSU)
algorithm of [21] is a least squares estimation of the abundances,
with the abundance nonnegativity and sum-to-one constraints:

arg min
A∈∆P

1

2
‖X− SA‖2F (13)

where A ∈ ∆P means that each column of A belongs to the
unit simplex with P vertices, and || · ||F is the Frobenius norm.

We also use a Linear-Quadratic unmixing strategy, very
close to the one used in [22]. We store all the second order
interaction spectra sp � sq in a matrix M ∈ RL×P (P+1)/2.
Then model (2) can be rewritten in a matrix form, and we can
estimate the abundances and nonlinear coefficients with the
following optimization problem:

arg min
A∈∆P ,B≥0

1

2
‖X− SA−MB‖2F (14)

where B ∈ RP (P+1)/2×N gathers all the nonlinear interaction
coefficients, for all possible pairs of materials and all pixels.
This problem is convex with respect to {A,B} taken simulta-
neously, and separable with respect to those two variables (the
constraints on each block are different, however), so we can
obtain the global minimum by using an iterative procedure: we
alternate a minimization of the function w.r.t. A, keeping B
fixed and vice versa. Each minimization amounts to solving a
either a nonnegative or fully constrained least squares problem.
This model does not exactly correspond to (3), because here
the nonlinear coefficients do not depend on the abundances.

We also adapt the previous algorithm to the third order
case. By simply augmenting matrix B to include third order
endmembers, we can handle the third order case using the
same algorithm.

The ELMM unmixing algorithm, which, in its simplest
form [23], solves the following optimization problem (noncon-
vex, but convex w.r.t. each block of variables):

arg min
A∈∆P ,S,ψ

1

2

N∑
n=1

(
‖xn − Snan‖22 + λS‖Sn − Sψn‖2F

)
(15)

where S ∈ RL×P×N gathers all the endmember signatures,
for all pixels and all materials, Sn ∈ RL×P is a slice of S
corresponding to the local endmember matrix for pixel n, and
ψn ∈ RP×P is a diagonal matrix whose diagonal elements are
the scaling factors corresponding to pixel n, for all the materials.
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Algorithm
Model GBM Third order model MLM (Pn ≤ 0) MLM (Pn ≥ 0)

FCLSU 0.2329 0.3483 0.3136 0.4190 0.1686 0.2271 0.1939 0.2730
Linear-Quadratic 0.0311 0.0392 0.0766 0.1703 0.1261 0.1764 0.1939 0.2730

Third order 0.0339 0.0486 0.0637 0.0889 0.1256 0.1755 0.1941 0.2732
ELMM 0.0395 0.0562 0.0583 0.0874 0.1001 0.1400 0.1107 0.1680

TABLE I
RMSE(Â) VALUES FOR ALL CONFIGURATIONS. THE BEST RESULT FOR

EACH CASE IS IN BOLD. THE LEFT (RESP. RIGHT) SIDE OF EACH CELL
CORRESPONDS TO A MODERATE (RESP. HIGH) LEVEL OF NONLINEARITY.

λS is a regularization parameter forcing the local endmembers
to be more or less close to scaled versions of the references.
The optimization is performed by iterating minimization steps
w.r.t. each of the three blocks of variables.

We initialize the last three algorithms with the results of
the LMM, and stop them whenever the relative variation
(in Frobenius norms) of the abundance matrix goes below
εA = 10−3. The values of parameter λS for the ELMM were
empirically set (to obtain the best performance) to 1.5 (resp.
5) for the moderately (resp. highly) nonlinear GBM dataset,
to 7 (resp. 6) for the moderately (resp. highly) nonlinear third
order model, to 1 for the negative Pn MLM datasets, and to
0.5 for the positive Pn MLM data.
B. Results

For each dataset and algorithm, we computed the overall
abundance Root Mean Squared Errors (RMSE between the
true abundances an and the estimated ones ân):

RMSE(Â) =
1

N
√
L

N∑
n=1

‖an − ân‖2 (16)

These quantities, for all algorithms and datasets, are gathered
in Table I. As expected, the LMM based algorithm (FCLSU)
provides a poor abundance estimation, which gets worse and
worse when nonlinearity or model complexity increases. Not
surprisingly, the Linear-Quadratic based method obtains the
best abundance estimation results on the GBM data, for both
levels of nonlinearity. This is because both models are formally
similar and just differ in that the coefficients of the GBM
depend on the abundances. The ELMM obtains relatively good
performance on this dataset as well. Indeed, the values of the
scaling factors are all greater than 1 (whereas they are not
explicitly constrained, and can be either lower or greater than
1 in endmember variability scenarios), which matches Eq. (10).
The difference in performance may be explained by the fact
that the ELMM considers scaling factors to be independent of
the spectral band, which is not the case in Eq. (11).

When third order terms are included in the model, all
unmixing algorithms achieve worse (but acceptable, except
for FCLSU) performance than in the second order case. But
more importantly, in that case, the ELMM obtains better results
than the Linear-Quadratic or the third order algorithms. The
reason for this is that, following the derivation of section II,
the scaling factor of the ELMM is able to incorporate
information corresponding to higher order terms, whereas using
the polynomial algorithms means truncating the expansion to
second or third-order terms. The third order algorithm may
require additional regularizations, such as sparsity, to avoid
overfitting the data, due to the large size of the endmember
matrix.

We show in Fig. 1 the true and estimated abundances by the
four tested algorithms with the same third order model data.
The visual results confirm the quantitative ones on the fact that
the LMM fails because of the nonlinearities. The polynomial

True abundances FCLSU Linear Quadratic Third order ELMM

Fig. 1. True abundances (leftmost column) and estimated abundances by the
four tested algorithms on the third order model data with a moderate level
of nonlinearity (in the columns, from left to right: FCLSU, Linear-Quadratic
algorithm, Third order algorithm, ELMM).

unmixing algorithms obtain better estimations, but far from
perfect, especially for material two. Finally, the ELMM, even
if it was not designed for this purpose, is able to obtain
abundance maps which match best the true ones. There are still
some discrepancies for material one, but the overall abundance
estimation is close to the true abundance maps and visually
less noisy than the polynomial ones.

For the case of the MLM data, all algorithms obtain relatively
poor results. This is due to the fact that the MLM has a more
general expression than a polynomial model and is then much
less accurately approximated by the Taylor expansion. The
closest abundances to the ground truth in that case are still
those of the ELMM. This happens both for positive and negative
values of Pn: in the former case, the scaling factors are lower
than 1 to account for the decrease in reflectance. The linear,
second and third order models perform equally bad, because
the nonlinear coefficients are all close to 0, so as not to increase
the total reflectance. In the negative case, the scaling factors are
always greater than 1 because the total reflectance is increased
w.r.t. the LMM.

IV. CONCLUSION

In this letter, we showed that a general nonlinear mixture,
approximated locally by a Taylor expansion, is formally very
similar to the Extended Linear Mixing Model, in which scaling
factors model the variability of the endmembers. The similarity
only requires that the magnitude of the error in the expansion
is not too large, e.g. if the true model is close to polynomial.
This general theoretical result was experimentally validated for
hyperspectral image unmixing by comparing the performance
of 4 unmixing algorithms on 6 datasets generated by 3 different
nonlinear models in different conditions. Experimental results
show the efficacy and accuracy of ELMM algorithm for any
of the tested nonlinear models, through a better abundance
estimation performance than the competing algorithms. The
ELMM is also proven to handle general nonlinear mixtures
better than polynomial model-based algorithms.

However, these results raise the question of how to efficiently
extract information related to both endmember variability and
nonlinear mixtures at the same time. When nonlinear mixtures
are involved at the same time as variability, separating the
contributions of both phenomena might not be directly possible
using the ELMM, even though abundance estimation is not
impacted.
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