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Introduction

The conventional Boundary Element Method (BEM) as applied to elastodynamic analysis in the frequency or time domain employs the corresponding elastodynamic fundamental solution and formulates the problem in terms of only surface integrals, thereby reducing the dimensionality of the problem by one and restricting the discretization to the surface of the domain (Beskos 1987[START_REF] Agnantiaris | Some studies on Dual Reciprocity BEM for elastodynamic analysis[END_REF]. However, the use of the elastodynamic fundamental solution increases the computational effort in forced vibration analysis and in addition creates problems of accuracy in free vibration analysis, due to its complicated form. On the other hand, use of the much simpler elastostatic fundamental solution creates an inertial volume integral, which requires an interior discretization of the domain in addition to the surface one. Thus, the main advantage of dimensionality reduction of the method is lost (Beskos 1987[START_REF] Agnantiaris | Some studies on Dual Reciprocity BEM for elastodynamic analysis[END_REF]. [START_REF] Nardini | A new approach to free vibration analysis using boundary elements[END_REF], 1983[START_REF] Nardini | Boundary integral formulation of mass matrices for dynamic analysis[END_REF] introduced the Dual Reciprocity Boundary Element Method (DR/BEM), in which the inertial volume integral is transformed into a surface integral with the aid of the reciprocal theorem applied for the second time, the ®rst time being when formulating the elastodynamic problem in integral form. Thus, they succeeded in creating a BEM which combines the dimensionality reduction advantage with the simple elastostatic fundamental solution with obvious computational gains in both free and forced elastic vibration problems. Looking at the result from another viewpoint, one can say that the resulting formulation looks like a ®nite element one without the need of interior discretization but with the employment of nonsymmetric matrices. Thus, in DR/BEM, free vibration analysis is accomplished by solving the generalized eigenvalue problem iteratively and forced vibration analysis by integrating stepwise the equations of motion. Problems arising in free vibration analysis (use of the inef®cient determinant search method) and forced vibration analysis (observing causality at every time step) by the conventional time domain BEM are now eliminated. The equivalence of the DR/BEM to the particular integrals BEM approach of [START_REF] Ahmad | Free vibration analysis by BEM using particular integrals[END_REF] was recently established by [START_REF] Polyzos | On the equivalence of dual reciprocity and particular integrals approaches in the BEM[END_REF]. A comprehensive literature review on the DR/BEM as applied to elastodynamics can be found in the general review article of [START_REF] Agnantiaris | Some studies on Dual Reciprocity BEM for elastodynamic analysis[END_REF]. The problem of convergence of the DR/BEM and the associated problems of selecting the best basis (or approximating) functions and including or not internal collocation points have received considerable attention in recent years. In elastodynamics one can mention the works of [START_REF] Chirino | A comparative study of three boundary element approaches to transient dynamic crack problems[END_REF], [START_REF] Providakis | Dynamic analysis of inelastic plate by the D/BEM[END_REF] and [START_REF] Agnantiaris | Some studies on Dual Reciprocity BEM for elastodynamic analysis[END_REF]. Through comparison studies dealing with twodimensional (2-D) elastodynamic fracture mechanics problems, [START_REF] Chirino | A comparative study of three boundary element approaches to transient dynamic crack problems[END_REF] have concluded that a) a reasonable number of interior collocation points increase the accuracy of the method and b) the DR/BEM requires less computer time than either the time or frequency domain conventional BEM's. Very recent studies on the DR/ BEM as applied to various 2-D elastodynamic problems by [START_REF] Agnantiaris | Some studies on Dual Reciprocity BEM for elastodynamic analysis[END_REF] have revealed that a) radial basis functions not only lead to convergent solutions but due to their simplicity, permit an easy analytic computation of particular solutions, b) the simplest polynomial 1 r provides the best results and c) some internal collocation points improve the accuracy of the solution.

The present paper deals with the application of the DR/ BEM to three-dimensional (3-D) elastodynamic analysis including both free and forced vibration problems. Convergence of the method as affected by the number of boundary elements, the number of internal collocation points, the size of the time step and various step-by-step integration algorithms is studied through numerical examples. A general analytical method is described for the closed form determination of the particular solutions of the displacement and traction tensors corresponding to radial basis functions. The simple but effective 1 r radial basis function is adopted. Quadratic continuous and discontinuous 9-noded boundary elements are used in the analysis. Free vibrations are studied by solving the corresponding eigenvalue problem iteratively. Harmonic forced vibration problems are solved directly in the frequency domain and transient forced vibration problems are solved by step-by-step integration of the equations of motion.

Two numerical examples involving free and forced vibrations of a sphere and a cube are presented. Thus, the present paper can be thought of as an extension and generalization of the previous work of the authors [START_REF] Agnantiaris | Some studies on Dual Reciprocity BEM for elastodynamic analysis[END_REF] with respect to dimensionality, internal collocation point effect and numerical integration. The DR/BEM has been successfully applied by Wang andBanerjee (1988, 1990) and [START_REF] Wilson | Free vibration analysis of three-dimensional solids by BEM[END_REF] to free vibrations of 3-D and axisymmetric structures. However, no application of the DR/BEM to forced vibrations of threedimensional (3-D) elastic structures and no extensive convergence studies of the method have as yet appeared in the literature. The present paper consists of ®ve sections with the ®rst one being the present section (introduction). The second section brie¯y presents the DR/BEM as applied to elastodynamics. The third section describes a general analytical method for determining particular solutions. Section four deals with the numerical examples and section ®ve presents the conclusions coming out of the present work.
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The DR/BEM in elastodynamics A brief review of the DR/BEM as applied to elastodynamics is presented in this section for reasons of completeness. More details can be found elsewhere [START_REF] Dominguez | Boundary Elements in Dynamics[END_REF]. Consider the motion of a linearly elastic body of volume X and surface C described by the governing partial differential equation
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where uxY t is the displacement vector at point x and time t and the linear elastostatics operator L 1 x and inertial operator L 2

x are given by L 1
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with k and l being the Lame elastic constants, q the mass density, I the identity tensor, D the Laplacian and r the gradient operator. Assuming zero body forces and initial conditions one can obtain an integral representation of the solution of Eq. (1) in the form

cxuxY t C u à xY npnY t À p à xY nunY t d C n À X u à x Y n q u n Y t d X n 4
where u à xY n is the fundamental displacement tensor and p à xY n the corresponding fundamental traction tensor for the elastostatic operator L 1 x (Kelvin's solution), pnY t is the traction vector at point n and time t, overdots indicate differentiation with respect to time and the tensor cx receives the value of I for x P X, 0 for x P X c , (1/2)I for x P C and being smooth and is given as a function of the local geometry at x for x P C and being nonsmooth.

Integral representation (4) has the advantage of employing the much simpler elastostatic fundamental solution pair and hence avoiding the time convolutions present in a conventional time domain BEM. However, the presence of the inertial volume integral in (4) indicates that an interior domain discretization in addition to the boundary one is necessary. [START_REF] Nardini | A new approach to free vibration analysis using boundary elements[END_REF], 1983[START_REF] Nardini | Boundary integral formulation of mass matrices for dynamic analysis[END_REF] were able to transform this volume integral into a boundary one, thereby creating an all-boundary integral formulation involving the advantageous elastostatic fundamental solution and leading to the DR/BEM. To this end, the unknown solution uxY t is expressed inside X as a series of unknown time dependent coef®cients a m i t and known basis functions f m x of the form
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where M N L with N and L being the number of boundary and internal collocation points, respectively. In this work radial basis functions are considered because of their simplicity meaning that
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where rxY n m is the Euclidean distance from point x to point n m . Inserting expression (5) into the volume integral of Eq. ( 4) and using the reciprocity principle one succeeds in transforming this integral into a boundary integral of the form
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where w m jn x is the particular solution (displacement) of the equation L 1

x w m x f m xI 8 and g m jn x is the traction ®eld corresponding to the displacement w m jn x with iY jY n 1Y 2Y 3. Discretization of the boundary C into a ®nite number of quadratic boundary elements with a total number of N nodes and writing of Eq. ( 4) in conjunction with (7) for all these nodes, enables one to form the matrix equation

Pfug Ufpg qPW À UHf ag Y 9
where U and P are the elastostatic in¯uence matrices, fug and fpg are the boundary displacement and traction vectors, respectively and W and H are matrices containing submatrices of the type w m j and g m j each column of which corresponds to the m-order radial function and each row to the j nodal point. Application of expansion ( 5) to all nodal points M and collection of the resulting equations produces fug Ffag X 10

Thus one can rewrite Eq. ( 9) into the form

Mf ug Pfug Ufpg Y 11 where M qUH À PWF À1 X 12 
Equation ( 11) can be easily solved by a step-by-step time integration algorithm. It has been found by [START_REF] Leissa | Analysis of time integration schemes for boundary element applications to transient wave propagation problems[END_REF] that among four different time integration algorithms (two central difference, Newmark's and Houbolt's) Houbolt's algorithm is the most accurate and stable for solving this equation. In this work, besides Houbolt's algorithm, the stif¯y stable algorithm of Park (Park 1975; [START_REF] Adeli | Algorithms for nonlinear structural dynamics[END_REF]) the a-method of [START_REF] Hilber | Improved numerical dissipation for time integration algorithms in structural dynamics[END_REF], as well as the central difference algorithm and those of Newmark and Wilson [START_REF] Bathe | Boundary element methods in dynamic analysis[END_REF] have also been used and tested. The corresponding DR/BEM elastodynamic formulation in frequency domain can be easily accomplished by considering time harmonic dependence for the boundary displacement and traction vectors appearing in (11). In this case Eq. ( 11) becomes
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where x is the circular frequency of the harmonic excitation of u and p vectors with amplitudes u 0 and p 0 , respectively. For any desirable frequency, by considering the appropriate boundary conditions, one can compute any unknown amplitude by solving the system (13). The computation of natural modes and frequencies of vibration can be deduced from the general system (13) by setting the external disturbances equal to zero. This results to a generalized algebraic eigenvalue problem represented by the equation 

Derivation of particular solutions

In this section a general method for analytically obtaining a particular solution of Eq. ( 8) under three-dimensional conditions is described. This method uses Papkovich potentials instead of the Galerkin vector employed by [START_REF] Coleman | An effective boundary element method for inhomogeneous partial differential equations[END_REF] and requires the solution of lower order ordinary differential equations.

A solution of Eq. ( 8) in three dimensions admits (Brand 1966) a dyadic decomposition of the form

w m a 1 x 1 a 2 x 2 a 3 x 3 Y 15
where denotes the dyadic, a i are unknown vectors and x i the unit vectors along x i axes of a three dimensional Cartesian system i 1Y 2Y 3. Inserting Eq. ( 15) into Eq. ( 8) one receives
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Due to the orthogonality of x i Eq. ( 16) implies that
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where m is the Poisson's ratio. The solutions of Eq. ( 17) can be expressed in terms of the vector and scalar [START_REF] Rekach | Manual of the Theory of Elasticity[END_REF]) potentials as
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where the vector potentials A i and the scalar potentials a i satisfy the equations
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and
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It is easy to see that the complete solutions of the above vector and scalar Poisson's equations ( 19) and (20) respectively, are
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where the radial functions gr and qr satisfy the ordinary differential equations 22) correspond to arbitrary integration constants of the homogeneous solutions of ( 23) and ( 24), respectively.

Taking into account Eq. ( 21), ( 22) and inserting ( 18) into (15) the complete particular solution of ( 8) is written as
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where
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In (26) the constants R 1 Y R 2 Y R 3 Y R 4
are usually employed in order to regularize singular terms appearing in the ®nal expressions for gr and qr. Finally the traction ®eld g m ij corresponding to w m ij is given by
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In ( 25) and ( 27) commas represent spatial derivatives. It was found in [START_REF] Agnantiaris | Some studies on Dual Reciprocity BEM for elastodynamic analysis[END_REF], that the radial basis function f r 1 r when used in the above formulation for plane elastic problems provides the best results. Thus, for this function one can ®nd particular solutions of Eq. ( 8) following the procedure described above. The calculated expressions for the w m jn x particular solution and its corresponding g m jn x are
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where l is the shear modulus, m the Poisson's ratio, r i and n i are the components of the vector r connecting any two points of the boundary surface and the components of the normal outward vector n at the point where the particular solution is evaluated, respectively and d ij is the Dirac function. The indices i and j vary from 1 to 3.

Numerical examples

In this section two 3-D elastodynamic problems dealing with the free and forced vibration of an elastic sphere of radius r 6 m and a cube of side a 6 m, are solved by the DR/BEM in order to examine the ef®ciency and the accuracy of this method as applied to structural vibration analysis. The above applications were accomplished in a 486 personal computer with 100 MHz processor speed, 16 Mb RAM and 600 Mb hard disk memory space. The material properties for both problems are: Shear modulus l 10 6 Pa, Poisson's ratio m 0X25 (in the free vibration analysis of the cantilever elastic cube the Poisson's ratio is taken equal to 0.3) and mass density q 100 kgam 3 . All the results are compared with those obtained by other analytical and/or numerical methods.

Example 1 The ®rst problem in this example concerns the free vibration of an elastic sphere with a traction free surface. The ®rst six natural frequencies of the problem have been calculated through the DR/BEM by discretizing the surface of the sphere into 40 continuous, nine node, quadratic, quadrilateral elements and using in turn 7, 15, 27, 53 and 67 uniformly distributed internal collocation points. The results are presented in Table 1 and compared with those derived analytically in [START_REF] Eringen | Linear Theory[END_REF]. As it is evident from this table there is a very good agreement between numerical and analytical results, especially when the number of internal collocation points increases. Increasing the number of internal collocation points makes the error smaller and of similar size for all the frequencies. The same sphere is subjected next to a uniform harmonic pressure of amplitude P 0 100 Pa. This time harmonic vibration problem has been solved numerically by the DR/BEM using the same boundary mesh and the same number of internal points as in the previous free vibration problem. Figure 1a±d portrays the amplitude of the harmonic radial displacement U r at the surface of the sphere versus the frequency x for 0, 15, 47 and 67 internal points. The results are compared with the analytical solution of [START_REF] Eringen | Linear Theory[END_REF] and those obtained by a conventional frequency domain BEM (FD/BEM) code [START_REF] Hilber | Improved numerical dissipation for time integration algorithms in structural dynamics[END_REF]) using the same boundary mesh. It is obvious from this comparison that the accuracy of the DR/BEM increases as the number of internal points increases.

Finally the sphere is subjected to a suddenly applied uniform radial pressure Pt P 0 Ht where P 0 100 Pa and Ht is the Heaviside function. This problem has been solved by the DR/BEM using the same mesh as in the previous two cases and considering 0, 15, 27, 53 and 67 internal collocation points. In order to ®nd the most reliable time marching scheme of solving the ®nal system (11), the well known step-by-step time integration techniques of Houbolt, Newmark, Wilson, central difference [START_REF] Bathe | Boundary element methods in dynamic analysis[END_REF]Park 1975) and the a-method of [START_REF] Hilber | Improved numerical dissipation for time integration algorithms in structural dynamics[END_REF], have been tested in the present example. Among them, only Houbolt's and Park's methods gave stable and accurate results. For this reason, only results pertaining to Houbolt's and Park's algorithms are presented here as shown in Fig. 2a±d and3a±d, respectively, for 0, 15, 53 and 67 internal collocation points for Houbolt's and 0, 15, 27 and 53 for Park's methods. In both cases the same time integration step Dt 0X0038 sec has been used for comparison reasons. The results are compared with those obtained ®rst by a numerical inverse Fourier transformation (with 50 sampling points in a time interval of 0.4 sec) of the frequency domain analytical solution given by [START_REF] Eringen | Linear Theory[END_REF] and second by inverting in real time the Laplace transformed BEM solution of the problem (with 70 sampling points in a time interval of 0.6 sec) as proposed by [START_REF] Stamos | Dynamic analysis of large 3-D underground structures by the BEM[END_REF]. As it is evident from these two ®gures, the accuracy of the DR/BEM solution through both Houbolt's and Park's step-by-step integration schemes, slightly increases for a small increase of the number of internal points but decreases for further increase of them. In fact, Park's algorithm breaks down when use is made of 53 internal points (Fig. 3d). This is in (1996) stating that a small number of internal points improves the accuracy of the solution.

It should be noted here that both Houbolt's and Park's algorithms have been also tested in the present example by considering either smaller or larger time step than the one used here (0.0038 sec) for the same number of internal collocation points. These results are not shown here for lack of space reasons, but the main conclusion of this study is that Houbolt's integration scheme gives accurate results for a time step Dt that satis®es the relation b c 1 DtaL 0X8, with c 1 and L being the longitudinal wave velocity of the elastic medium and the length be-tween the nearest surface nodes, respectively, while Park's stif¯y stable time integration scheme works with the same accuracy as Houbolt's algorithm when b is equal to 1.4. For 2-D applications of the DR/BEM this parameter b takes values in the interval [0.75, 1.5] when Houbolt's integration technique is used [START_REF] Chirino | A comparative study of three boundary element approaches to transient dynamic crack problems[END_REF].

Example 2 The ®rst problem in this example deals with the free vibration analysis of an elastic cube. The displacements on one face of the cube are completely ®xed while all the other faces are traction free. The cube is discretized into 4 nine-node-quadratic-quadrilateral discontinuous elements per face in order to accommodate the Finally the cube is subjected at one of its faces to a suddenly applied uniform tensile traction P P 0 Ht acting along the x direction, where P 0 100 Pa and Ht is the Heaviside function. The boundary mesh used consists again of 4 elements per face. The time step used in Houbolt's time integration scheme is Dt 0X0075 sec b 0X8 while in Park's stif¯y stable scheme is Dt 0X0128 sec b 1X4. The results of the DR/BEM were obtained with 0, 3, 10 and 27 internal collocation points. The time history of the U x displacement at the middle node of the loaded surface of the cube is compared with that obtained by the ®nite element program NAST-RAN using 216 solid-linear-®nite-elements and the Newmark-linear-acceleration time integration algorithm with a time step Dt 0X0032 sec. The transient displacement response is shown in Figs. 5a±d for both the Houbolt's and Park's algorithms. The results are in good agreement with those obtained by NASTRAN but, as it is evident from the graphs, inclusion of internal collocation points here introduces oscillations in the response obtained by both Houbolt's and Park's schemes in agreement with the results of the previous example. As a matter of fact, in here, even a small number of interior points does not improve the accuracy as in the case of 2-D plastodynamics analysed by the DR/BEM [START_REF] Kontoni | Transient dynamic elastoplastic analysis by the dual reciprocity BEM[END_REF]. Also one can observe that the responses calculated by the DR/BEM are stiffer than those obtained by NASTRAN probably to the higher numerical damping in Houbolt's and Park's algorithms as compared to the Newmark's algorithm employed by NASTRAN. On the basis of the above two examples one can observe that, in general, an increase of the number of interior points increases the accuracy of the results of free vibration or harmonic forced vibration analyses, while decreases the accuracy of the results of transient forced vibration analysis, unless this increase of the interior points is small. These results can be attributed to the fact that increase of internal points increases the number of degrees of freedom of the structure and this results to a higher solution accuracy when one computes the ®rst few vibration modes or the harmonic response for low frequencies and a lower solution accuracy when one computes the transient response taking into account the effect of many inaccurately computed higher modes.

A comparison of the present 3-D elastodynamic results against the 2-D ones of [START_REF] Agnantiaris | Some studies on Dual Reciprocity BEM for elastodynamic analysis[END_REF] clearly indicates that the DR/BEM is more accurate and ef®cient when used for 2-D than for 3-D problems.

Conclusions

An ef®cient and satisfactorily accurate DR/BEM for 3-D dynamic analysis including both free and forced vibrations has been developed. Closed form expressions for the particular solution of displacement and traction tensors are provided for the case of radial basis functions. Only the surface of the structure has to be discretized eventhough in eigenfrequency and harmonic response analyses, internal collocation points are necessary for increased accuracy. In harmonic response problems the 3-D DR/BEM provides excellent results especially for low frequencies. The 3-D DR/BEM, like the 2-D one, produces accurate results provided that the elements over the surface of the structure are as uniformly distributed as possible.

For transient response problems, among the various step-by-step time integration schemes (Houbolt, Park, Newmark, central difference, Wilson, a-method) that can be used in DR/BEM, Houbolt's and Park's algorithms give the most accurate results with the former being slightly better. Inclusion of zero or a few internal collocation points in DR/BEM used in solving 3-D transient response problems improves the solution accuracy. However, inclusion of many interior points decreases the solution accuracy, especially when the time interval for both the Houbolt and Park schemes is small, that is when the parameter b is smaller than 0.8 for Houbolt's and 1.4 for Park's algorithms. The 3-D DR/BEM requires less computer time than the conventional time and frequency domain BEM formulations but also has large requirements on available computer memory and on available hard disk memory space due to the cumbersome matrix manipulations for the determination of the mass matrix [M].
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 1a±d Fig. 1a±d. Amplitude of the radial displacement on the surface of the sphere versus radial frequency

Fig. 2a±d .

 2a±d Fig. 2a±d. Time history of the radial displacement on the surface of the sphere using Houbolt's algorithm

Fig. 4a±d .

 4a±d Fig.4a±d. Amplitude of the U x displacement at the mid-node of the loaded surface of the cube versus radial frequency

Fig. 5a±d .

 5a±d Fig. 5a±d. Time History of the U x displacement at the mid-node of the loaded surface of the cube

  It should be noticed that matrices[A] and M Ã are both fully populated and non symmetric and care should be taken in the choice of the appropriate eigenvalue solution algorithm. In the present work, an algorithm based on iterative similarity transformations for eigenvalue extraction of non symmetric matrices described inPress et al. (1994) was used successfully.
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where matrix

[A] 

is the BEM in¯uence matrix referring to all unknown boundary variables contained in fxg and matrix M Ã is obtained from [M] by putting zeros in its sub-columns related to speci®ed displacements (®xed boundaries). The algebraic system (
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) is solved for the natural frequencies x and the corresponding modal shapes contained in fxg.
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Table 1 .

 1 Normalized eigenfrequencies of the traction free spherex à x  R  p qal

	Mode Type	Analytical DR/BEM Error	DR/BEM Error	DR/BEM Error	DR/BEM Error DR/BEM Error
				7 I.P.	(%)	15 I.P.	(%)	27 I.P.	(%)	53 I.P.	(%)	67 I.P.	(%)
	1	Torsional	2.501	2.446	2.3	2.453	1.9	2.456	1.8	2.469	1.47	2.464	1.47
	2	Spheroidal	2.640	2.873	8.8	2.777	5.18	2.750	4.1	2.691	1.93	2.691	1.93
	3	Spheroidal	3.424	3.440	0.46	3.405	0.5	3.397	0.78	3.395	0.84	3.383	1.19
	4	Torsional	3.865	3.883	0.45	3.881	0.4	3.877	0.3	3.874	0.23	3.873	0.23
	5	Spheroidal	3.916	3.898	0.45	3.898	0.45	3.891	0.63	3.886	0.76	3.886	0.76
	6	Spheroidal	4.440	4.681	5.4	4.607	3.76	4.575	3.	4.509	1.55	4.509	1.55

Table 2 .

 2 Normalized eigenfrequencies of the cantilever cube

	x à x  R Â	p qaE								
	Mode Type		Analytical DR/BEM	Error	DR/BEM	Error	DR/BEM	Error	DR/BEM	Error
					0 I.P.	(%)	10 I.P.	(%)	27 I.P.	(%)	36 I.P.	(%)
	1	Bending	0.670	0.673	0.44	0.670	0.	0.670	0.	0.670	0.
	2	Torsion	0.909	0.926	1.83	0.930	2.3	0.933	2.64	0.933	2.64
	3	Tension	1.599	1.628	1.81	1.608	0.5	1.602	0.18	1.6	0.06
	4	Bending	1.769	1.788	1.07	1.775	0.3	1.773	0.22	1.773	0.22
	5	Torsion	2.180	2.149	2.6	2.154	1.2	2.156	1.1	2.156	1.1
	6	Tension	2.581	2.533	1.85	2.559	0.8	2.556	0.96	2.557	0.92