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INTRODUCTION

Since the boundary element method (BEM) is known as a suitable numerical approach for wave analysis, time-domain transient problems have been solved by many researchers using the BEM formulated by Mansur and BrebbiaCll, and HiroseC 2 J. However, it is known that the use of a direct time-domain BEM sometimes causes numerical instability in time-stepping procedures.

Recently, the convolution quadrature boundary element method (CQ-BEM) has been researched by SchanzO! and Abreu et al.C [START_REF] Abreu | Scalar wave propagation in 2D: a BEM formulation based on the operational quadrature method[END_REF] for transient analysis, following the proposal of the convolution quadrature method (CQM) by LubichC 5 l in 1988. In the formulation of the CQ-BEM, convolution integrals in the time-domain boundary element formulation are numerically approximated by the CQM. Application of the CQM to the time-domain BEM not only improves the numerical stability of the time-domain BEM, but also expands its range of engineering applications, because the CQ-BEM utilizes the Lap]acedomain, and not time-domain, fundamental solutions derived from the governing equations of a problem. In fact, the conventional time-domain BEM approach cannot be used for viscoelastic problems because no time-domain fundamental solution is known. Therefore, using the CQ-BEM is particularly helpful for viscoelastic problems.

Thus, the CQ-BEM is elegant. However, it shares a critical disadvantage with the conventional timedomain BEM: these methods cannot solve large-scale problems because of low computational efficiency. If this shortcoming is resolved, the CQ-BEM should become a more powerful technique for transient analysis of wave propagation problems.

To overcome the difficulty, in this paper we propose an efficient CQ-BEM using the fast multipole method (FMM)< 6 >< 7 l developed by Rokhlin and Greengard. In the following, after a review of the CQM, the conventional time-domain BEM and CQ-BEM formulations for 2-D viscoelastic wave propagation are presented. The CQ-BEM using the FMM is then discussed. Finally, numerical examples are shown to validate the proposed method.

CONVOLUTION QUADRATURE METHOD (CQM)

In this section, the convolution quadrature method (CQM) is described briefly. The convolution quadrature method (CQM), first proposed by Lubich, approximates the convolution f * g(t) by a dis- crete convolution using the Lap lace transform of the time-dependent function f ( t -T). In general, the convolution integral is defined as follows:

f * g(t) = [ f(t-r)g(r)dr, t ::0: 0 (1)
where * denotes the convolution. The convolution integral defined by Eq.(l) is approximated by the CQM as follows:

n f * g(n6.t) ~ L Wn-j(6.t)g(j6.t), n = 0, 1, ... , N (2)
j=O where timet was divided into N equal steps 6.t. Moreover, wi(6.t) denotes the quadrature weights, which are determined by the coefficients of the following power series with complex variable z, namely, 8(()

~ n F( 6.t ) = L.-Wn(6.t)z . n=O (3) 
In Eq.(3), F is the La place transform of the time-dependent function f and 8 ( () is the quotient of the generating polynomials of a linear multistep method. The power series defined in Eq.( 3) can be calculated by Cauchy's integral formula. Considering a polar coordinate transformation, Cauchy's integral is approximated by a trapezoidal rule with L equal steps 27r / L as follows:

(4

)
where i is the imaginary unit and (t is given by ( 1 = Re 2 1rill L. In addition, R is the radius of a circle in the domain of analyticity of F.

CQ•BEM FORMULATION FOR 2•D VISCOELASTIC WAVE PROPAGATION

We consider 2-D visco~lastic wave scattering by scatterer iJ in an exterior viscoelastic medium D. When the incident wave um hits the boundary surfaceS of scatterer iJ, scattered waves are generated by the interaction between scatterer D and the incident wave. Assuming zero initial conditions, i.e., ui(x, t = 0) = 0 and aui(x, t = 0)/8t = 0, the governing equations and boundary conditions are written as f'(t) • U;J;(;z;, t) + ( K(t) + ~l'(t)) • U;,;;(X, t) = pii;(X, t) in D ui = ili on 81, ti = li on 82, 52= S \51.

(5) (6) In Eq.(S) and Eq.( 6), J.L(t) and K(t) are the shear relaxation and bulk relaxation functions, respectively, which satisfy the axiom of nonretroactivity, i.e., J.L(t) = K(t) = 0, -oo < t < 0. In addition, pis the density of elastic medium D. ui(x, t) and ti(x, t) are the displacement and traction components of the displacement and traction vector in Cartesian coordinate system at x and time t, respectively. Moreover, ui and fi are the given boundary conditions, ( ) ,i denotes space derivative, and ( • ) indicats the partial derivative with respect to time t. Summation over repeated subscripts is implied and indices range from 1 to 2 in this paper.

In general, the time-domain fundamental solution UiJ(x, y, t) and its double layer kernel TiJ(X, y, t) cannot be obtained analytically for a linear viscoelastic problem as mentioned above. However, assuming the exsistence of an explicit form of the time-domain fundamental solutions, the time-domain boundary integral equation in 2-D viscoelastodynamics can be expressed by where CiJ is the free term. Normally, the boundary integral equation is discretized by using the appropriate interpolation functions for the unknown values and solved by a time-stepping algorithm. The boundary integral equation ( 7), however, cannot be solved using such a scheme because there is no explicit time-domain fundamental solution. Therefore, the CQM is applied to Eq.( 7) to overcome the difficulty.

If we discretize the boundary surface S into M elements by a piecewise constant approximation of the unknown displacement ui and traction ti, taking the limit of x E D --+ X E S, and finally using CQM for the convolutions in Eq.( 7), we arrive at the following discretized boundary integral equation for time increment ~t and n steps as follows:

M n ~ui(x, n~t) = u~n(x, n~t) + L L [Aij-k(x, ya)tj(k~t) -B;j-k(x, ya)uj(k~t)] . ( 8 
)
a=l k=l

Here, Ai and Bf' are influence functions defined by

(9) (10) 
where St is given by s1 = 8((t)/ ~t. In addition, Uij(X, y, s) and 'fiJ(x, y, s) are the Laplace-domain fundamental solutions, which can be analytically obtained as follows:

(11

)
where c;, and c1 are the transverse and longitudinal wave velocities given by c;, = J Jl* ( s) j p and c£ = vf(K*(s) + (4/3)J.L*(s))jp, respectively. In addition, Jl*(s) and K*(s) are defined by Jl*(s) = sfl(s)

and K* ( s) = sk ( s) using the Lap lace-transformed relaxation functions fl( s) and k ( s), respectively.

Also, OiJ is the Kronecker delta, r is given by r = IX-Yl and Kn is the modified Bessel function of the second kind. Note that sL and sr are defined by sL = 8(()/(c1~t) and sr = 8(()/(c;.,~t) due to the simple expression in Eq.(ll). The calculations of Eq.( 9) are identical to the discrete Fourier transform. Therefore, Eq.( 9) can be evaluated rapidly by means of the fast Fourier transform (FFf) algorithm. Arranging Eq.( 8) according to the boundary conditions, we obtain

M ~ui(x, n~t)+ 2: [B?j(x, Y 0 )uj(n~t)-A~j(X, y 0 )tj(n~t)] a=l M n-l =u}n(x, n~t) + :L 2: [Aij-k(x, Y 0 )tj(k~t)-B:_j-k(x, y 0 )uj(k~t)]. (13)
For the n-th time step, all the quantities on the right-hand side of Eq.( 13) are known. Therefore, the unknown values uf(n~t) and tf(n~t) in the n-th time step can be obtained by solving Eq.(l3). Unfortunately, we cannot solve a large-scale problem with a large number of boundary elements M and time steps N by the CQ-BEM because the required computational complexity and memory become O(LA1 2 N) and 0(1\1 2 N) in Eq.(l3), respectively. Therefore, the CQ-BEM is accelerated by the FMM in this research.

APPLICATION OF FMM TO CQ-BEM

The FMM, developed by Rokhlin and Greengard< 6 >< 7 l, is a technique for reducing computational time and memory requirements for a large-scale problem. Since the FMM and its application to the BEM have been described in detail in other published papers, we will summarize only the essential formulas here.

MULTIPOLE EXPANSION AND LOCAL EXPANSION

To apply the FMM to the CQ-BEM, we need to separate the variables of the fundamental solutions (11) and (12). For example, the fundamental solution in Eq.(ll) is transformed into the equation:

A 1 [ u U] Uii(x, y, s) = J..L*(s)s} <I>,i + e3iiw,j . (14) 
Here <I>u and wu are the displacement potentials, which are defined by (

u 1 u 1 <I> = 2 7T Ko(sLix-Y\),k, w = e3kl 2 1T Ko(sriX-Yl),l•
) ~ ~ 17 
In Eq.( 17), In shows the modified Bessel function of the first kind. Similarly, multi pole moments Af'{: and NJ' for the double layer kernel defined in Eq.( 12) are derived, as well as J.\1~1 and Ni{ for the fundamental solution defined in Eq.(ll).

In addition, local expansions are also obtained corresponding to the multipole expansions defined in Eq.( 16) as follows: 

TRANSLATION FORMULAS FOR FMM

Once the multi pole moments are obtained, we can quickly evaluate the matrix-vector products of the discretized boundary integral equation (13) using the fast multipole algorithm. The translation formulas for the fast multipole algorithm, M2M, M2L, and L2L, are also derived from Graf's addition theorem, and are defined as follows: This fact sometimes causes instability of the translation formulas ( 19)-( 21) when cell size is large. To overcome this problem, we introduce a scaling of the multi pole moments ( 17) using the scaled modified Bessel functions ln(z) = e-z In(z) and Kn(z) = ez Kn(z).

NUMERICAL EXAMPLES

In the fo11owing practical applications, the three-element standard linear model< 8 l is considered as a typical elastic model.

VISCOELASTIC WAVE SCATTERING BY A CAVITY

We first consider the problem of an incident plane SV-wave scattered by a cavity with radius a as shown in Fig. 2. In this analysis, we use. a Ricker wavelet modified for a viscoelastic wave, as the incident wave. The modified Ricker wavelet u~n(x, t) is defined by a Fourier transform of the original Ricker wavelet as (23) where t0 corresponds to the peak frequency 27!' /t 0 , ts corresponds to the minimum peak in the time do- main and u 0 is the reference displacement. The difference from the elastic wave is that the wavenumber 000 000 000 at x1/a = 0.0, 5.0, 10.0 and 15.0.

kr is complex and depends on the angular frequency w. Figs. 345show the time histories of the displacements u 2 fu 0 at points A, B, and Con the cavity as shown in Fig. 2. Solutions using two different time increments, CLoi:!J.tf a = 0.125 and C£0/:ltf a = 0.0625, an elastic solution, and a numerical solution obtained by Fukui et. al. < 9 ) are shown in Figs. 345for comparison. We solved this problem solely through the CQ-BEM without using the FMM. The boundary• of the cavity is discretized into 72 boundary elements using piecewise constant approximation, and we assumed a traction-free condition: ti = 0. The CQM parameters, N and L, are given by N = L = 128. In addition, 'R, is assumed to be 'R, = 0.91398170 (e = 10-10 ). The material parameters of the three- element standard linear model are J-LR/ J-Lo = 0.5, K / J-Lo = 1.0, ru = T0, and re = 0.5T0, where J-LR is the relaxed shear modulus, J-Lo is the initial shear modulus, ru is the stress relaxation time, and r 6 is the strain relaxation time. Moreover, the time To is defined by T0 = 2af C£0, which is the time that an elastic wave with initial wave velocity C£o = ..j(K + (4/3)J.Lo)/ p passes through a cavity with radius a as shown in Fig. 2. We set time tjT 0 = 0.0 at the moment the incident wave hits point A on the boundary of the cavity in Fig. 2. We can see that the results obtained by the CQ-BEM are in good agreement with the analytical numerical results calculated by Fukui et.al.

VISCOELASTIC WAVE SCAITERING BY MANY CAVITIES

Next, viscoelastic wave scattering by many cavities, as shown in Fig. 6, is solved using the CQ-BEM accelerated by the FMM. In this analysis, we use a desktop computer with an Intel(R) Xeon(R) 1.60GHz CPU 5310 and 2GB of memory. The components of an incident viscoelastic plane wave with initial wave velocity CLo are defined as follows:

.

[ 2(1

iwTo) l m _ . -I Wo -e i/cL:z:1 ui (re, t) -uo8z1:F 2 . ( 2 
2 ) e lW W -W 0 ( 24 
)
where w 0 = 21r JT 0 • Fig. 7 shows the time variations of utfu0 of the incident viscoelastic waves cal- culated by Eq.( 24) at xtfa = 0, 5, 10, and 15. The parameters of the three-element standard model are J.LR/ J.Lo = 0.85, K/ J-Lo = 5/3, ru = 0.5T0, and r6 = 17T0/40. For comparison, incident elastic waves with wave velocity CLo corresponding to the incident viscoelastic waves are plotted by solid lines in Fig. 7. We can see that the wave-form& of the incident viscoelastic wave decrease while the wave is propagating.
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-5 We set the time tjT 0 = 0.0 at the moment the incident wave hits the cavities in the far left column in Fig. 6. The parameters for the CQM are taken as N = L = 256, p = 0.95609320 (E = 10-10 ). The time increment is cL06tja = 0.125, the number ofDOF in each time step is 8192, and the truncation number for the summation of multi pole expansion and local expansion such as Eq.(l6) and Eq.( 18) is chosen asp= ±10. This problem cannot be solved by the use of the CQ-BEM alone because of memory restrictions. Therefore, the FMM is applied to accelerate the calculation of the matrix-vector products of the discretized boundary integral equation and to conserve memory. In addition, OpenMP with eight threads is used to parallelize this analysis. We can see that scattered waves are generated by the interaction of the incident wave with each cavity. The effect of attenuation from the viscoelastic model can be seen by comparing Fig. 8 and Fig. 9. Thus, the CQ-BEM using the FMM is very effective for large-scale problems.

CONCLUSION

In this paper, the CQ-BEM using the FMM was developed for 2-D viscoelastic wave propagation. In the proposed method, the convolution integrals in a time-domain boundary integral equation are discretized using the CQM, and the Laplace-domain fundamental solutions are used to calculate influence functions. Therefore, the proposed method has the potential to tackle problems where no time-domain fundamental solutions are available, e.g., poroelastodynamics or 3-D viscoelastodynamics. Moreover, the FMM was applied to accelerate the calculations of matrix-vector products for the retarded potential and to reduce the memory required in the CQ-BEM. As numerical examples, scattering problems of incident waves by cavities were demonstrated to validate the proposed method. In the near future, we will extend the CQ-BEM using the FMM to 3-D viscoelastic wave propagation.
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 1 Figure 1. Multipole expansion and Graf's addition theorem.

  Yo near a source point y as shown in Fig.l, and using Graf's addition theorem for Eq.( 15), we can obtain the multipole expansions as follows: q,U(x) = 2~ E Af;!Kn(sLr)ein(), wU(x) = 2~ E N;[Kn(srr)einO (16) n=-oo n=-oo where r and (} are the polar coordinate components of a field point X originated at Yo as shown in Fig. I. In Eq .( 16), the coefficients A1;( and N;( do not depend on the field point X. These coefficients are called the multipole moment on Yo. and are given by Af;( = -8 8 [In(sLp)e-in<P], N;[ = -e3kt 8 8 [In(srp)e-in<P].

  (18), r and (} are the polar coordinate components of a field point X originated at the local expansion point Xo. In addition, Ln and Hn are local expansion coefficients corresponding to multipole moments 1\!ln and Nn, respectively.
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 7 Figure 7. Time variations of uduo of the incident viscoelastic wave calculated by Eq.(24)
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 8 Figure 8. Time histories of the displacements ul/uo Figure 9. around the cavities in the viscoelastic case.

(a) tjT 0 = 1 .

 1 25, (b) t/To = 6.25, (c) t/To 11.25.

5 10

 5 Time histories of the displacements uifu0 around the cavities in the elastic case. (a) t/To -1.2:5, (b) t/To -6.25, (c) t/To = 11.25.
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 8 Fig.8-(a), (b), and (c) show the time histories of displacement uduo around cavities at t/To = 1.25,