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Qualitative analysis of a forced nonsmooth oscillator with contact
and friction

Alain Léger • Elaine Pratt

Abstract We study the qualitative dynamics of a simple

mass-spring system involving non regularized unilateral

contact and Coulomb friction and submitted to an oscil-

lating external force. The period-amplitude plane of the

excitation appears to be essentially divided into two ranges

of sliding solutions. At each point of the lower range there

exist infinitely many equilibrium points and all the trajec-

tories go to equilibrium in finite time. In the upper range,

there no longer exist equilibria. Different kinds of periodic

solutions are shown to exist in different zones and the

transitions between these zones are explicitly computed.

The upper boundary of this range, where the mass looses

contact, is also computed and special attention is paid to

the dependence of this upper boundary with respect to the

period of the excitation.

Keywords Coulomb friction � Mass-spring systems �
Nonsmooth dynamics � Stability � Unilateral contact

1 Introduction

The present work is in the same vein as previous papers

dealing with the stability of discrete mechanical systems

involving nonsmooth unilateral contact and friction con-

ditions. Bearing in mind that due to the dissipative char-

acter of the friction law and the nonsmooth character of

both the contact and the friction condition, classical sta-

bility analysis is to be ruled out, our first option was to

observe the trajectories starting from initial data close to

equilibrium points to obtain stability properties. Having

determined the set of equilibrium states of a simple model

with unilateral contact and Coulomb friction their stability

was initially explored by numerical experiments [5]. Then

we came back to the idea of using analytical estimates of

the evolution in time of the distance between a given

equilibrium state and any trajectory starting from initial

data sufficiently close to the equilibrium [3]. It was how-

ever observed that although such an analysis took very

carefully into account the contact and friction constraints

along the trajectory, it was not really satisfactory from the

point of view of stability because of the specificity of the

friction law. In fact, due to the graph of the Coulomb

friction law, starting from a given equilibrium state and

modifying the external forces induces a change in the

reaction but may produce no change in the position nor in

the velocity of the particles. This suggested a new notion of

stability first given in [2]. The new notion was analyzed at

length, and led to a conjecture, partially proved in [13].

The present work is formally very close to usual

investigations of the behaviour of classical dynamical

systems with respect to the parameters of the excitation.

However we are not concerned for the time being by sta-

bility notions but essentially by some qualitative properties

of the trajectories. Only the fact that some trajectories

always lead to a stationnary solution can be seen as a

contribution to a stability analysis. We focus on the case of

a very simple mass-spring system already used in several

papers (e.g. [5] or [3]), but here the system is submitted to
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an oscillating force. A rectangular wave excitation is

chosen in order to show as explicitly as possible the

complexity of the dynamics. Fundamental differences with

respect to smooth dynamical systems are obtained in the

period-amplitude plane of the excitation, such as the per-

sistence of infinitely many equilibrium states while the

right-hand side is oscillating.

The main steps of the paper are outlined as follows.

Section 2 summarizes previous results. In order to have

a self-sufficient paper, it seemed necessary to describe the

simple mass-spring system we are dealing with together

with the basic equations of its dynamics, then to recall

without proof some results concerning its qualitative

dynamics, and finally to give the set of its equilibria under

constant loading.

Section 3 gives the existence results of equilibrium

points under an oscillating force, so that a first part of the

classical period-amplitude plane is determined.

Section 4 is the main part of the work. In the range

where equilibrium states no longer exist we study the

existence and the characteristics of periodic solutions. We

show that this range is divided into several zones between

which the transitions correspond either to the value of the

period, to the shape of the trajectory, or to the synchroni-

zation of the answer with the excitation.

Section 5 studies the upper boundary of these zones in

the period-amplitude plane, which means that we explore

the set of periodic solutions up to the occurence of an

episode of motion where contact is lost. We then conclude

by listing some remaining problems and in particular by

observing that taking impacts into account will involve the

nonsmoothness of the system in a stronger way.

2 Preliminaries: equilibria and stability of a simple

system with unilateral contact and Coulomb friction

under constant loading

2.1 The simple model

We consider the very classical mass-spring system in IR2

represented on Fig. 1 and studied in previous works,

originally from the point of view of the existence and

uniqueness of quasi-static solutions [9] and studied

numerically in [1]. The particle of mass m is connected to a

rigid frame by two springs and constrained to move only

above the horizontal axis.

Let ut and un be respectively the tangential and the

normal component of the displacement of the mass. When

submitted to an external force of components Ft and Fn, the

trajectory of the mass is obtained by solving the following

system where ð_Þ indicates the derivative with respect to

time:

m€utþKtutþWun¼FtþRt;
m€unþWutþKnun¼FnþRn;

t[0

un�0; Rn�0; unRn¼ 0;

lRn�Rt� �lRn;
jRtj\lRn¼) _ut¼ 0;
jRtj ¼ lRn¼)9k[0 s.t. _ut¼�kRt:

�

8>>>>><
>>>>>:

ð1Þ

to which one adds initial data compatible with the obstacle

and an impact law with a restitution coefficient e which

reads: let s be a contact time, then _unðsþÞ ¼ �e _unðs�Þ:
Such an impact law is well defined since _u is a function of

bounded variation. Kt, Kn and W are the stiffness coeffi-

cients of the system of linear springs represented on

Fig. 1, l is the friction coefficient, Rt and Rn are unknowns

and denote respectively the tangential and normal com-

ponents of the reaction of the obstacle. It has been shown,

using tools given in [6] and [11], that this system is well-

posed if the force is a piecewise analytical function of time

[4]. As in previous papers (e.g. [12]), we stress the fact that

any regularization of the friction law would not be in

agreement with some fundamental physical requirements.

In particular no motion must be initiated until the tangen-

tial reaction reaches a yield value and this yield value must

depend on the normal reaction. The Coulomb friction law

we have adopted seems to be the simplest friction law

which satisfies these physical requirements.

2.2 The set of equilibrium states

It is useful for the present work to recall the set of equi-

librium positions which has been fully determined in the

case of a constant external force (see [5, 10]). The main

qualitative results of this investigation are the following:

• the structure of the set of equilibria depends only on

the sign of two quantities which are KtFn - WFt and

Fig. 1 The mass-spring system
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l� Kt

W ; the quantity KtFn - WFt which appears all

through the paper shall be denoted by A;

• equilibrium states without contact always exist when

A\0: The equilibrium state without contact is then

unique. Moreover, if l� Kt

W [ 0; then the equilibrium

state without contact coexists with infinitely many

equilibrium states in contact with a strictly negative

normal component of the reaction.

• If A� 0; there are no equilibrium states without

contact. Moreover the set of equilibria reduces to a

single state in grazing contact if A ¼ 0 and l� Kt

W \0:

• If A[ 0 there always exist infinitely many equilibrium

states, which all have a strictly negative normal

component of the reaction. If in addition l� Kt

W � 0

then this set fills completely a half-line in the fRt;Rng
plane, while it fills only a bounded interval if

l� Kt

W \0: In this case, the ends of the half-line or

interval are in imminent sliding, while all the other

equilibria are strictly stuck by friction.

2.3 About stability

As recalled in the introduction the first step of the quali-

tative analysis of the nonsmooth dynamical system we are

studying delt with the classical notions of stability of

equilibria. Using the fundamental result concerning the

well-posedness of the Cauchy problem and having the

complete description of the set of the equilibrium states, we

chose initial data in the neighbourghoods of each given

equilibrium state and then calculated whether the corre-

sponding solution of problem (1) diverged or not from the

equilibrium. This led to Lyapunov stability, asymptotic

stability, or instability with classical definitions, and was

performed for all the equilibria and all the values of the

parameters [3].

More recently, we observed that the classical notions of

stability are not suited to nonsmooth dynamics involving

Coulomb friction. The basic observation leading to this is

that when a contact point is strictly stuck by friction, that

means has a reaction strictly inside the Coulomb cone, then

the external force may vary without setting the point into

motion as long as the reaction given by the equilibrium

equation is not on the border of the cone. And the main

theoretical result is that when a point is moving with a

sliding velocity which reaches zero at some time, we are

able to explicit sufficient conditions for the reaction to

jump strictly inside the Coulomb cone and for the point to

stay motionless for any future time. Of course the fact that

we can change the forces without changing the position of

the particle, or the fact that the particle can stop in finite

time and remain at rest, can be seen as stability properties.

This was stated in the form of a stability conjecture in a

recent paper [13] and will be very useful in the present

work.

3 Existence of equilibrium states under oscillating

loading

We shall now study the mass-spring system of Fig. 1 up to

the end of the paper. We assume that the parameters and

the components of the external force are such that

l W \ Kt and A ¼ KtFn �WFt [ 0 i.e. the equilibria are

all in strict contact (i.e. no grazing contact) and fill an

interval in the fRt;Rng plane, as represented in Fig. 2. All

the equilibrium states are strictly stuck by friction except

the two ends of the interval which are in imminent sliding,

one to the right the other to the left. The purpose of the

analysis consists in submitting the system to an additional

oscillating force, and to study the effects of this perturba-

tion on the equilibria.

If one of the strictly stuck equilibria represented in

Fig. 2 is perturbed by a sufficiently small additional force,

the mass remains at rest as long as the perturbation does not

bring the reaction to the border of the cone, so that it is

immediately seen that the normal component of the reac-

tion of the equilibria belongs to an interval depending on

time and given by:

Fig. 2 The set of equilibrium states, for A[ 0 and l� Kt

W \0: It is

given by the intersection of the Coulomb cone with an affine

manifold, here a straight line, which represents the equilibrium

equation
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fRngðtÞ ¼
�KtFnðtÞ þWFtðtÞ

Kt � lW
;
�KtFnðtÞ þWFtðtÞ

Kt þ lW

� �
:

ð2Þ

For any given t the set {Rn}(t) is the interval of the Rn axis

represented by a thick line in Fig. 2. The following result,

the proof of which has been given in [13], will be a fun-

damental tool for a large part of the analysis:

Lemma 1 Let the loading be piecewise analytical and let

{Rn}(t) be the set of normal components of the reactions at

time t corresponding to a strictly stuck equilibrium solu-

tion. We suppose thatA[ 0 and we consider the trajectory

of a sliding mass which satisfies problem (1).

If at the instant t*, when the mass stops sliding, its normal

reaction Rn
* belongs to the interior of {Rn}(t*), then the mass

shall remain in a strictly stuck equilibrium state as long as its

normal reaction belongs to the interior of {Rn}(t).

Although problem (1) gives the dynamics in any situa-

tion, it will be useful to specify the equations of the tra-

jectories during sliding periods. Inserting un : 0 into Eq.

(1) together with Rt = lRn yields the equation of the

motion when sliding to the right:

m€ut þ ðKt � lWÞut ¼ Ft � lFn; ð3Þ

while Rt = - lRn yields the equation of the motion when

sliding to the left:

m€ut þ ðKt þ lWÞut ¼ Ft þ lFn: ð4Þ

It is interesting to observe that the reactions, although

varying according to strict Coulomb’s friction law, have

been eliminated from each equation so that each sliding

phase is a part of a linear oscillation. The corresponding

half-periods of the free oscillations, respectively denoted

by Ta and Tb for sliding to the right and to the left, are

consequently given by:

Ta ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m

Kt � lW

r
; Tb ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

Kt þ lW

r
:

The frequencies xa and xb shall also be introduced with

obvious notations. The loadings Ft(t) and Fn(t) are now

written in the following way:

FtðtÞ ¼ Ft þ PtðtÞ and FnðtÞ ¼ Fn þ PnðtÞ;

where Ft and Fn are constant and Pt(t) and Pn(t) are tan-

gential and normal perturbations.

We shall restrict our attention here to the case of a

tangential perturbation, in other words to the case

Pn(t) = 0. It can be easily verified that, due to the coupling,

the qualitative analysis is the same in the case of a per-

turbation with a non zero normal component. In fact the set

of stationary solutions increases with the normal compo-

nent of the perturbation.

In order to go on as far as possible with closed-form

calculations, we are going to consider a tangential pertur-

bation of rectangular wave shape given by, for i = 0, 1,

... and e [ 0:

PtðtÞ ¼ e if t 2 �2iT ; ð2iþ 1ÞT � and

PtðtÞ ¼ 0 if t 2 �ð2iþ 1ÞT ; ð2iþ 2ÞT�: ð5Þ

So that e is the amplitude and T the half period of the

perturbation. On Fig. 3 the equilibrium solutions

corresponding to Pt(t) = 0 and to PtðtÞ ¼ e are

represented in the {Rt, Rn} plane. If we introduce, as in

[13], the set:

Rn ¼
\

t [ 0

fRngðtÞ;

we obtain in this case

Rn ¼
�KtFn þWFt

Kt � lW
;
�KtFn þWFt

Kt þ lW

� �

\ �KtFn þWðFt þ eÞ
Kt � lW

;
�KtFn þWðFt þ eÞ

Kt þ lW

� �
;

¼ �Aþ eW
Kt � lW

;
�A

Kt þ lW

� �
: ð6Þ

On introducing the following notations that shall appear

very often from now on: R�n ¼ �A
Kt�lW ; Rþn ¼ �A

KtþlW ; R�ne ¼
�AþeW
Kt�lW and Rþne ¼ �AþeW

KtþlW we have

Rn ¼ R�ne;R
þ
n

� �
:

This set Rn can be an interval on the Rn axis (represented

by a thick line in Fig. 3), can be reduced to a single point or

can be empty depending on the value of e: We shall discuss

these different possibilities in the following. In order to

illustrate our results, numerical calculations will also be

Fig. 3 Equilibrium solutions in the {Rt, Rn}plane (dotted line
equilibrium solutions when the tangential perturbation is equal to

zero, full line equilibrium solutions when the tangential perturbation

is equal to e)
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performed with the software Maple, by using the following

values for the data:

m ¼ 1; l ¼ 0:5; and Fn ¼ 2; Ft ¼ 1; Kt ¼ 2;

W ¼ 1 so that A ¼ 3:
ð7Þ

From Eq. (2) we see that when e ¼ 2lA
KtþlW the set Rn

reduces to a single point, and the set of normal components

of the reactions at equilibrium is a non zero measure

interval when e\ 2lA
KtþlW and an empty set when e [ 2lA

KtþlW :

For example 2lA
KtþlW ¼ 1:2 when the above values of the data

are used. We shall examine successively these different

situations. As the parameter m has no influence on this

study, we choose from now on to take m = 1.

3.1 When e\ 2lA
KtþlW

In this case the set Rn is a nonzero measure interval and we

have the following result:

Proposition 1 When the amplitude e of the perturbing

force is strictly smaller than 2lA
KtþlW :

1. there exists infinitely many equilibrium solutions,

2. all sliding trajectories attain an equilibrium in finite

time.

Proof The first point is a direct consequence of Lemma

(1), indeed any position in the interval
R�neþFn

W ;
Rþn þFn

W

h i
with

a zero velocity satisfies problem (1).

The proof of point 2 is divided into several steps. We shall

just give the steps and drop the calculations which are not

difficult. At first we show that when the initial data are suffi-

ciently close to equilibrium and T is sufficiently large, an

equilibrium is reached after only one sliding oscillation.

Indeed, let us look at the solution of the following system

which describes a first phase of sliding to the right until the

velocity is zero, a second phase during which the particle stays

at rest until the end of the half period, a third phase of sliding to

the left and a last phase of rest until the end of the period.

T [ Ta;
2R�ne�RþneþFn

W � u0\
R�neþFn

W ;

€u1 þ x2
au1 ¼ Ft � lFn þ e; t 2 ð0; TaÞ

u1ð0Þ ¼ u0; _u1ð0Þ ¼ 0;

_u2ðtÞ ¼ 0; t 2 ðTa; TÞ

€u3 þ x2
bu3 ¼ Ft þ lFn; t 2 ðT ; T þ TbÞ

u1ðTÞ ¼ u3ðTÞ; _u3ðTÞ ¼ 0;

_u4ðtÞ ¼ 0; t 2 ðT þ Tb; 2TÞ:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð8Þ

If u0 2 ½2R�ne�Rþn þFn

W ;
R�neþFn

W ½ then u1ðTÞ 2 R�neþFn

W ;
Rþn þFn

W

h i
so

that u2: u3 : u4 and the result is trivial.

If on the other hand u0 2 ½2R�ne�RþneþFn

W ;
2R�ne�Rþn þFn

W ½ then

inserting the solution of (8) into the expression of the

normal component of the reaction given by the equilibrium

equations gives

Rnð2TÞ � Rnð0Þ ¼ 2
2lWA� eWðKt þ lWÞ

K2
t � l2W2

¼ 2ðRþn � R�neÞ;

which means that Rnð2TÞ 2 Rn:

Let us now look at the case where u0 62
½2R�ne�RþneþFn

W ;
R�neþFn

W ½: We shall show that the trajectory will

enter in finite time into the interval ½2R�ne�RþneþFn

W ;
R�neþFn

W � with

a zero velocity so that we come back to the previous case.

This is a consequence of the following result:

Lemma 2 Assume T [ Ta and a trajectory is such that

there exists some �t such that

_uð�tÞ ¼ 0

_uðtÞ� 0 for t 2 ½�t � g; �t�; _uðtÞ� 0 for t 2 ½�t; �t þ g�;

�
g[ 0:

Then, 9t̂; �t\t̂\�t þ 2T ; such that:

_uðt̂Þ ¼ 0

_uðtÞ� 0 for t 2 ½t̂ � g; t̂�; _uðtÞ� 0 for t 2 ½t̂; t̂ þ g�;

�
g[ 0:

The proof of Lemma 2 is elementary for �t ¼ 0; and is

adapted with simple estimates for larger �t:

We then get that

2ðRþn � R�neÞ�Rnðt̂Þ � Rnð�tÞ�R�ne � Rnð�tÞ; ð9Þ

which gives the result.

The case where T \ Ta must then be studied. We have

already proved in [13] that starting in imminent sliding and if

the amplitude e is small enough (e� lA
KtþlW), the trajectory

leads to an equilibrium state after sliding in only one direc-

tion (i.e. the velocity keeps the same sign up to the final stop)

as is the case on Fig. 4a. The proof of the same result is easily

adapted if the trajectory starts from an initial data out of

equilibrium. If e is larger than lA
KtþlW ; then Lemma 2 is easily

adapted and again an inequality similar to (9) gives the result.

Using the values introduced in (7) and taking e ¼
1\ 2lA

KtþlW ¼ 1:2; examples of trajectories are represented

in the phase space fut; _utg in Figs. 4 and 5.

3.2 When e ¼ 2lA
KtþlW

This value of e is the transition between the existence of

equilibrium states without non trivial periodic solutions

5



and periodic solutions without equilibria. The interval Rn is

reduced to a single point which means, due to Lemma 1

that there exists a unique equilibrium state whatever the

value of the period of the excitation. Using the numerical

values given in (7), this equilibrium state is the point

ðut ¼ 0:8; _ut ¼ 0Þ:
A constructive proof, which is elementary in this case

but which is at the origin of proofs for solutions in less

trivial cases, shows the existence of periodic solutions.

Assume the particle is sliding to the right and the half

period T of the excitation is larger than the half sliding

period Ta. Then the sliding motion will stop before the

perturbation of amplitude e is removed, so that, according

to lemma 1 the particle shall remain in a strictly stuck

equilibrium if the normal component of the reaction

belongs to the set given by Eq. (2) at that time (equal to

½Rþne;R
�
ne� in this case). Then the amplitude of the pertur-

bation jumps from e to zero, so that the particle is no longer

at equilibrium and slides to the left. Since Ta [ Tb, the half

period T of the excitation is also larger than the half sliding
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period Tb. Again the particle stops and remains at rest with

a reaction inside the cone up to the moment when the

perturbation jumps to e again. This will give a periodic

trajectory if the position at the second stop is equal to the

position at the initial data. Such trajectories are represented

in the fRt;Rng plane on Fig. 6a, and in the phase space on

Fig. 6b where we can see that they are diffeomorphic to

ellipses.

According to Eqs. (3, 4) and to the assumptions on the

loading, solutions of this type do exist if the following

problem has a solution:

€u1 þ ðKt � lWÞu1 ¼ Ft þ e� lFn;
u1ð0Þ ¼ u0; _u1ð0Þ ¼ 0;
~u1 ¼ u1ð~tÞ; ~t such that ~t 6¼ 0; _u1ð~tÞ ¼ 0;
€u2 þ ðKt þ lWÞu2 ¼ Ft þ lFn;
u2ðTÞ ¼ ~u1; _u2ðTÞ ¼ 0;
û2 ¼ u2ðt̂Þ; t̂ such that t̂ 6¼ 0; _u2ðt̂Þ ¼ 0;
û2 ¼ u0:

8>>>>>>>><
>>>>>>>>:

ð10Þ

After some elementary calculations, we get that this system

has a solution if and only if e ¼ 2lA
KtþlW and u0 2

½Fnþ2Re�
n �Reþ

n

W ;
FnþRe�

n

W � (for the data chosen in (7) we have

u0 2 ½0:32; 0:8�). Obviously this construction works for any

T larger that Ta. Represented in the phase space all these

trajectories have the same center at the equilibrium point

ðut ¼ FnþRe�
n

W ; _ut ¼ 0Þ: Moreover, numerical experiments

show that trajectories starting from any initial data outside

the outer periodic solution always reach a periodic solution.

These observations suggest a stability property of the set of

periodic solutions, and clearly a Lyapunov stability of the

equilibrium.

We have thus proved the following qualitative features:

Proposition 2

• When the amplitude e of the perturbing force is equal to
2lA

KtþlW and the half period T is smaller than Ta, all the

trajectories go to the single equilibrium of the system.

• When the amplitude e of the perturbing force is equal to
2lA

KtþlW and the half period T is larger than Ta, infinitely

many periodic solutions of period 2T appear around the

equilibrium which behaves locally as a center.

Remark 1 Concerning Proposition 2 it is interesting to

note that:

• The equilibrium state is reached at infinity, while one

equilibrium among a whole set of equilibria was always

reached in finite time for smaller values of e:
• The amplitude of the oscillations takes more and more

time to decrease as T increases towards Ta, and beyond

Ta these oscillations change into periodic solutions.

This suggests that the point ðT ; eÞ ¼ ðTa;
2lA

KtþlWÞ could

be interpreted as a Hopf bifurcation point.

• Such a Hopf type bifurcation point is nevertheless not

classical since all the periodic solutions lie in a

bounded domain diffeomorphic to an ellipse and are

surrounded by non periodic solutions similar to those

obtained before the bifurcation point but converging

here towards a periodic solution. This is represented on

Fig. 7.

4 When no equilibrium solutions exist

All the remaining part of this work deals with the range

e [ 2lA
KtþlW : This range will be divided into two parts sep-

arated by a relatively complicated boundary: a «lower»

range where the particle is always in contact, and an

«upper» range, where at least one point of the trajectory

looses contact. In the present work we shall carry out two

steps of the analysis of the qualitative dynamics: in the

range where the trajectories are always in contact, we shall

focus on the existence of periodic solutions giving a

detailled description of their different shapes. Then special

attention will be paid to the upper boundary of this range

defined as the value of e corresponding to the occurence of

the loss of contact. This boundary will be shown to depend

strongly on the period of the excitation. Trajectories which
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Fig. 7 Solutions for e ¼ 1:2
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loose contact, therefore involve impacts, shall be studied in

a future work. The qualitative behaviour of the dynamics is

conveniently described, in the period-amplitude plane, by

the diagram depicted in Fig. 10a.

We first prove that periodic solutions of different kinds

and multiplicity exist for any T as soon as there no longer

exist equilibrium states. Due to the nonsmoothness of

system (1), the method we use for proving the existence of

periodic solution will consist in following the solution by

piecewise calculations for given values of the parameters

and proving that there exist solutions for which the tra-

jectory comes back to its initial data. Of course this ensures

the existence of some periodic solutions, but does not prove

that there does not exist others. In some cases nevertheless

the well-posedness of the Cauchy problem shall enable us

to exclude other periodic solutions. The mechanical

parameters will be fixed in the whole analysis, with the

explicit values given in (7) for numerical computations,

and we shall explore the {T; e} plane. As a last point, let us

mention that in all this section numerical experiments were

used as a guide for the theoretical calculations we subse-

quently performed (see e.g. [7]).

The analysis will be broken into several ranges of the

half period T (see Fig. 10a), T [ Ta ? Tb where we shall in

particular find inifinitely many periodic solutions of period

4T, Tb \ T \ Ta ? Tb which will appear as relatively

intricate, and T \ Tb.

4.1 Periodic solutions for large T.

The fact that the data T is sufficiently large allows a gen-

eralization of the method used in Sect. 3.2. This leads to

calculations based upon the following remarks:

Remark 2

• Since the period is sufficiently large, the explicit

solution in each part of the trajectory is the same as

if the loading were a constant.

• In each given sliding phase with initial data {u0, v0}

with u0 out of equilibrium and v0 = 0, the sliding

motion has a first stop at a point u1 symmetrical of u0

with respect to the equilibrium point in imminent

sliding in the same direction, which is nothing but the

elementary property of a linear oscillator with constant

right hand side and constant coefficients.

• Moreover, one can indifferently use ut or Rn as the basic

unknown of the analysis, since for a sliding motion, the

position ut is connected to the normal component of the

reaction Rn by the equilibrium equation which reduces

here to: Wut = Fn ? Rn , and, as the period of the

excitation is sufficiently large, the particle can always

stop before being set into motion again.

We are going to build a periodic solution in the {Rt, Rn}

plane. Let Re�
n be the normal component of the reaction of the

equilibrium state in imminent sliding to the right when

PtðtÞ ¼ e; and we take Re�
n � x (with x [ 0) as initial data

with zero velocity. T larger than Ta implies that the velocity

goes through zero at the point Re�
n þ x: Assume in addition

that x is such that Re�
n þ x is larger than Reþ

n ;where Reþ
n is the

reaction of the equilibrium state in imminent sliding to the left

still with PtðtÞ ¼ e; and let Re�
n þ x ¼ Reþ

n þ y; y [ 0: Then

the reaction jumps to the other side of the cone and the particle

slides to the left during a half-period Tb up to a stop since

T [ Ta ? Tb. The reaction then jumps to an equilibrium

state, with Rn ¼ Reþ
n � y and stays there until the change of

the external load at time T, when Pt(t) is set to zero. Let then

Reþ
n � y ¼ Rþn þ z; z [ 0: At time T the particle is set into

motion again and slides to the left during a period Tb up to a

stop at the reaction Rn
? - z and then jumps to an equilibrium

and stays there until the time 2T where the data will be set to

PtðtÞ ¼ e again. Obviously, such a trajectory is periodic with

period 2T if the condition Rþn � z ¼ Re�
n � x is satisfied.

Substituting z and y in this periodicity condition gives an

equation for the initial data:

Re�
n � x ¼ Rþn � z

¼ 2Rþn � Reþ
n þ y

¼ 2Rþn � 2Reþ
n þ Re�

n þ x; ð11Þ

so that

x ¼ Reþ
n � Rþn ¼

eW
Kt þ lW

: ð12Þ

This trajectory exists if it is compatible with the

description we have given above, in other words if

0� y�Reþ
n � Re�

n : So that finally we have the existence

of this unique periodic solution only when
2lA

KtþlW � e� 4lA
Ktþ3lW : This trajectory is represented on

Fig. 8a in the fRt;Rng plane, and on Fig. 8b in the phase

space, where we observe that because of the successive

stops, the trajectory is no longer diffeomorphic to an

ellipse. For a given value of the pair (u0,v0), due to the

well-posedness of the Cauchy problem there does not exist

other trajectories passing through this initial data.

In a similar way, if we remove the periodicity condition

Rþn � z ¼ Re�
n � x we can obtain a periodic solution of per-

iod 4T by doing two complete loops instead of one. using the

same definition as above for x, y and z and introducing the

quantities: w ¼ Re�
n � ðRþn � zÞ; q ¼ Re�

n þ w� Reþ
n and

u ¼ Reþ
n � q� Rþn for the second loop, a periodic solution of

period 4T exists if and only if Rþn � u ¼ Re�
n � x: A simple

computation shows that the periodicity condition is true for

any compatible value of x, that is for any value of x implying

values of y, z and q compatible with the above construction.
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So that this time not only must we have 0� y�Reþ
n �

Re�
n but also 0 B z B Rn

? - Rn
- and y� q�Reþ

n � Re�
n :

By a straightforward but rather tedious computation,

these three conditions are shown to imply that all values

of x belonging to a given interval correspond to a

periodic solution of period 4T. If Kt B 5 l W this

interval is given by:

maxðReþ
n þ Re�

n ; 2ðRe�
n þ Rþn Þ� x�Reþ

n þ Rþn : ð13Þ

The case Kt [ 5 lW would lead to a smaller interval

obtained by a similar calculation.

In both cases this interval of possible values for x is not

empty as long as 2lA
KtþlW � e� 4lA

Ktþ3lW :

We have thus established the following result:

Proposition 3 For all T C Ta ? Tb,

• if e 2 ½ 2lA
KtþlW ;

4lA
Ktþ3lW�; there exists a unique periodic

solution of period 2T obtained with the initial data

u0 ¼ ðFn þ Re�
n � Reþ

n þ Rþn Þ=W and v0 = 0,

• if e 2 � 2lA
KtþlW ;

4lA
Ktþ3lW ½; there exists infinitely many

periodic solutions of period 4T obtained with any inital

data u0 in a bounded nonzero measure interval and

v0 = 0.

Remark 3

• The condition Kt [ lW ensures that the interval

� 2lA
KtþlW ;

4lA
Ktþ3lW ½ is not empty.

• If for example Kt B 5 lW, the nonzero measure

interval of Proposition 3 is �ðFn þ Re�
n � Reþ

n þ
Rþn Þ=W ; ðFn þ Re�

n � maxðReþ
n þ Re�

n ; 2ðRe�
n þ Rþn ÞÞ=

W �:
• The lower bound of this interval corresponds to the

unique periodic solution of period 2T.

• If for any pair ðe; TÞ in the range studied in Proposition

3, we choose an initial data which does not belong to

the nonzero measure interval we observe numerically

that the solution is not periodic but converges to one of

the periodic solutions of period 4T in finite time.

Exemples of trajectories of period 4T are represented on

Fig. 9.

4.2 Investigation for decreasing values of T

When T becomes smaller than Ta ? Tb, the qualitative

behaviour of the oscillator becomes more intricate than for

larger values of T. This qualitative behaviour that we shall

establish in the following is summarized on Fig. 10b which
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represents the central part of the fT ; eg plane (see

Fig. 10a). Six zones appear that we shall first describe

qualitatively.

• X1 : The periodic solutions represented on Figs. 8 and

9 no longer exist when T \ Ta ? Tb, but we shall

nevertheless prove the existence of periodic solutions

of period 2T when T is close to Ta ? Tb by a direct

analytical calculation.

• X2 : A qualitative change appears on the left of X1 by

the occurence of a phase difference between the loading

and the periodic solutions.

• X3 : The left boundary of X2 corresponds to the loss of

existence of sliding solutions, so that X3 contains

solutions which loose contact. They exist even for small

values of e:

• X4 : This region is bounded on the left by the axis

T = 0 and contains periodic solutions which are still

out of phase with respect to the loading.

• X5 and X6 : Between X2 and X4; are found very small

zones referred to as X5 and X6 which contain other

types of periodic solutions. Locally the structure of the

fT; eg plane is relatively intricate but going through X5

and X6; the transition from X2 to X4 appears as a

continuous deformation of the orbits.

With obvious notations we call Cij the common

boundary between Xi and Xj:

4.2.1 Zone X1: T close to Ta ? Tb

In this range of half periods of the excitation smaller than

those studied in the previous subsection, the case of T

sufficiently close to Ta ? Tb will be of special interest

since, although the previous simple analysis no longer

applies, we still obtain the existence of a single periodic

solution with an explicit formula for the corresponding

initial data. This enables us to obtain explicitely the limit of

the range in the fT; eg plane, where these solutions exist.

Moreover, we shall see how new qualitative changes

appear in the trajectory as T decreases. According to

Remark 2, we now use the sliding position as the unknown

of the dynamical problem, instead of Rn. Let ue� and u- be

the positions of the equilibrium state in imminent sliding to

the right respectively for PðtÞ ¼ e and for P(t) = 0, and let

the initial data be fu0; v0g :¼ fue� � x; 0g for some

unknown positive x. Since T [ Ta, the first part of the

trajectory leads to a first stop at u1 ¼ ue� þ x for t = Ta

where there is a jump of the reaction to the other side of the

cone. From this time, the remaining part of the trajectory is

the solution to the following system:

€u2 þ x2
bu2 ¼ Ft þ lFn þ e; t 2 ðTa; TÞ

u2ðTaÞ ¼ u1; _u2ðTaÞ ¼ 0;

€u3 þ x2
bu3 ¼ Ft þ lFn; t 2 ðT ; ~tÞ

u3ðTÞ ¼ u2ðTÞ; _u3ðTÞ ¼ _u2ðTÞ;

~u ¼ u3ð~tÞ; ~t such that _u3ð~tÞ ¼ 0:

8>>>>>>>><
>>>>>>>>:

ð14Þ

We add the periodicity condition given by ~u ¼ u0:

Going through the calculations we obtain one and only one

value of x given by the explicit formula:

x ¼
e

x2
b

ue� � ueþ½ �ð1� cos xbðT � TaÞÞ

2 ue� � ueþ½ � þ e
x2

b
ð1þ cos xbðT � TaÞÞ

; ð15Þ

where ue� ¼ Ft�lFnþe
x2

a
and ueþ ¼ FtþlFnþe

x2
b

:
Due to the well-posedness of the Cauchy problem, no

other trajectory passes through the point (u0,0).

(a)

(b)

Fig. 10 Qualitative behaviour in the central part of the fT ; eg plane
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From formula (15) we get the periodic solution of period

2T for any e in the corresponding range and T smaller than,

but close to, Ta ? Tb. Using the numerical values chosen in

Eq. (7) an example is given in Fig. 11a in the case T ¼
Ta þ 2

3
Tb: Let us now look at what happens for decreasing

values of T. The use of problem (14) for the calculation of a

periodic solution relies on the fact that the particle remains

at rest at the point f~u; 0g up to the time when the pertur-

bation of the loading is set to PðtÞ ¼ e again. If ~u\u�; the

point f~u; 0g is not an equilibrium point, so that the reaction

of the particle passing through this point can only jump to

the other side of the cone and the particle starts sliding in

the other direction. In other words, formula (15) no longer

applies because problem (14) itself no longer applies.

Looking at formula (15) we see that x is a continuously

decreasing function of T in the interval ]Ta, Ta ? Tb[, so

that there exists in this interval a single value of T

depending on e for which the initial data u0 is such that

u0 = u-. Let T0 be this value connected to e by the fol-

lowing equation:

T0 � Ta ¼
1

xb
arccos

ue� � ueþ � 2x2
b

e ue� � ueþð Þ þ 1
h i

ðue� � u�Þ
2ue� � u� � ueþ : ð16Þ

We thus have an explicit expression of the boudary C12:

We could easily modify problem (14) in order to take one

more sliding phase into account, but one can check that this

will not give a periodic solution of period 2T starting with a

zero velocity at time t = 0 if ~u\u�; that is if T is smaller

than the left boundary of Zone X1: The reason being that

there does not remain enough time for a complete new

sliding phase to occur up to an equilibrium point before

t = 2T.

We shall see that there nevertheless still exist periodic

solutions, but they will not start with a zero velocity at the

origin. This means that the left side of Zone X1 will be

characterized by the occurence of a phase difference

between the periodic loading and the response (see

Fig. 11b).

4.2.2 Zone X2 : periodic solutions on the left of X1 :

As a consequence of Sect. 4.2.1, when ðT; eÞ belongs to X2

we look for a periodic solution starting at time t = 0 from a

point {u0, v0 = 0}. The trajectory can be qualitatively

described as follows: the particle is sliding to the right (e.g.

with a positive tangential velocity v0) when P(t) is set to e;
the particle goes on sliding to the right up to a stop, then the

reaction jumps to the other side of the cone and the particle

slides to the left. Then P(t) is set to zero but the particle goes

on sliding to the left up to a stop, the reaction then jumps to

the other side of the cone and the particle slides to the right,

but P(t) is set to e again before the particle stops. The phase

difference is qualitatively represented on Fig. 12.

Such a trajectory is the solution of the following system:

€u1 þ x2
au1 ¼ Ft � lFn þ e; t 2 ð0; ~tÞ

u1ð0Þ ¼ u0; _u1ð0Þ ¼ v0;
~t such that _u1ð~tÞ ¼ 0;

€u2 þ x2
bu2 ¼ Ft þ lFn þ e; t 2 ð~t; TÞ

u2ð~tÞ ¼ u1ð~tÞ; _u2ð~tÞ ¼ 0;

€u3 þ x2
bu3 ¼ Ft þ lFn; t 2 ðT ; t̂Þ

u3ðTÞ ¼ u2ðTÞ; _u3ðTÞ ¼ _u2ðTÞ;
t̂ such that _u3ðt̂Þ ¼ 0;

€u4 þ x2
au4 ¼ Ft � lFn; t 2 ðt̂; 2TÞ

u4ðt̂Þ ¼ u3ðt̂Þ; _u4ðt̂Þ ¼ 0;

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð17Þ

and the existence of a periodic solution of period 2T is

obtained by computing a solution to the following system:

u4ð2TÞ ¼ u0; _u4ð2TÞ ¼ v0: ð18Þ

From system (17) the periodicity condition (18) can be

rewritten as an algebraic equation involving the unknowns

u0 and v0:
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A4xa sin xað2T � t̂Þ ¼ �v0;
A4 cos xað2T � t̂Þ þ Ft�lFn

x2
a
¼ u0

with

A4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

3 þ B2
3

p
þ FtþlFn

x2
b
� Ft�lFn

x2
a

t̂ ¼ T þ 1
xb

arctan B3

A3

with

A3 ¼ A2 cos xbðT � ~tÞ þ e
x2

b
;

B3 ¼ �A2 sin xbðT � ~tÞ;

with

A2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þ B2
1

p
þ Ft�lFnþe

x2
a
� FtþlFnþe

x2
b

~t ¼ 1
xa

arctan B1

A1

with

A1 ¼ u0 � Ft�lFnþe
x2

a

B1 ¼ 1
xa

v0:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð19Þ

This intricate algebraic system of two equations with

unknowns (u0, v0) is solved using the software Maple. For

the values given in Eq. (7) we obtain the initial data and we

can then plot the periodic solution satisfying system (17)

(see Fig. 11 (b)).

4.2.3 Boundary C23 : delimiting the zone where periodic

solutions on the left of X1 exist

The solution to problem (19) proves the existence of

periodic solutions on the left of Zone X1: But these solu-

tions hold only for T sufficiently close to the value T0 given

by 16. As a matter of fact, the solution to problem (17–19)

for different values of T shows that the amplitude of the

periodic solution increases progressively as T decreases in

such a way that the maximum value umax of the sliding

tangential displacement is reached for a reaction closer and

closer to the vertex of the cone. If the reaction of a solution

of problem (17–19) goes through the vertex, then the

solution does not fulfill the unilateral contact condition and

is therefore no longer a solution to the initial problem. The

following steps give the key for the calculation of the

boundary for this occurence:

1. the solution to system (17) is such that umax ¼ u1ð~tÞ;
2. it is immediately seen from problem (1) that the vertex

of the cone, that is Rn = 0, corresponds to a tangential

displacement equal to Fn

W ;

3. according to remark 2, problem (1) gives a linear

relation between ut and Rn for un : 0;

4. consequently the algebraic system (19) can be seen as

a map which associates the maximal value of Rn with

any pair ðT; eÞ for which there exists a periodic

solution of the type (17), (18), (19). Let FðT; eÞ be this

map.

The occurence of solutions loosing contact in the fT; eg
plane is then given by the implicit solution e ¼ eðTÞ of the

following equation:

FðT ; eÞ ¼ 0; ð20Þ

so that Eq. (20) defines the boundary C23:

4.2.4 Zone X5 : Tb\T\Ta

For decreasing values of T, the solution to Eq. (20)

decreases up to values of e very close to the limit of the

range where there exist only equilibrium solutions. But in

fact we observe that this curve is not tangent to the hori-

zontal limit of stationary solutions. There remains a thin

layer in which we shall obtain periodic solutions with a

new kind of orbit. As suggested by numerical experiments

periodic solutions in this layer satisfy the following system:

€u1 þ x2
au1 ¼ Ft � lFn þ e; t 2 ð0; TÞ

u1ð0Þ ¼ u0; _u1ð0Þ ¼ 0;

€u2 þ x2
au2 ¼ Ft � lFn; t 2 ðT; ~tÞ

u2ðTÞ ¼ u1ðTÞ; _u2ðTÞ ¼ _u1ðTÞ;
~t such that _u2ð~tÞ ¼ 0;

€u3 þ x2
bu3 ¼ Ft þ lFn; t 2 ð~t; t̂Þ

u3ð~tÞ ¼ u2ð~tÞ; _u3ð~tÞ ¼ 0;
t̂ such that _u3ðt̂Þ ¼ 0;

t̂� 2T; _u4ðtÞ ¼ 0; t 2 ðt̂; 2TÞ

u4ð2TÞ ¼ u0:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð21Þ

The periodicity condition reduces to u3ðt̂Þ ¼ u0; which

leads to an algebraic system much simpler than (19) for the

Fig. 12 The phase difference on the left of Zone X1
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determination of the initial data u0. The solution is repre-

sented on Fig. 13. It is clear from the conditions written in

problem (21) that such solutions exist only if Tb \ T \ Ta

Moreover, the initial data of this kind of solution is such

that u0 is strictly positive by construction. It is then natural

to look for the border of Zone X5 by calculating the loss of

positivity of the initial data in the range Tb \ T \ Ta. This

can be done in the same way as presented in Sect. 4.2.3 by

the study of the implicit solution of Eq. (20). But it is easily

calculated that in X5 the maximum umax of the sliding

displacement never corresponds to a reaction at the vertex

of the cone, so that, assuming the continuity of the solution

with repect to T and e there necessarily remains a very thin

layer between X5 and X3 as we shall see in the next section.

4.2.5 Zone X4 : periodic solutions for small T

The above procedure can easily be adapted to prove that

periodic solutions exist even for very high frequencies of

the excitation. The solutions in Zones X2 and X5 suggest

that Zone X4 may contain periodic solutions starting with a

negative velocity. This means that system (17) should be

changed into

€u1 þ x2
bu1 ¼ Ft þ lFn þ e; t 2 ð0; ~tÞ

u1ð0Þ ¼ u0; _u1ð0Þ ¼ v0;
~t such that _u1ð~tÞ ¼ 0;

€u2 þ x2
au2 ¼ Ft � lFn þ e; t 2 ð~t; TÞ

u2ð~tÞ ¼ u1ð~tÞ; _u2ð~tÞ ¼ 0;

€u3 þ x2
au3 ¼ Ft � lFn; t 2 ðT; t̂Þ

u3ðTÞ ¼ u2ðTÞ; _u3ðTÞ ¼ _u2ðTÞ;
t̂ such that _u3ðt̂Þ ¼ 0;

€u4 þ x2
bu4 ¼ Ft þ lFn; t 2 ðt̂; 2TÞ

u4ðt̂Þ ¼ u3ðt̂Þ; _u4ðt̂Þ ¼ 0;

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð22Þ

corresponding to trajectories represented on Fig. 14 in the

{Rt, Rn} plane. The periodicity condition is exactly the

same requirement as Eq. (18), with an explicit form very

close to (19). We then get initial data (u0,v0) and system

(22) gives the corresponding periodic solution in the same

way as previously.

In fact solving system (22) through the calculation of

initial data which belong to a periodic trajectory does not

require T to be very small, so that starting from very small

T one can increase T progressively and obtain periodic

solutions of larger and larger amplitude for the same value

of e chosen sufficiently large. Figure 15 contains different

periodic solutions for increasing values of T but repre-

sented at the same scale. The corresponding values of the

initial data given in the caption are computed through the

above scheme. Figure 15 brings us to formulate the fol-

lowing remark.

Remark 4

• These periodic solutions are all homeomorphic to an

ellipse,

• for a given e the amplitude of the sliding oscillation

decreases as T decreases,
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0

0.05

0.74 0.76 0.78 0.8 0.82 0.84 0.86

Fig. 13 A periodic solution in X5

Fig. 14 Periodic solutions for small values of T in the {Rt, Rn} plane
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• for a given T the amplitude of the sliding oscillation

decreases as e increases,

• the phase difference increases as T decreases. More-

over, the phase difference is always larger than in Zone

X2:

5 The transition for loosing contact

5.1 Exploring the upper boundary

Section 4 started to partition the fT ; eg plane into zones

where different kinds of periodic solutions have been

exhibited. These solutions satisfy strictly the Coulomb

friction law but they are bilateral by which we mean that

they satisfy the unilateral contact conditions Un B 0,

Rn B 0, UnRn = 0 by satisfying Un = 0, Rn \ 0. We

already know that the horizontal line e ¼ 2lA
KtþlW for any T is

the lower limit of the existence of periodic solutions, which

means in particular that this line is the lower boundary of

all the zones of existence of any type of periodic solutions

described up to now. Concerning the upper boundary of

these zones we mentioned the possibility for a particular

periodic solution to loose contact, this was the transition

from X2 to X3: As the last step of the present work, we

shall determine this upper boundary, defined by the occu-

rence of one point loosing contact during a period, on the

whole T axis.

5.1.1 Boundary C34 : from very small periods to Tb

We are now looking for the transition between sliding and

loosing contact. Let eF ðT ; eÞ be the maximal value of the

normal component of the reaction corresponding to the

periodic solution for a given ðT; eÞ: Then at the transition

for loosing contact, T and e satisfy

eF ðT; eÞ ¼ 0: ð23Þ

In Sect. 4.2.3 the mapping eF was defined by Eq. (20) built

from problem (17 - 18 - 19). Starting here from problem

(22), the transition for loosing contact is given in the fT; eg
plane by the implicit solution of Eq. (23) from T close to

zero to a neighbourhood of Tb.

5.1.2 From Tb to Ta

Zone X5 of Fig. 10b has been defined for T 2 �Tb;Ta[. In

this range, there exists a periodic solution of the type

represented on Fig. 13. We can check that everywhere in

Zone X5; these periodic solutions are such that

eF ðT; eÞ\0 ð24Þ

which means that the periodic solutions in Zone X5 never

reach the transition for loosing contact. This implies that

there must exist a transition between Zone X5 and Zone X3

where another type of solution would loose contact when e
increases, at least for T in some subinterval of ]Tb, Ta[.

Periodic solutions in a thin layer can actually be obtained

from the following system (25) which continues Zone X5

after the loss of positivity of the initial position1.
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Fig. 15 Periodic solutions in the phase space ðut; _utÞ when e ¼ 1:5 and (u0,v0) are obtained by (22)

1 Let us compare problems (21) and (25). It appears that proving that

(21) has a solution everywhere in zone X5 amounts to proving that

problem (25) has a solution such that u4 is constant everywhere in a

nonzero measure subset of the fT ; eg plane, which could have been

missed by a direct study of problem (25), and which is a result

interesting in itself. Moreover distinguishing Zones X5 and X6 seems

easier for an intuitive introduction to the partition of the plane.

Nevertheless, the distinction between these two zones would not be

necessary if we were dealing only with the transition to the loss of

contact.
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€u1 þ x2
au1 ¼ Ft � lFn þ e; t 2 ð0; TÞ

u1ð0Þ ¼ u0; _u1ð0Þ ¼ v0;

€u2 þ x2
au2 ¼ Ft � lFn; t 2 ðT; ~tÞ

u2ðTÞ ¼ u1ðTÞ; _u2ðTÞ ¼ _u1ðTÞ;
~t such that _u2ð~tÞ ¼ 0;

€u3 þ x2
bu3 ¼ Ft þ lFn; t 2 ð~t; ~t þ TbÞ;

u3ð~tÞ ¼ u2ð~tÞ; _u3ð~tÞ ¼ 0;

€u4 þ x2
au4 ¼ Ft � lFn; t 2 ð~t þ Tb; 2TÞ

u4ð~t þ TbÞ ¼ u3ð~t þ TbÞ; _u4ð~t þ TbÞ ¼ 0;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð25Þ

together with the periodicity condition

u4ð2TÞ ¼ u0; _u4ð2TÞ ¼ v0: ð26Þ

Let Rmax be the maximal value of the normal component

of the reaction. Then using the solution of problem (25, 26)

the equality Rmax = 0 is reached for some values of T and e
which are again obtained as the implicit solution of Eq.

(23). This gives Zone X6 of Fig. 10 and the periodic

solutions are represented on Fig. 16.

5.1.3 From Ta to Ta ? Tb

In Sect. 4 we gave the transition between Zone X1 and

Zone X2: Since the periodic solutions in Zone X1 are given

by an explicit formula, we obtain analytically the function

which gives the boundary C12
2, and the domain of this

function on the T axis appears to be divided into two

subintervals according to whether the first loss of validity

of the periodic solutions in Zone X1 is a loss of contact or a

phase difference. In the left subinterval we obtained the

transition already described by the occurrence of a phase

difference, but for larger values of T we get that the loss of

contact occurs first in a range corresponding to large values

of e: In other words this means that when the dynamical

problem is built with Eqs. (14, 15), equation (23), which is

here simpler than in general because more explicit, has a

solution e ¼ eðTÞ only in a subinterval of ]Ta, Ta ? Tb[.

5.1.4 From Ta ? Tb to very long periods

Proposition 3 in Sect. 4.1 gave the existence of infinitely

many periodic solutions everywhere in the open range

�Ta þ Tb;þ1½�� 2lA
KtþlW ;

4lA
Ktþ3lW ½ and a single periodic

solution on the upper boundary of this range which is the

line �Ta þ Tb;þ1½�f 4lA
Ktþ3lWg; and we can easily check

that condition (24) is satisfied all along this line. This

means that none of the periodic solutions given by Prop-

osition 3 are on the point of loosing contact. Again, this

suggests that there might exist another zone where another

type of sliding periodic solution exists up to the loss of

contact3. Since the upper boundary e ¼ 4lA
Ktþ3lW is exactly

the coalescence of the two loops of periodic solutions of

period 4T into the single loop of a solution of period 2T, we

could look for these new periodic solutions again as solu-

tions with two loops. Such solutions satisfy the following

system:

€u1 þ x2
au1 ¼ Ft þ e� lFn þ e; t 2 ð0; TaÞ

u1ð0Þ ¼ u0; _u1ð0Þ ¼ 0;

€u2 þ x2
bu2 ¼ Ft þ eþ lFn; t 2 ðTa; Ta þ TbÞ

u2ðTaÞ ¼ u1ðTaÞ; _u2ðTaÞ ¼ 0;

€u3 þ x2
au3 ¼ Ft þ e� lFn; t 2 ðTa þ Tb; TÞ

u3ðTa þ TbÞ ¼ u2ðTa þ TbÞ; _u3ðTa þ TbÞ ¼ 0;

€u4 þ x2
au4 ¼ Ft � lFn; t 2 ðT; ~tÞ

u4ðTÞ ¼ u3ðTÞ; _u4ðTÞ ¼ _u3ðTÞ;
~t such that _u4ð~tÞ ¼ 0;

€u5 þ x2
bu5 ¼ Ft þ lFn; t 2 ð~t; ~t þ TbÞ

u5ð~tÞ ¼ u4ð~tÞ; _u5ð~tÞ ¼ 0;

u6ðtÞ ¼ u5ð~t þ TbÞ; _u6ðtÞ ¼ 0; t 2 ð~t þ Tb; 2TÞ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð27Þ

The periodicity condition is now u6ð2TÞ ¼ u0; which again

leads to an algebraic system of the same type as (19) for the

determination of the initial data u0. Periodic solutions in

–1.5

–1

–0.5

0.5

1

0.5 1 1.5

Fig. 16 A periodic solution in zone X6

2 In fact in this range the complete calculations are obviously also

carried out using Maple, but here from explicit formula.

3 A difficulty has already been encountered when studying the

transition from Zone X5 to Zone X6 : since we don’t know a lot about

the qualitative behaviour, another guess could be that the loss of

contact arises only through non periodic solutions so that the line

�Ta þ Tb;þ1½�f 4lA
Ktþ3lWg would be the boundary for the loss of

periodicity, instead of a transition between different types of periodic

solutions. The answer is given if problem (27) has a solution.
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this range have orbits of the type represented on Fig. 17,

and the condition for loosing contact is obtained through

the implicit solution of Eq. (23).

5.2 Comments on the global results

The qualitative behaviour of the periodic solutions of

problem (1) is summarized in Fig. 184. Let us comment

this global result, paying a particular attention to the con-

tinuous curve which corresponds to the loss of contact. Let

eðTÞ be this curve.

• Due to dissipation, excitations of any frequency lead to

a strictly stuck equilibrium as long as their amplitude is

smaller than 2lA
KtþlW : So that Fig. 18 represents only the

part of the fT; eg plane above the line e ¼ 2lA
KtþlW :

• The minimum value of eðTÞ is very close to the loss of

existence of equilibrium states. This means that this

minimum could be interpreted as a resonance.

• Conversely, when T �! 0 there exist periodic solu-

tions strictly in contact for values of e which are large

compared to the largest value of e for which there exists

an equilibrium under static loading. Using the values

given in (7), the latter is e ¼ 3 while eðTÞ ’ 6 for T

close to zero. The curve eðTÞ is far from reaching this

value in any other zone.

• The intricate behaviour of the periodic solutions is

localized in a very small and thin range close to the

minimum of eðTÞ:
• We found only one zone where there exist more than

one periodic solution for each given values of T and e:

This zone is a horizontal strip which goes from Ta ? Tb

to þ1: Everywhere in this strip there exist infinitely

many periodic solutions. All these solutions are such

that Rn is strictly negative at any time so that they all

remain strictly in contact.

6 Concluding remarks

After an investigation of the equilibrium states and of the

qualitative properties of the trajectories going to equilib-

rium, we delimit in this work the zone where periodic

solutions remain in contact, and we explore the shapes of

the periodic orbits. This study could be taken as an

example of the possible qualitative behaviour of a simple

discrete system with unilateral contact and Coulomb

friction.

A complete investigation of the possible behaviours

would also require an analysis of the dependence with

respect to other parameters of the system.

• Different choices of the stiffness parameters and

friction coefficient would change the coupling between

the degrees of freedom, and change the set of equilib-

rium states at the origin of this dynamical study (see

[5]).

• The excitation has been reduced in the present study to

a periodic perturbation P(t) of the tangential component

of the load. If the perturbation concerns strictly the

normal component then all the trajectories lead to an

equilibrium. If P(t) concerns both components then

periodic solutions appear for larger amplitudes of the

perturbation, however the qualitative features of

Fig. 18 seem to remain.

• Relatively complete analytical calculations were possi-

ble due to the particular choice of the excitation and a

thorough investigation has thus been obtained. The

behaviour in the case of a general periodic excitation

remains to be explored.

The periodic solutions obtained are all such that the

normal displacement remains equal to zero for all time,

although problem (1) allows unilateral contact. The normal

component of the reaction appears only through the cou-

pling in the mechanical system and through the Coulomb

friction law. Solutions where the motion involves periods

of loss of contact are subject to impacts. Taking impacts

into account will first increase the size of the system since

un becomes unknown, which rules out the use of Eqs. (3)

and (4), and above all will add an extra nonsmoothness. It

is known that the occurence of chaos or the persistence of

periodic solutions in systems with impacts have a vast
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Fig. 17 Sliding periodic solution for large e and T [ Ta ? Tb

4 It is interesting to observe that, while giving the transition between

Zone X1 and Zone X2 only amounts to plotting the graph of an

explicit function, calculating all the other curves of Fig. 18 requires

an implicit computation that can be very time consuming.

16



number of engineering applications. Our previous careful

consideration of friction together with schemes able to deal

very rigorously with impacts (see [8]) will be of the utmost

importance in this future study. We are at present working

on these lines.
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