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Highlights: 

 Clay, free iron, calcium carbonate and pH were predicted from Lab Vis-NIR spectra. 

 Eight spectral resolutions were tested from 3 nm to 200 nm. 

 PLSR predictive ability is poorly impacted by the spectral degradation. 

 All soil properties are predictable until a spectral resolution of 60 nm. 

 Spectral features and correlations between soil properties explained the results. 

 

Abstract 

 

Laboratory Visible-Near Infrared (Vis-NIR) spectroscopy is a good alternative to costly 

physical and chemical soil analysis to estimate a wide range of soil properties. Various 

statistical methods relate soil Vis-NIR spectra to soil properties including partial least-squares 
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regression (PLSR), the most common multivariate statistical technique in soil science. Most 

efforts are generally dedicated to the comparison of methodologies and their optimization for 

the estimation of soil properties. In this paper, we examined the sensitivity of PLSR model 

predictions of physico-chemical soil properties to different spectral configurations derived 

from Vis-NIR spectra and described by three parameters: the number of spectral bands, the 

spectral resolution and the spectral sampling interval. The initial database is composed of 

1961 spectral bands, spectral resolutions of 3 and 10 nm in the 400-1000 nm and 1000-2500 

nm ranges, respectively, and a spectral sampling interval of 1 nm. Seven degraded spectral 

configurations were built from this reference database with a number of spectral bands 

decreasing from 328 to 10, a spectral resolution decreasing from 3 nm to 200 nm, and a 

spectral sampling interval equaling the spectral resolution. All of these databases were 

composed of 148 soil samples collected at a Mediterranean site. Four soil properties were 

selected for their different spectroscopic behavior: clay, free iron oxides, calcium carbonate 

(CaCO3) and pH. PLSR predicted these variables, and the results were as follows: (1) the 

prediction performances of the PLSR models were accurate and globally stable with a spectral 

resolution between 3 to 60 nm regardless of the soil properties (R
2
 decreased from 0.8 to 0.77 

for clay, from 0.88 to 0.84 for CaCO3, from 0.66 to 0.58 for pH and remained constant at 0.78 

for iron), (2) the prediction performance decreased, but remained acceptable for clay, iron 

oxides and CaCO3 at spectral resolutions between 60 and 200 nm (R
2
 > 0.7), (3) the 

sensitivity of a given soil property to instrumental spectral configurations depended on its 

spectral features and correlations with other soil properties.  

 

Keywords: 

Laboratory Vis-NIR spectroscopy, soil properties, physico-chemical features, partial least 

squares regression, spectral resolution. 
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1. Introduction 

 

Soil quality assessment assists decision making for a range of global issues, such as food 

production and precision agriculture (Tilman et al., 2002), and soil carbon and water stocks 

related to climate change (Lal, 2004; Seneviratne et al., 2010). The monitoring and 

determination of soil properties provide a better understanding of the physical and chemical 

processes in soil environments (Atzberger, 2002). Reflectance spectroscopy can quantitatively 

estimate these soil properties more cost-effectively and rapidly compared to traditional 

laboratory analysis. Visible-near infrared (Vis-NIR) spectroscopic data in the 350-2500 nm 

range has been widely used to analyze soils because it efficiently correlates the chemical 

components with their specific absorption spectral features (e.g., Abrams and Hook, 1995; 

Palacios-Orueta and Ustin, 1998; Viscarra et al., 2006; Weidong et al., 2002). Absorption 

features in the visible spectrum are dominated by electronic molecular excitations, and those 

in the NIR range contain a combination of overtone molecular vibrations. However, the 

separation of each soil component contribution from Vis-NIR spectra is a challenging task due 

to the complex nature of soil matrix with multiple spectral feature overlappings and strong 

spectral collinearities between soil properties (Gobrecht et al., 2013). Consequently, pre-

processing strategies are embedded as a first step before prediction calibration, in order to 

improve the extraction of useful information from both additive and multiplicative effects 

superimposed in the reflectance spectra (Peng et al., 2014). Rinnan et al. (2009) and Hadoux 

et al. (2014) give a good review of them. Various mathematical methods have been employed 

to predict soil properties from soil Vis-NIR spectra, such as multiple regression analysis (Ben-

Dor and Banin, 1995), stepwise multiple linear regression (Shibusawa et al., 2001), 

multivariate adaptive regression splines (Shepherd and Walsh, 2002), principal component 
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regression (e.g., Chang et al., 2001), support vector machine regression (SVMR; Stevens et 

al., 2010) and the continuum removal technique (Lagacherie et al., 2008). The partial least-

squares regression method (PLSR; Wold et al., 2001) is the most common multivariate 

statistical technique for spectral calibration and prediction of soil properties (Viscarra Rossel 

et al., 2006). Most of the studies using chemometric analysis of spectroscopic data for soil 

properties primarily focus on optimizing prediction performances, such as comparing 

methodologies and assessing new methods (Mouazen et al., 2010; Peng et al., 2014) or using 

spectral feature selection methods (Vohland et al., 2014). And few of them have been carried 

out to analyze the dependency of these prediction performances based on the quality of the 

initial spectral database acquired by a given spectroscopic sensor (e.g. Knadel et al., 2013; 

Mouazen et al., 2005; Peng et al., 2014). Peng et al. (2014) evaluated different spectral 

sampling intervals from 1 nm to 10 nm with ASD FieldSpec 3 spectra to estimate soil organic 

carbon content with both SVMR and PLSR methods, and established that 9 nm was the best 

choice. Knadel et al. (2013) and Mouazen et al. (2005) found poor differences in prediction 

performance for clay content, soil organic carbon and soil moisture by comparing 

spectrometers with different spectral specifications (spectral resolutions: 1-10 nm; spectral 

intervals: 1.377-6 nm; spectral ranges: 300-1700 nm, 350-2500 nm, 1000-2500 nm, 400-498 

nm) and also measurement technologies (combination of diode array, scanning 

monochromator and Fourier Transform).  

Accordingly, the purpose of this paper is to study the PLSR model ability of soil properties 

prediction to spectral degradation from laboratory Vis-NIR spectroscopy using only one 

spectrometer (ASD).  The initial Vis-NIR laboratory spectra were acquired with 1961 spectral 

bands, spectral resolutions of 3 and 10 nm in the 400-1000 nm and 1000-2500 nm ranges, 

respectively, and a spectral sampling interval of 1 nm. Seven degraded spectral configurations 

were built from this initial database with the spectral sampling interval equal to the spectral 
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resolution. These configurations combine hyperspectral to multispectral scenarios from 

original spectroscopic data with a number of bands decreasing from 328 to 10 and spectral 

resolutions decreasing from 3 to 200 nm. Four soil properties were predicted from a dataset of 

148 soil samples collected at a Mediterranean site in France: clay, free iron oxides, calcium 

carbonate (CaCO3) and pH. Clay granulometry is related to bulk density, roughness and 

permeability in soils. Its association with calcium carbonate content is indicative of soil 

vulnerability to erosion (Le Bissonnais, 1996). The presence of iron oxides is a pertinent 

indicator of heavy metal soil contamination (Kemper and Sommer, 2002), weathering 

(Demattê and Garcia, 1999) and fertility (Bartholomeus et al., 2007). And variations in pH are 

related to soil acidity and fertility. These properties were selected for their different spectral 

spectroscopic behavior and were predicted by PLSR. 

 

2. Materials and methods 

 

2.1 Field sampling 

 

Soil samples were collected from a 24 km² area in the La Peyne catchment (43°29’ N and 

3°22’ E), 60 km west of Montpellier, France (Figure 1a). This area is primarily rural (> 90 %), 

and the climate is typical of the Mediterranean region characterized by sub-humid to 

prolonged dry seasons. The annual rainfall median over 20 years is 634 mm, and the average 

annual evapotranspiration is 1102 mm. In the upstream part of the catchment, little of the land 

is cultivated because of steep terrain slopes and Mediterranean maquis shrubs, whereas in the 

downstream part, moderate terrain slopes provide ideal use for vineyard agriculture. At the 

surface, the soil appears crusted from tillage practices reinforced by strong episodic rainfall. 

Underneath, the soil substrate is largely heterogeneous Miocene marine sediments, i.e., marl, 
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sandy loam, and calcareous sandstone with low carbon content (< 2 %). Thin Miocene 

lacustrine limestone composes the hillslopes in the middle of La Peyne valley, which is 

representative of cuesta topography. Hill backslopes are partially overlain with successive 

alluvial deposits, ranging from Pliocene to Holocene, and differ in their initial nature and 

duration of weathering conditions. The presence of clay minerals is dominated by illite and 

kaolinite with a weak abundance of a mixture of illite-smectite. 

In June of 2009, 148 soil samples were homogeneously collected over this area (Figure 1b). 

All of them were composed of five sub-samples at 0-5 cm depth within a field plot of 10×10 

m
2
 at locations recorded on a Garmin GPS instrument with 2 m of accuracy. 

 

[Figure 1] 

 

2.2 Soil analysis 

 

The soil samples were homogenized, air-dried and sieved to a particle size of 2 mm. Four 

elementary soil properties were determined using classical physico-chemical soil analysis 

(Baize and Jabiol, 1995): clay content (granulometric fraction < 2 μm, pipette method from 

NF X 31-107), free iron oxide content (Mehra-Jackson method from NF ISO 11885), calcium 

carbonate CaCO3 content (volumetric method from NF ISO 10693), and pH H2O (method NF 

ISO 10390). 

 

2.3 Laboratory Vis-NIR spectroscopy 

 

Spectral reflectance of the 148 soil samples (sieved and dried) were acquired on an ASD pro 

FR Portable Spectrometer (Analytical Spectral Devices Inc., Boulder, CO, USA) in the 
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spectral range of 350-2500 nm, which was first calibrated with a white reference plate, i.e., a 

12 × 12 cm
2 
Spectralon® panel (Labsphere, North Sutton, USA). 

Two 90 W tungsten halogen light sources with aluminum reflectors (24 V, ~ 3000° K color 

temperature, Power DC supply) were placed on each side of the sample, with the light beam 

at 45° from vertical to create a 50 cm distance between the lamps and the sample. The sensor 

with a Field of view (FOV) of 8° was positioned from the nadir at 0.6 m from the sample, 

providing a 0.9 diameter measurement spot. The soil was placed into a Petri dish with 

dimensions of 1.0 cm (height) × 14 cm (diameter). The reflectance of one sample was 

computed as the mean of 30 measurements in a spectral range of 350-2500 nm. From 350 to 

1000 nm, the spectral sampling interval of the ASD spectrometer is originally 1.4 nm for a 

spectral resolution of 3 nm. From 1000 to 2500 nm, the spectral sampling interval is 2 nm for 

a spectral resolution of 10 nm (http://www.asdi.com). However, the reflectance available to 

the user is pre-processed by the ASD software and is consequently oversampled to 1 nm in 

both spectral ranges leading to a total number of spectral bands of 2151. This number was 

then reduced to 1961 by removing the spectral bands within the 350-440 nm and 2400-2500 

nm ranges due to their low instrumental signal-to-noise ratios. We finally associated this 

spectral database to the reference spectral configuration, which was named ASD_1/1. 

 

2.4 Degraded spectral configuration 

 

Each spectral configuration is defined by three parameters: the number of spectral bands (N), 

the spectral resolution also called the full half width maximum (FHWM) and the spectral 

sampling interval (SSI) (Figure 2). To build each degraded spectral configuration, the initial 

spectra from ASD_1/1 were resampled with Gaussian filters whose tails were arbitrarily cut to 

twice their width, following the filter response function G(x): 
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𝐺(𝑥) = exp(
−(𝑥−𝑥0)

2

2.𝜎2
) with 𝜎 =

𝐹𝐻𝑊𝑀

2.√2.log(2)
       (1) 

 

where x is the spectral step determined by the SSI, x0 is the mean of the filter and equals the 

wavelength at which the resampling was performed, and 𝜎 is the width of the filter. 

 

[Figure 2] 

 

Seven degraded spectral configurations were derived from the reference ASD_1/1 (Table 1). 

Except for ASD_1/1, it was assumed that the spectral sampling interval equaled the spectral 

resolution, such that only two variable parameters remained: the number of spectral bands N 

and the spectral resolution FHWM. They were characterized by N values decreasing from 328 

to 10, and FHWM values in the 440-1000 nm and 1000-2400 nm spectral ranges varying from 

3 to 200 nm and from 10 to 200 nm, respectively. They were subsequently named 

Config_3/10, Config_5/10, Config_10/10, Config_40/40, Config_60/60, Config_100/100 and 

Config_200/200 (Table 1) and covered hyperspectral to multispectral scenarios. 

 

[Table 1] 

 

2.5 Principal component analysis 

 

A principal component analysis (PCA) was performed on the mean-centered reflectance data 

for each spectral configuration. It provides a set of explanatory orthogonal vectors or principal 

components in relation to the analyzed variance (Harman, 1976). If the data were composed 
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of random noise, all of the components would explain approximately the same quantity of 

variance, and the spectral degradation would regularly and slowly make decreased the 

variance. If the data were composed of variations around spectral features, the decreasing 

would be rapid because a small number of components would carry a huge amount of 

variance. Thus, the amount of useful information carried by the reflectance data to the spectral 

configurations was assessed by the percentage of variance Vm explained by the m
th
 principal 

component over a total number of M: 

 

𝑉𝑚 =
𝜆𝑚

∑ 𝜆𝑚
𝑀
𝑚=1

× 100         (2) 

 

where𝜆𝑚is the m
th 

eigenvalue. 

 

2.6 Partial least squares regression method 

 

The partial least squares (PLS) method (Wold et al., 2001) is a dimensional space reduction 

technique like PCA. The difference between PLS and PCA is that the former is trained to 

maximize the covariance between the scores of the spectra and the response variable (i.e. each 

soil property), whereas PCA scores are not necessarily correlated with the response variable. 

Following this covariance optimization constraint, the PLS algorithm performs iterative 

rotated projections to estimate matrices of latent variables and scores associated with both the 

spectra and the response variable. 

Partial least squares regression (PLSR) is the association of a PLS reduction with a classical 

multivariate linear regression explaining the correlation between the Vis-NIR spectra and the 

soil property: 
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�̂� = 𝑿 . �̂� + 𝑏0          (3) 

 

where 𝑿 ∈R
K,N

 is a matrix of K spectra with N spectral bands, �̂�∈R
K,1 

is the vector of the 

estimated soil property values of the K soil samples,�̂�∈R
N,1 

is the vector of the estimated 

PLSR regression coefficients (b-coefficients), and 𝑏0 is the intercept (Haaland and Thomas, 

1988). 

 

2.6.1 Model development 

 

Prior to statistical analysis, the reflectance spectra (R) were converted into absorbance 

logarithmic spectra (Log(1/R)) and mean-centered. Then, for each soil property, the database 

of each spectral configuration was divided into a calibration set of 99 samples (i.e., 2/3 of the 

total data, named BD_Calib) and a validation set of 49 samples (i.e., 1/3 of the total data, 

named BD_Valid). The soil property values were first sorted in ascending order. Second, the 

sample of lowest value was assigned to BD_Valid, and the next two samples were set in 

BD_Calib. This alternating procedure was continued for all of the samples and ensured that 

both BD_Calib and BD_Valid had similar distributions for a given soil property. The 

BD_Calib databases were then inspected to detect the spectral outliers by using the 

Mahalanobis distance in combination with PCA (the three first principal components are 

retained). Outliers were removed from BD_Calib when their Mahalanobis distance was 

greater than 3 (Mark and Tunnell, 1985). 

The PLSR model was built with BD_Calib using a leave-one-out cross-validation (LOOCV; 

Wold, 1978). The LOOCV procedure consists of building a learning calibration model with 
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K-1 samples from all K samples within BD_Calib and then predicting the soil property value 

of the sample that was not used in that learning model. This process was repeated for the K 

samples. Application of the PLSR model to BD_Valid for final soil property prediction 

requires the selection of an optimal number of latent variables (popt), which was based on 2 

criteria: 

 The value was arbitrarily set below 10 because of the limitation of the number of 

spectral bands available in the most degraded spectral configuration (i.e., 

Config_200/200, cf. Table 1), 

 The value showing the first local minimum of the root mean square errors of cross-

validation (RMSECV) was chosen (Viscarra, 2007). RMSECV was calculated as 

follows: 

 

𝑅𝑀𝑆𝐸𝐶𝑉 = √∑ (𝒚𝑘−�̂�𝑘,−𝑘)
2𝐾

𝑘=1

𝐾
        (4) 

 

where K is the number of samples for BD_Calib, 𝒚𝑘 is the k
th
 measured soil property value 

and �̂�𝑘,−𝑘 is the predicted soil property value obtained by removing the k
th

 sample in 

BD_Calib. 

 

2.6.2 Model evaluation 

  

Estimation of the soil properties with respect to the spectral configurations was assessed in 

terms of (i) the PLS model’s learning ability, (ii) the PLSR model’s prediction performance in 

relation to the number of latent variables and (iii) the analysis of key wavelengths used in the 

PLSR model calibration process. 
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The learning ability of any regression can be assessed by the ratio of the explained variance 

var(ŷ) to the original variance var(y), calculated by the coefficient of determination 𝑅2. Since 

best models concentrate 𝑅2 values close to 1, we used a rescaled 𝑅2, named 𝑅𝑠2, which is the 

ratio between 𝑅2 and the residual variance, in order to highlight the differences close to 1, 

such as:  

𝑅𝑠𝑝
2 =

𝑅𝑝
2

1−𝑅𝑝
2           (5) 

where p is the number of latent variables in the PLSR model. 

 

The prediction performances of the PLSR models were based on the following figures of 

merit: 

 The coefficient of determination 𝑅2 of the predicted values against the measured 

values in BD_Calib and BD_Valid,  respectively. 

 The root mean square errors of cross-validation for BD_Calib (RMSECV, see 

Equation 4) and prediction for BD_Valid (RMSEP), which was calculated by: 

 

𝑅𝑀𝑆𝐸𝑃 = √
1

𝐾
. ∑ (𝒚𝑘 − �̂�𝑘)2

𝐾
𝑘=1         (6) 

    

In the PLSR calibration process performed for the optimal number of latent variables (popt), a 

wavelength n was considered to have a significant importance if it fulfilled the two following 

conditions: 

 Its b-coefficient was larger than the standard deviation of the b-coefficients for all of 

the spectral bands (Viscarra-Rossel et al., 2008) 
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 Its variable importance in the projection (VIP) was higher than 1 (Chong and Jun, 

2005; Wold et al., 1993, 2001):  

 

𝑉𝐼𝑃𝑛 = 𝑁.∑ 𝑤𝑝,𝑛
2 . 𝑅𝑝

2𝑝𝑜𝑝𝑡
𝑝=1          (7) 

 

where 𝑤𝑝,𝑛
2  is the loading weight for the p

th
 latent variable in popt. 

 

All procedures were performed using the following R software (R Core Team, 2012) and the 

following specific packages were used: i) ade4 for principal component analysis (Dray and 

Dufour, 2007) and ii) pls for PLSR (Mevik and Wehrens, 2007). 

 

3. Results 

 

3.1 Soil analysis  

 

Clay and iron contents were normally distributed with means of 232.8 g.kg
-1

 and 1.20 g.100 g
-

1
 and standard deviations of 71.6 g.kg

-1
and 0.59 g.100 g

-1
, respectively (Figure 3a and 3b). 

The distribution of CaCO3 concentrations covered a broad range from 0 to 440 g.kg
-1

 and 

followed a skewed distribution due to numerous soil samples containing very low amounts of 

CaCO3 (Figure 3c). pH exhibited the smallest variations with an asymmetric normal 

distribution, a mean value of 8.18 and a standard deviation of 0.67 (Figure 3d). The four soil 

properties of the 148 soil samples were not correlated with one another (Table 2), except for i) 

a high positive correlation between pH and CaCO3 (r = 0.68) and ii) a moderate correlation 

between iron and clay (r = 0.53) and iron and CaCO3 (r = -0.56). 
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[Figure 3] 

 

[Table 2] 

 

3.2 Reference spectra analysis 

 

The reflectance spectra of the ASD_1/1 configuration contained a chemical absorption peak 

centered at 2215 nm with a 95 nm width (2150-2245 nm) and a sharp depth (Figure 4b). This 

result can be associated with a combination of OH stretching and OH-Al bending modes 

related to the presence of illite, kaolinite and montmorillonite clay materials (e.g., Chabrillat 

et al., 2006; Lagacherie et al., 2008). A second absorption peak was centered at 2350 nm with 

a 40 nm width (2330-2370 nm) and a low depth (Figure 4b), which can be associated with 

CO3 overtone vibrations related to the presence of CaCO3 (Gaffey, 1987). Different slopes 

between 400 and 800 nm are related to iron oxides (Bartholomeus and Mulder, 2008; Bayer et 

al., 2012; Demattê et al., 2004) combining two major constituents: goethite near 550 nm and 

hematite between 500-600 nm (Figure 4a; Atzberger, 2002). Because pH has no specific 

spectral signature (e.g., Ben-Dor and Banin 1995; Ben-Dor et al., 2002), this soil property 

cannot be observed by a specific absorption feature. 

 

[Figure 4] 

 

 

3.3 PCA analysis for each spectral configuration 
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Whatever the spectral configuration, the first three PCA principal components (PC1, PC2 and 

PC3) accounted for more than 98 % of the spectral variance (Table 3).  

For the ASD_1/1, the first PCA loading (PC1) exhibited a similar spectral behavior as the 

mean reflectance of the spectral database (Figure 5), indicating that the highest variance 

carried by the PCA is primarily dominated by physical multiplicative effects due to light 

scattering between soil particles. Additionally, computation of the auto-correlation matrix 

from the spectral database indicated high values of R² (> 0.8) for all pairs of wavelengths over 

the full spectral range (data not shown). This strong spectral correlation might enhance the 

importance of the variance explained by PC1 (Table 3). Conversely, the second and third PCA 

principal components loadings (PC2 and PC3) were zero-centered and undertook the 

chemical spectral features of the soil properties, as highlighted by strong changes for example 

between 400 and 800 nm and between 2000 and 2400, and close to 1400 nm and 1900 nm 

(Viscarra and Chen, 2011). 

Then, the analysis of the seven degraded spectral configurations showed the same trend for 

the PC1 loading on one side and the PC2 and PC3 loadings on another side (data not shown). 

The explained variance of PC1, V1, was high, above 92 %, regardless of the spectral 

configuration, whereas V2 and V3 represented less than 6 % (Table 3). V1 decreased from 

ASD_1/1 to Config_3/10 and then slowly increased until Config_200/200. Oppositely, the 

variations of V2 and V3 increased compared to V1. Consequently, the first drop in V1 benefited 

V2 and V3 that carry the useful spectral information (soil property features), but the spectral 

degradation subsequently favored V1.  

 

[Table 3] 

 

[Figure 5] 
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3.4 Learning ability of the PLS model 

 

For the determination of clay, CaCO3 and pH, the learning ability of their PLS models was 

sensitive to the spectral configurations from a number of latent variables (p) of six, five and 

six, respectively (Figures 6a, 6c and 6d). However, for iron, it was poorly sensitive to the 

spectral configurations, regardless of p (Figure 6b). Variations in the rescaled 𝑅2, i.e. 𝑅𝑠2 (see 

section 2.6.2), only represent 1.7 for pH compared to 7.0 for CaCO3 and 5.0 for clay. Then, 

different behaviors in model learning ability were observed with increasing values of p. PLS 

models for clay, CaCO3 and iron contents continued to learn until Config_100/100 with a gain 

in 𝑅𝑠2  
values, but stopped learning for Config_200/200 with stable 𝑅𝑠2  

values from p equals 

to 5. A significant change in model learning ability was noticeable for CaCO3, whose 𝑅𝑠2  

curvature first followed a convex line for fine spectral configurations (e.g., ASD_1/1) and 

gradually became concave for coarse spectral configurations (e.g., Config_200/200; Figure 

6c). At last, PLS models for pH had a low learning ability with almost constant Rs
2 

values 

whatever p or the spectral configuration. 

 

[Figure 6] 

 

3.5 PLSR model prediction performance 

 

The prediction performances of clay, CaCO3 and pH contents were sensitive to the spectral 

configurations when p was superior to 6 (Figure 7a, 7c and 7d), whereas prediction 

performances of iron were insensitive to the spectral configurations, whatever the number of 

latent variables p (Figure 7b). The maximum difference in RMSEP among the spectral 
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configurations was 12 g.kg
-1 

for clay content, 15 g.kg
-1

 for CaCO3 content and 0.17 for pH. 

The worst RMSEP was obtained for Config_200/200, but the best RMSEP was not always 

derived from ASD_1/1, as expected. Variations in RMSEP as a function of p were globally 

similar for all spectral configurations. The first local minimum in RMSEP remained the same 

except for clay content at Config_3/10 (Figure 7a), and for pH, which did not reach a 

minimum of convergence (Figure 7d). This result is in line with the low learning ability of the 

PLS models for pH at increasing values of p shown in the previous section. As a result, the 

optimal number of latent variables popt for clay content was set to 4 for Config_3/10 and 5 for 

the other spectral configurations (Figure 7a). Furthermore, popt was fixed at 8 for CaCO3, 7 for 

iron and 9 for pH, in all spectral configurations (Figure 7b, 7c and 7d). 

 

The ability to predict soil properties with popt decreased with spectral degradation, which was 

highlighted by a decline in R
2

val values and an increase in RMSEP values, excepted for iron 

content (Table 4). In spite of these decreased performances, all soil properties were 

predictable until Config_60/60 (R
2

val > 0.5), and in addition, clay, CaCO3 and iron contents 

still were until Config_200/200 (R
2

val > 0.7). From ASD_1/1 to Config_200/200, the decrease 

in R
2

val accounted for 0.1 in clay, 0.01 in iron, 0.1 in CaCO3 and 0.3 in pH. On the one hand, 

the impact of the spectral degradation began slightly after Config_40/40 and strengthened 

after Config_100/100 for clay content. It started after Config_10/10 for CaCO3 content, and 

for pH, it began after Config_3/10 and strengthened after Config_60/60 (Table 4). This 

behavior was confirmed by the analysis of normalized b-coefficients. The variation of the 

normalized b-coefficients showed similar spectral patterns close to absorption features from 

ASD_1/1 to Config_40/40 (Figure 8). For the Config_60/60, the spectral patterns at 2200 nm 

disappeared (Figure 8). And finally,   from Config_100/100, rough trends in the b-coefficients 

variation may only reflected the differences in physical baselines due to light scattering 

Author-produced version of the article published in Geoderma, 2017, N°288, p.143-153.
The original publication is available at http://www.sciencedirect.com

http://dx.doi.org/10.1016/j.geoderma.2016.11.010



18 

 

changes (Figure 8). Same observations were found for the two other soil properties (data not 

shown). On the other hand, the prediction performance for iron content were constant with 

R
2

val close to 0.78 and low values of RMSEP. This behavior was confirmed by the analysis of 

normalized b-coefficients (data not shown).   

 

[Figure 7] 

 

[Table 4] 

 

[Figure 8] 

 

3.6 Key wavelengths in the PLSR calibration process 

 

For the reference ASD_1/1, the number of key wavelengths ranged between 100 and 300, 

which only represents between 5 % and 15 % of the initial number of available spectral bands 

(i.e., N = 1961; Table 5). Because the pH has no spectral feature, its PLSR model required a 

number of key wavelengths higher than the other soil properties, whereas CaCO3 having a 

specific spectral absorption, needs the least. From ASD_1/1 to Config_3/10, this number 

decreased by a factor of approximately 4 for all soil properties except CaCO3 (Table 5). From 

Config_3/10 to Config_200/200, this number decreased until a value of 2 for clay content, 4 

for iron and CaCO3 contents, and 3 for pH. 

Key wavelengths were primarily located close to the spectral absorption features of each soil 

property (Figure 9). Overall, regardless of the spectral configuration or soil property, these 

spectral bands were grouped into four spectral ranges. One group was located from 440 to 900 

nm and resulted from the presence of iron oxides. The second included spectral bands from 
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1850 to 2000 nm and was correlated to water content. The third included spectral bands close 

to 2200 nm related to the presence of illite, kaolinite and smectite clay minerals, and the 

fourth included spectral bands from 2300 to 2400 nm correlated to CaCO3 and clay minerals. 

 

[Table 5] 

 

[Figure 9] 

 

4. Discussion 

 

The prediction performances of the PLSR models for the four studied soil properties (clay, 

iron, CaCO3 and pH) were accurate until a spectral resolution of 60 nm and 33 spectral bands 

(i.e. Config_60/60). So our results were in agreement with Knadel et al (2013) which found 

no impact of spectral resolution until 10 nm, for clay content prediction. The impact of 

spectral degradation was weak until Config_200/200, except for pH, whose prediction 

performance drastically fell after Config_60/60. Two categories of soil properties could be 

distinguished according to their sensitivity to the spectral degradation. The first category was 

composed of clay, iron and CaCO3, which are driven by chemical absorption features, 

whereas the second was composed of pH, which has no spectral feature. 

In the first soil property category represented by clay, iron and CaCO3, the prediction 

performances were affected by the spectral degradation following two criteria: (i) the 

characteristics of their absorption features (slope or spectral peak width and depth) and (ii) 

their correlation with other soil properties with good prediction performance. As an 

illustration, the estimation of the iron content was not impacted by spectral degradation, as 

shown by the independence of its PLSR models both in terms of learning ability (Figure 6b) 
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and prediction results (Figure 7b) to the spectral configurations. One reason may be that 

PLSR models take advantage of the fact that iron content is primarily calibrated on soil 

colorimetry represented by slopes in a broad spectral region over 400-800 nm and correlated 

to clay and CaCO3 (Table 2), which also had spectral features. Moreover, the PLSR 

calibration process can rely on the selection of at least one key wavelength in the visible 

range, even until the most degraded spectral configuration (Config_200/200, Figure 9b). The 

estimation of clay and CaCO3 contents would be expected to suffer more from spectral 

degradation because these soil properties are both dominated by chemical absorptions with 

narrower or more sparse spectral features than iron content. Nevertheless, if the spectral 

sensitivity of their PLSR model learning abilities was demonstrated (Figure 6a and 6c), it was 

relatively low for their PLSR prediction results (Figure 7a and 7c). In addition, the 

progressive extinction of their spectral absorption features with widths of 95 nm for clay and 

40 nm for CaCO3 does not exactly match the initial decrease in their prediction performance. 

Indeed, the CaCO3 predictions were expected to be more sensitive to the smoothing of the 

spectra because of its narrower width and lower depth absorption peak than that of the clay 

content. The correlation of both clay and CaCO3 with iron likely played an important role in 

maintaining acceptable prediction results until roughly Config_40/40, and only afterwards 

their prediction performance slowly decreases. Moreover, clay content is governed by both 

chemical (clay mineralogical abundance) and physical (clay granulometry) effects, which can 

aid in finding more key wavelengths in PLSR calibration (Figure 9a). As such, they can 

conserve good prediction results with spectral degradation. 

In the second soil property category, represented only by pH and containing no spectral 

feature, the prediction performances essentially relied on correlation with other properties 

having spectral features or good prediction performance (e.g., Ben Dor and Banin, 1995). For 

example, pH estimation was moderately sensitive to the spectral configurations because the 
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learning ability of its PLS model was very low (Figure 6d) and its PLSR model prediction 

performance tended to diverge (Figure 7d). PLSR models seemed to rely on the high CaCO3-

pH correlation (Table 2) to provide acceptable prediction results until Config_60/60. This is 

depicted by the sharing of common key wavelengths with CaCO3 (close to 2430 nm; Figure 

9d). Additionally, its coefficient of determination in validation (𝑅𝑣𝑎𝑙
2 ) approximately followed 

the same decreasing variations as CaCO3. However, after Config_60/60, pH was no longer 

predictable (𝑅𝑣𝑎𝑙
2  < 0.5). 

PLSR models were used to study their dependence on changes in spectral configurations 

following different numbers of latent variables (p). This analysis was performed on both their 

learning ability and prediction performance. Until Config_60/60 with the first category of soil 

properties (clay, iron, CaCO3), the models still learned with a high p value, especially for 

CaCO3. However, from Config_60/60 to Config_200/200, the ability of the PLSR models to 

build useful information from increased p values steadily decreased due to less accurate 

information from the spectral smoothing. pH had a moderate to negligible impact on spectral 

configurations following the increase in p value. Selecting the optimal number of latent 

variables (popt) is typically a critical step in the construction of PLSR models to avoid under- 

and over-fitting (e.g., Viscarra Rossel, 2007), but the sensitivity of our PLSR models to the 

spectral configurations was independent of the choice of popt above a value of 5 for all soil 

properties. 

Analysis of the spectral degradation led us to consider many parameters, such as the number 

of spectral bands (N), the spectral resolution (FHWM) and the spectral sampling interval 

(SSI). PCA applied to the spectra from the spectral configurations revealed that most soil 

information was obtained from Config_3/10 (with lowest PC1 variance) and not from 

ASD_1/1 as one would expect (Table 3). This may result from spectral oversampling by the 

ASD software, which adds artificial noisy spectral information to the raw spectral acquisition 
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as also illustrated by comparing ASD_1/1 and Config_3/10 b-coefficients (Figure 8). 

Therefore, the best spectral configuration tend to be the original ASD acquisitions (prior to 

oversampling) that is close to the spectra defined by Config_3/10, unless the spectral filters 

from the ASD software are not ideally Gaussian. Here, the undesirable added noise is specific 

to the ASD instrument, but this specificity can vary among other spectrometers. Nevertheless, 

this type of noise is generally reduced by the use of the PLSR and prior spectral 

transformations such that the results may not fundamentally change. Furthermore, in our 

study, the impact of the signal-to-noise ratio (SNR) was assumed to be negligible (Knadel et 

al., 2013; Lagacherie et al., 2008) and the spectra acquired by the ASD had a good SNR over 

the 350-2500 nm range except at extreme wavelengths. Finally both sources of noise might 

have an impact on the initiation of the decrease in prediction ability with the spectral 

degradation for soil properties. 

The applicability and reproducibility of our results need to be evaluated for other soil 

properties such as organic carbon or sand contents, which could be classified in the first and 

second soil property categories, respectively. As well these results need to be evaluated with 

different soil properties correlations and distributions and from spectral databases acquired by 

other spectroscopic sensors. Nevertheless, by identifying two main drivers of the sensitivity 

due to spectral degradation, namely the inter-correlation between soil properties and the soil 

spectral features, this study provides an a priori assessment of the prediction of soil properties 

from Vis-NIR spectra. 

 

5. Conclusions 

 

The ability to predict soil properties from initial to degraded spectral configurations was 

assessed for clay, free iron oxides, CaCO3 and pH, with PLSR models and spectra acquired on 
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an ASD portable field spectrometer. The estimation of soil properties involving specific 

spectral features (i.e., clay, iron and CaCO3) were qualitatively sensitive to spectral 

degradation, as expected. However, in our dataset, this decrease in performance was low, 

especially when the spectral feature was large and pronounced (e.g., iron) or the correlation 

between soil properties was strong (e.g., clay-iron and CaCO3-iron). On the other hand, soil 

properties with no spectral features such as pH only relied on the beneficial effect of 

correlations (e.g., CaCO3-pH) and their prediction was more sensitive to spectral degradation 

because less soil information was progressively contained in the spectra. 

For all of our four soil properties, the prediction performance of the PLSR models were 

accurate with respect to the spectral configurations at a resolution from  3 to 60 nm with a 

respective number of spectral bands decreasing from 1961 to 33. Subsequently, only clay, iron 

and CaCO3 were predictable up to a spectral resolution of 200 nm when only 10 spectral 

bands were available. Further analyses should use spectral feature selection methods with 

irregular spectral samplings and spectral resolutions similar to Volhand et al. (2014), who 

studied soil properties independently. In addition, spectral band selection methods such as 

CovSel (Roger et al., 2011) can be used to study the prediction performance of all soil 

properties simultaneously. Finally, because the sensitivity to spectral degradation in 

hyperspectral scenarios was relatively low, high-resolution spectrometers may not be 

necessary for soil investigations. As initiated by Knadel et al., 2013 et Mouazen et al., 2005 

and  followed by this study, this assumption should be further examined by testing different 

spectral ranges, which may also provide new perspective for the design of new low-cost 

spectrometers for soil Vis-NIR spectroscopy. 
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