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ABSTRACT. In this article, we set up a non-intrusive procedure that yields for strict and high-
quality error bounds of quantities of interest in linear viscoelasticity problems solved by 
means of the Finite Element Method. The non-intrusive feature is achieved by introducing, via 
a parti-tion of unity, enrichment functions in the solution of the adjoint problem (handbook 
techniques). The resulting goal-oriented error estimation method is thus easy to implement in 
a FE code and enables to consider trully pointwise quantities of interest.

RÉSUMÉ. Nous présentons dans cet article une procédure permettant d’obtenir de façon non-
intrusive des bornes à la fois garanties et pertinentes de l’erreur sur des quantités locales 
pour les problèmes de viscoélasticité linéaire résolus par la Méthode des Élements Finis. Le 
caractère non-intrusif est apporté par l’introduction de fonctions d’enrichissement, à l’aide 
d’une partition de l’unité, lors de la résolution du problème adjoint (techniques "handbook"). 
La méthode d’estimation d’erreur locale qui en découle est alors simple à implémenter dans 
un code de calcul et permet de considérer des quantités d’intérêt véritablement ponctuelles.

KEYWORDS: Verification, Local error, Strict bounds, Non-intrusive methods, Handbook tech-
niques, Pointwise quantities of interest.

MOTS-CLÉS : Vérification, Erreur locale, Bornes garanties, Méthodes non-intrusives, Techniques 
handbook, Quantités ponctuelles
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1. Introduction

In the widespread numerical simulations carried out nowadays, a major concern

remains the control of the quality of the numerical solutions obtained through ap-

proximate methods. Since the 70s, effective tools have emerged to assess global

discretization error (Babus̆ka et al., 2001; Ladevèze et al., 2004). Today, research

intensely focuses on goal-oriented error estimation, i.e. assessment of the error on lo-

cal quantities which are relevant for design purposes. The most accomplished works

deal with linear static problems and give effective local error bounds (Paraschivoiu

et al., 1997; Prudhomme et al., 1999; Pares et al., 2006). However, very few works

on the subject are dedicated to evolution and non-linear problems; furthermore these

usually lead to bounds which lack reliability because they are not guaranteed and/or

not sharp, which is a serious drawback for robust design.

In the framework of linear viscoelasticity problems described through internal

variables and solved by means of the Finite Element Method (FEM), we introduced

in (Chamoin et al., 2007a) a method that yields for strict and effective error bounds

on local quantities. This method, which is an expansion of the basic ones given in

(Ladevèze, 2006; Ladevèze, 2007), leans on classical extraction techniques (leading

to the solution of an adjoint problem), the concept of dissipation error and convex-

ity properties. It takes history effects into account and may lead to very sharp error

bounds provided that the adjoint problem is solved securately. A simple but intru-

sive way of reaching such an accurate solution consisted in a local refinement of the

time/space mesh being used for the adjoint problem (Chamoin et al., 2007a).

In this paper, we go a step further by setting up a non-intrusive procedure to solve

the adjoint problem precisely, in the sense that we keep unchanged the discretization

parameters (mesh, operators) defined for the reference (or primal) problem (Chamoin

et al., 2007b). We use for that handbook techniques (Strouboulis et al., 2000) that

consist in introducing enrichment functions via the Partition of Unity Method (PUM)

when solving the adjoint problem with the FEM. These functions correspond to lo-

cally (quasi-)exact solutions of the adjoint problem; they are computed analytically or

numerically in a (semi-)infinite domain. As a result, we get high-quality error bounds

at low cost without any remeshing. Furthermore, the method enables to consider trully

pointwise quantities of interest in space and time by using as enrichment functions the

well-known and possibly infinite energy Green’s functions.

2. Reference problem and dissipation error

2.1. The reference problem

We consider the structure Ω, with boundary ∂Ω, given in Figure 1. It is subjected

over the time interval [0, T ] to prescribed time-dependent mechanical sollicitations

(Ud, f
d
, F d). We assume that this loading is zero at t = 0 and that its evolution with

time is piecewise linear.
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Figure 1. Structure and its environment (left) and rheological model used (right).

We choose a material with a linear viscoelastic behavior defined by the generalized

Maxwell model. The associated rheological model (Figure 1) is constituted of an

assembly of n spring/damper sets. Such a material model can be easily described by

means of the generalized internal variables (n-vectors):

s =

⎡

⎣

σ1

.

σn

⎤

⎦ ee =

⎡

⎣

ǫe
1

.

ǫe
n

⎤

⎦ ep =

⎡

⎣

ǫ
p
1

.

ǫp
n

⎤

⎦ e = ee + ep

where ǫe
i and ǫ

p
i are respectively the elastic and anelastic part of the total strain ǫ(u)

in set i, whereas σi are the dual variables related to the Cauchy stress tensor σ by
∑n

i=1
σi = σ. With these notations, the intrinsic dissipation d of the model reads:

d =

n
∑

i=1

Tr[σi ǫ̇
p
i ] = s · ėp.

Under the assumptions of quasi-static, isothermal and small perturbations state, the

reference problem consists in finding a solution (e, s) that verifies:

– the compatibility equations : e is kinematically admissible (e KA);

– the equilibrium equations: s is statically admissible (s SA) ;

– the initial conditions ;

– the constitutive relations which are split into two parts:

ee = Λ(s) ;

n
∑

i=1

σi = σ (state equations); [1]

ėp = B(s) (evolution laws). [2]

The exact solution of the reference problem, denoted (eex, sex), can not usually be

reached. We thus compute an approximate solution, denoted (eh, sh), of the problem

using the FEM associated to a backward-Euler scheme. For that, we divide the time

interval [0, T ] into N time steps [tk, tk+1] (k = 0, . . . , N −1) and we interpolate over

[0, T ] the approximate solution (eh,k, sh,k) obtained at each time point tk.

Therefore, we define the discretization error uex − uh.
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2.2. Computation of the dissipation error

The concept of dissipation error requires the possession of a solution (ê, ŝ), called

an admissible solution, that should verify all the equations of the reference problem

except the evolution laws [2]. Such a solution can be built from the FE solution

(eh, sh) computed previously, using techniques developed at LMT-Cachan for many

years (Ladevèze et al., 2004).

Dissipation error ediss is thus a global measurement of the non-verification, for a

given admissible solution (êh, ŝh), of the evolution laws. It reads:

e2
diss(êh, ŝh) =

1

2

∫ T

0

∫

Ω

(

˙̂ep
h − B(ŝh)

)

· B−1
(

˙̂ep
h − B(ŝh)

)

dΩdt. [3]

A property of the dissipation error is that it represents a global discretization error

estimator taking all sources of error (time and space discretizations in our case) into

account. Another property is the link between ediss(êh, ŝh) and (eex, sex) (Ladevèze

et al., 2004). This last property is the true engine to get strict local error bounds.

In (Chamoin et al., 2007a), we slightly modified the definition of the dissipation

error in order to be able to take the history effects encountered in evolution problems

into account. We thus constructed a pondered dissipation error defined by:

E2
diss(êh, ŝh) =

1

2

∫ T

0

∫

Ω

a(t)
(

˙̂ep
h − B(ŝh)

)

· B−1
(

˙̂ep
h − B(ŝh)

)

dΩdt [4]

where a(t) is a positive time function over [0, T ].

3. The goal-oriented error estimation method

The quantities of interest we deal with may be local in space and time and are

dedicated to viscoelasticity problems. We only consider here quantities which depend

linearly on components of s or e, such as a component of the stress σ, of the displace-

ment u, of an internal variable ǫ
p
i or of its rate ǫ̇

p
i at time t ∈ [0, T ]. However, the case

of nonlinear quantities of interest may not be a big issue provided that they are local.

In the framework of extraction techniques we use, the first step consists in putting

the considered quantity of interest I in a global form:

I =

∫ T

0

∫

Ω

n
∑

i=1

Tr[σi
˙̃ǫΣi] dΩ dt = 〈〈s, ˙̃eΣ〉〉 = −〈〈ė, s̃Σ〉〉. [5]

The n-vectors ˙̃eΣ and s̃Σ, known analytically, represent the extraction function. Fol-

lowing the procedure described in (Becker et al., 2001), we then define a new problem,

called adjoint problem, which is reverse in time but remains similar to the reference

problem except that the loading now consists in the prestress σ̃Σ =
∑n

i=1
σ̃Σi. The

adjoint problem thus boils down to finding a solution (ẽ, s̃) that verifies:

4



– the compatibility equations: ẽ KA-0;

– the equilibrium equations: s̃ − s̃Σ SA-0;

– the final conditions;

– the constitutive relations (state equations and evolution laws).

In the same way as for the reference problem, we compute a FE solution (ẽh, s̃h) and

an admissible solution (ˆ̃eh, ˆ̃sh) for the adjoint problem. Note that the time/space mesh

used to solve the adjoint problem can be chosen independently from the one defined

for the reference problem. The following result thus yields (technical details can be

found in (Chamoin et al., 2007a)):

|Iex − Ih − Ihh| ≤ 2
[1

2
E2

diss(êh, ŝh) + F0(∆h)
]

1

2 .
[

F2(x̃h)
]

1

2 [6]

where Iex (resp. Ih) is the unknown exact value (resp. FE value) of the quantity of

interest I , Ihh is a correction term computed from the approximate solutions of both

reference and adjoint problems, F0 and F2 are some functions known analytically, ∆h

is a computable term that is not explicited here, and x̃h = −B(ˆ̃sh) −
˙̂
ẽ

p
h.

As a result, we obtain from [6] some strict bounds ξinf and ξsup of Iex, equal to:

Ih + Ihh ± 2
[1

2
E2

diss(êh, ŝh) + F0(∆h)
]

1

2 .
[

F2(x̃h)
]

1

2 .

REMARK. — The quantity Ih + Ihh can be viewed as a new approximation of Iex.

Bounds ξinf and ξsup are sharp provided that term F2(x̃h) is small enough, i.e.

when the adjoint problem is solved correctly. This can be reached by refining lo-

cally the time/space mesh used to solve the adjoint problem. However, this intrusive

technique may lead to large modifications in a FE code, which is a drawback. Conse-

quently, we rather set up a non-intrusive technique that is explained in Section 4.

4. Non-intrusive approach for the solution of the adjoint problem

4.1. General framework

Usually, the loading of the adjoint problem induces solutions presenting singular-

ities or high gradients in some localized zones of the domain [0, T ] × Ω. It is thus

difficult to represent these solutions properly with a classical FE discretization. We

propose here a procedure based on the handbook techniques developed in (Strouboulis

et al., 2000). It consists in introducing enrichment functions, via the Partition of Unity

Method (PUM), in the set of basis functions describing the approximate displacement

field. These functions are singular solutions (ẽhand, s̃hand) of the adjoint problem

loading over an infinite (or semi-infinite) domain; they are usually computed analyti-

cally in time and numerically in space and form a library of precalculated solutions.
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Therefore, we now search a displacement field for the adjoint problem under the

form:

ũ =

nnoPUM

∑

j=1

ψj ũ
hand + ũr

where ψj is the classical FE shape function associated to node j, nnoPUM is the total

number of nodes enriched by the PUM and ũr is a displacement field to be calculated.

The total solution (ẽ, s̃) then reads:

(ẽ, s̃) = (ẽhand
PUM , s̃hand

PUM ) + (ẽr, s̃r).

It is composed of two terms:

– an enrichment term (ẽhand
PUM , s̃hand

PUM ) that locally equilibrates the loading of the

adjoint problem. However, it does not verify all the boundary conditions on ∂Ω;

– a FE term (ẽr
h, s̃r

h) that can be seen as a residual solution and that enables to

verify all the boundary conditions on ∂Ω.

We denote by ΩPUM the part of the domain Ω involved in the enrichment by the

PUM. It is split into two parts (Figure 2): a part ΩPUM
1 , such that

∑nnoPUM

j=1
ψj(M) =

1 ∀M ∈ ΩPUM
1 , that contains the area of the structure over which the loading of the

adjoint problem is applied; a part ΩPUM
2 that is the complementary part of ΩPUM

1 in

ΩPUM .

Figure 2. Definition of the zones introduced with the PUM.

The new problem we thus have to solve consists in finding the residual solution

(ẽr, s̃r). It retains the same structure as the original adjoint problem except that the

loading is changed, i.e. the equilibrium equation now reads:
∫

Ω

Tr
[

σ̃rǫ(u∗)
]

dΩ = −

∫

∂ΩP UM
1

σ̃handn12.u
∗dΩ

−

∫

ΩP UM
2

Tr
[

σ̃hand
PUM ǫ(u∗)

]

dΩ ∀t ∈ [0, T ] ∀u∗ ∈ U0

[7]

where n12 is the outgoing unit normal vector on ∂ΩPUM
1 .

Equation [7] shows that the force vector no more contains singular terms, which

implies that the residual solution (ẽr, s̃r) is relatively smooth. We can thus compute an
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accurate approximate solution (ẽr
h, s̃r

h) of the residual solution using the FEM with the

same time/space discretization as the one used for the reference problem. The method

is called non-intrusive in this sense: we reuse the operators (factorized stiffness matrix,

. . . ) of the reference problem and only the force vector has to be changed. Practically,

we solve the adjoint problem in the same time as the reference problem.

Eventually, we get an approximate solution (ẽh, s̃h) of the adjoint problem, such

that (ẽh, s̃h) = (ẽr
h, s̃r

h) + (ẽhand
PUM , s̃hand

PUM ). After computing an admissible residual

solution (ˆ̃er
h, ˆ̃sr

h), the bounding result [6] holds with:

x̃h = −B(ˆ̃sh) −
˙̂
ẽ

p
h = −B(ˆ̃sr

h) −
˙̂
ẽ

r,p
h

due to the fact that the evolution laws are verified by the handbook solutions. As

regards term Ihh involved in [6], it is calculated using overintegration.

4.2. Case of pointwise quantities of interest

The expansion of the non-intrusive method presented above to pointwise in space

quantities of interest is straightforward. Indeed, the loading of the adjoint problem

(force, prestress, . . . ) being also pointwise in space in that case, the associated hand-

book functions correspond to the well-known Green functions. One can introduce

such functions, even though they are infinite-energy, into the approximate solution of

the adjoint problem as they do not appear in the expression of the dissipation error

related to the adjoint problem. The Green functions are here calculated analytically in

space and time, using a method based on strain nuclei (Love, 1944) which leads to the

calculation of Galerkin vectors that are solutions of a simple biharmonic equation.

Figure 3. Spatial distribution of the stress field corresponding to a pointwise prestress
loading over an infinite domain: σ̃hand

xx (left), σ̃hand
yy (center), σ̃hand

xy (right).

When dealing with a semi-infinite domain, we use the image method that consists

in taking contributions of other singular sollicitations into account (Sneddon et al.,

7



1964). In practice, these solicitations are applied to the image point I of the object

point O where the initial pointwise loading is located (Figure 4).

OI

c c

z

Figure 4. The image method.

Even though the FE value Ih of a pointwise quantity at some point P within Ω is

not always defined (due to possible discontinuities of the derivatives across element

boundaries), the bounding method can be applied. Indeed, [6] can be rewritten as:

|Iex − Îh − Îhh| ≤ 2
[1

2
E2

diss(êh, ŝh) + F0(∆h)
]

1

2 .
[

F2(x̃h)
]

1

2 [8]

where Îh and Îhh are some quantities defined at any point P using the admissible

solution (êh, ŝh). Then, one can use the bounds of Iex given by [8]. As in Section 4.1,

one has x̃h = −B(ˆ̃sr
h)− ˙̃̂

e
r,p
h and the calculation of the dissipation error for the adjoint

problem requires the regular residual solution (ˆ̃er
h, ˆ̃sr

h) alone.

5. Numerical results

In this section, we apply the non-intrusive error estimation method to a 2D prob-

lem. We consider a L-shaped structure clamped at its base and subjected to a pre-

scribed displacement Ud(t) along its upper right edge (Figure 5).

U
d
(t)

x

y

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100Ud

t

Figure 5. The structure being considered (left) and its loading (right).

We assume plane stress state and take a rheological model composed of three

spring/damper sets. The finite element solution is obtained by discretizing the struc-
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ture spatially with 64 linear QUA4 elements and dividing the time interval [0, T ]
(T = 20 s) into 20 time steps.

Let us note that the calculation of Iex, used as the reference value, is performed

using a "quasi-exact" solution obtained by means of a very refined finite element mesh

("overkill solution").

5.1. A first example

We consider the quantity of interest:

I =
1

|ω|

∫

ω

ǫ̇
p

1yy |T
dω

where ω corresponds to one-quarter of an element of the reference mesh (Figure 6).

The loading of the associated adjoint problem consists in a prestress σ̃Σ in ω.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

−1

−0.5

0

0.5

1

1.5

ω

0 2 4 6 8 10 12 14 16 18 20
−25

−20

−15

−10

−5

0

t

Figure 6. Map of Field ǫ̇
p
1yy

at time T (left), evolution in time of σ̃Σ (center) and nodes
involved in the enrichment through the PUM (right).

We then introduce in the solution of the adjoint problem specific handbook func-

tions calculated analytically in time and numerically in space. They represent the

(quasi-)exact solution of the adjoint problem loading over a semi-infinite domain, tak-

ing the L-shape and the local traction-free conditions into account (Figure 7).

Figure 7. Spatial distribution of the handbook solution σ̃hand at time T: σ̃hand
xx (left),

σ̃hand
yy (center), σ̃hand

xy (right).

These enrichment functions are introduced through the PUM at specific nodes of

the mesh which are close to the zone of application of the adjoint problem loading

(Figure 6).

9



We show below the spatial distribution of Fields σ̃hand
PUM and σ̃r

h (such that σ̃h =
σ̃hand

PUM + σ̃r
h) at time t = T .
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Figure 8. Spatial distribution of the stress field σ̃hand
PUM at time T : σ̃hand

PUMxx
(left),

σ̃hand
PUMyy

(center), σ̃hand
PUMxy

(right).

Figure 9. Spatial distribution of the stress field σ̃r
h at time T : σ̃r

hxx
(left), σ̃r

hyy
(cen-

ter), σ̃r
hxy

(right).

Eventually, we get the bounds:

ξ̄inf =
ξinf

Iex

= 0.97 ξ̄sup =
ξsup

Iex

= 1.02.

These results show that the non-intrusive method is very efficient and enables to obtain

accurate bounds of localized quantities through the enrichment of only a few nodes of

the space mesh.

5.2. Second example: error estimation on a pointwise quantity of interest

We now consider the quantity of interest:

I = ǫ̇
p
1yy

(P )T

where P is a point that lies within an element of the mesh (Figure 10).
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Figure 10. Definition of Point P where the quantity of interest is defined (left) and
definition of Zone E (right).

The loading of the adjoint problem consists in a pointwise prestress σ̃Σ(M, t) at

Point P in the form σ̃Σ(t)δ(P ). The enrichment functions we use, taking traction-free

boundary conditions into account, are similar to those given in Figure 3.

We then get the following bounds:

ξ̄inf =
ξinf

Iex

= 0, 96 ξ̄sup =
ξsup

Iex

= 1, 04.

In addition, one can seek lower and upper bounds of Iex(P ) for any P within a specific

local zone of interest E (Figure 10). The procedure consists in sweeping Zone E

and considering that the residual solution (ẽr
h, s̃r

h) of the adjoint problem does not

depend on the localization of P over E (practically, this is verified if zone ΩPUM is

sufficiently large). Thus only the handbook function has to be changed when sweeping

over E, and the following result yields:

|Iex(P )− Îh(P )− Îhh(P )| ≤ 2
[1

2
E2

diss(êh, ŝh) + F0(∆h)
]

1

2 .
[

F2(x̃h)
]

1

2 ∀P ∈ E

We thus get the following bounds for the extremum Imax,E
ex of Iex over E:

ξE
inf = 1.23 ξE

sup = 1.31

whereas the value of Imax,E
ex obtained from an "overkill solution" is 1.26. Therefore,

we are able to obtain high-quality lower and upper bounds for the extremum of Iex

over a given zone (or L∞-norm of Iex).

6. Conclusion

We presented in this paper a method that provides for strict and high-quality error

bounds of local quantities in linear viscoelasticity problems. It is made non-intrusive

due to the fact that by using handbook techniques, the adjoint problem is solved keep-

ing the discretization parameters defined for the reference problem; only the loading
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has to be changed. As a result, the bounding process appears in a "black-box" man-

ner for the analyst/designer. Furthermore, this technique enables one to easily tackle

pointwise quantities by using the well-known Green functions. Several numerical tests

clearly illustrated the interest and efficiency of the proposed method.

In summary, this work demonstrates that reliable local error bounds can be ob-

tained at low cost for linear evolution problems, a fact which was not really accepted

by the scientific community until now. It should also be mentioned that the goal-

oriented error estimation method proposed here does not use the orthogonality prop-

erties of the finite element solutions. Therefore, it could conceivably be applied to

problems solved by approximation methods other than the FEM. It could also be ap-

plied to other linear parabolic problems.
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