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In this article, we set up a non-intrusive procedure that yields for strict and highquality error bounds of quantities of interest in linear viscoelasticity problems solved by means of the Finite Element Method. The non-intrusive feature is achieved by introducing, via a parti-tion of unity, enrichment functions in the solution of the adjoint problem (handbook techniques). The resulting goal-oriented error estimation method is thus easy to implement in a FE code and enables to consider trully pointwise quantities of interest.

RÉSUMÉ. Nous présentons dans cet article une procédure permettant d'obtenir de façon nonintrusive des bornes à la fois garanties et pertinentes de l'erreur sur des quantités locales pour les problèmes de viscoélasticité linéaire résolus par la Méthode des Élements Finis. Le caractère non-intrusif est apporté par l'introduction de fonctions d'enrichissement, à l'aide d'une partition de l'unité, lors de la résolution du problème adjoint (techniques "handbook"). La méthode d'estimation d'erreur locale qui en découle est alors simple à implémenter dans un code de calcul et permet de considérer des quantités d'intérêt véritablement ponctuelles.

Introduction

In the widespread numerical simulations carried out nowadays, a major concern remains the control of the quality of the numerical solutions obtained through approximate methods. Since the 70s, effective tools have emerged to assess global discretization error [START_REF] Babuska | The finite element method and its reliability[END_REF][START_REF] Ladevèze | Mastering Calculations in Linear and Nonlinear Mechanics[END_REF]. Today, research intensely focuses on goal-oriented error estimation, i.e. assessment of the error on local quantities which are relevant for design purposes. The most accomplished works deal with linear static problems and give effective local error bounds [START_REF] Paraschivoiu | A posteriori finite element bounds for linear functional outputs of elliptic partial differential equations[END_REF][START_REF] Prudhomme | On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors[END_REF][START_REF] Pares | The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations[END_REF]. However, very few works on the subject are dedicated to evolution and non-linear problems; furthermore these usually lead to bounds which lack reliability because they are not guaranteed and/or not sharp, which is a serious drawback for robust design.

In the framework of linear viscoelasticity problems described through internal variables and solved by means of the Finite Element Method (FEM), we introduced in (Chamoin et al., 2007a) a method that yields for strict and effective error bounds on local quantities. This method, which is an expansion of the basic ones given in [START_REF] Ladevèze | Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems[END_REF][START_REF] Ladevèze | Strict upper error bounds for computed outputs of interest in computational structural mechanics[END_REF], leans on classical extraction techniques (leading to the solution of an adjoint problem), the concept of dissipation error and convexity properties. It takes history effects into account and may lead to very sharp error bounds provided that the adjoint problem is solved securately. A simple but intrusive way of reaching such an accurate solution consisted in a local refinement of the time/space mesh being used for the adjoint problem (Chamoin et al., 2007a).

In this paper, we go a step further by setting up a non-intrusive procedure to solve the adjoint problem precisely, in the sense that we keep unchanged the discretization parameters (mesh, operators) defined for the reference (or primal) problem (Chamoin et al., 2007b). We use for that handbook techniques (Strouboulis et al., 2000) that consist in introducing enrichment functions via the Partition of Unity Method (PUM) when solving the adjoint problem with the FEM. These functions correspond to locally (quasi-)exact solutions of the adjoint problem; they are computed analytically or numerically in a (semi-)infinite domain. As a result, we get high-quality error bounds at low cost without any remeshing. Furthermore, the method enables to consider trully pointwise quantities of interest in space and time by using as enrichment functions the well-known and possibly infinite energy Green's functions.

Reference problem and dissipation error

The reference problem

We consider the structure Ω, with boundary ∂Ω, given in Figure 1. It is subjected over the time interval [0,T] to prescribed time-dependent mechanical sollicitations (U d , f d , F d ). We assume that this loading is zero at t =0and that its evolution with time is piecewise linear. We choose a material with a linear viscoelastic behavior defined by the generalized Maxwell model. The associated rheological model (Figure 1) is constituted of an assembly of n spring/damper sets. Such a material model can be easily described by means of the generalized internal variables (n-vectors):

s = ⎡ ⎣ σ 1 . σ n ⎤ ⎦ e e = ⎡ ⎣ ǫ e 1 . ǫ e n ⎤ ⎦ e p = ⎡ ⎣ ǫ p 1 . ǫ p n ⎤ ⎦ e = e e + e p
where ǫ e i and ǫ p i are respectively the elastic and anelastic part of the total strain ǫ(u) in set i,w h e r e a sσ i are the dual variables related to the Cauchy stress tensor σ by n i=1 σ i = σ. With these notations, the intrinsic dissipation d of the model reads:

d = n i=1 Tr[σ i ǫp i ]=s • ėp .
Under the assumptions of quasi-static, isothermal and small perturbations state, the reference problem consists in finding a solution (e, s)thatverifies:

-the compatibility equations : e is kinematically admissible (e KA); -the equilibrium equations: s is statically admissible (s SA) ; -the initial conditions ; -the constitutive relations which are split into two parts:

e e = Λ(s); n i=1 σ i = σ (state equations); [1] ėp = B(s)( evolution laws). [2]
The exact solution of the reference problem, denoted (e ex ,s ex ), can not usually be reached. We thus compute an approximate solution, denoted (e h ,s h ), of the problem using the FEM associated to a backward-Euler scheme. For that, we divide the time interval [0,T] into N time steps [t k ,t k+1 ] (k =0,...,N-1) and we interpolate over [0,T] the approximate solution (e h,k ,s h,k ) obtained at each time point t k .

Therefore, we define the discretization error u exu h .

Computation of the dissipation error

The concept of dissipation error requires the possession of a solution (ê, ŝ), called an admissible solution, that should verify all the equations of the reference problem except the evolution laws [2]. Such a solution can be built from the FE solution (e h ,s h ) computed previously, using techniques developed at LMT-Cachan for many years [START_REF] Ladevèze | Mastering Calculations in Linear and Nonlinear Mechanics[END_REF].

Dissipation error e diss is thus a global measurement of the non-verification, for a given admissible solution (ê h , ŝh ), of the evolution laws. It reads:

e 2 diss (ê h , ŝh )= 1 2 T 0 Ω ėp h -B(ŝ h ) • B -1 ėp h -B(ŝ h ) dΩdt. [3]
A property of the dissipation error is that it represents a global discretization error estimator taking all sources of error (time and space discretizations in our case) into account. Another property is the link between e diss (ê h , ŝh ) and (e ex ,s ex ) [START_REF] Ladevèze | Mastering Calculations in Linear and Nonlinear Mechanics[END_REF]. This last property is the true engine to get strict local error bounds.

In (Chamoin et al., 2007a), we slightly modified the definition of the dissipation error in order to be able to take the history effects encountered in evolution problems into account. We thus constructed a pondered dissipation error defined by:

E 2 diss (ê h , ŝh )= 1 2 T 0 Ω a(t) ėp h -B(ŝ h ) • B -1 ėp h -B(ŝ h ) dΩdt [4]
where a(t) is a positive time function over [0,T].

The goal-oriented error estimation method

The quantities of interest we deal with may be local in space and time and are dedicated to viscoelasticity problems. We only consider here quantities which depend linearly on components of s or e, such as a component of the stress σ, of the displacement u, of an internal variable ǫ p i or of its rate ǫp i at time t ∈ [0,T]. However, the case of nonlinear quantities of interest may not be a big issue provided that they are local.

In the framework of extraction techniques we use, the first step consists in putting the considered quantity of interest I in a global form:

I = T 0 Ω n i=1 Tr[σ i ǫΣi ] dΩ dt = s, ėΣ = -ė, sΣ . [5]
The n-vectors ėΣ and sΣ , known analytically, represent the extraction function. Following the procedure described in [START_REF] Becker | An optimal control approach to shape a posteriori error estimation in finite element methods[END_REF], we then define a new problem, called adjoint problem, which is reverse in time but remains similar to the reference problem except that the loading now consists in the prestress σΣ = n i=1 σΣi .T h e adjoint problem thus boils down to finding a solution (ẽ, s) that verifies:

-the compatibility equations: ẽ KA-0; -the equilibrium equations: s -sΣ SA-0; -the final conditions; -the constitutive relations (state equations and evolution laws).

In the same way as for the reference problem, we compute a FE solution (ẽ h , sh ) and an admissible solution ( êh , ŝh ) for the adjoint problem. Note that the time/space mesh used to solve the adjoint problem can be chosen independently from the one defined for the reference problem. The following result thus yields (technical details can be found in (Chamoin et al., 2007a)):

|I ex -I h -I hh |≤2 1 2 E 2 diss (ê h , ŝh )+F 0 (∆ h ) 1 2 . F 2 (x h ) 1 2 [6]
where I ex (resp. I h ) is the unknown exact value (resp. FE value) of the quantity of interest I, I hh is a correction term computed from the approximate solutions of both reference and adjoint problems, F 0 and F 2 are some functions known analytically, ∆ h is a computable term that is not explicited here, and xh = -B( ŝh ) -ėp h . As a result, we obtain from [6] some strict bounds ξ inf and ξ sup of I ex , equal to:

I h + I hh ± 2 1 2 E 2 diss (ê h , ŝh )+F 0 (∆ h ) 1 2 . F 2 (x h ) 1 2 .
REMARK. -The quantity I h + I hh can be viewed as a new approximation of I ex .

Bounds ξ inf and ξ sup are sharp provided that term F 2 (x h ) is small enough, i.e. when the adjoint problem is solved correctly. This can be reached by refining locally the time/space mesh used to solve the adjoint problem. However, this intrusive technique may lead to large modifications in a FE code, which is a drawback. Consequently, we rather set up a non-intrusive technique that is explained in Section 4.

Non-intrusive approach for the solution of the adjoint problem

General framework

Usually, the loading of the adjoint problem induces solutions presenting singularities or high gradients in some localized zones of the domain [0,T] × Ω. It is thus difficult to represent these solutions properly with a classical FE discretization. We propose here a procedure based on the handbook techniques developed in (Strouboulis et al., 2000). It consists in introducing enrichment functions, via the Partition of Unity Method (PUM), in the set of basis functions describing the approximate displacement field. These functions are singular solutions (ẽ hand , shand ) of the adjoint problem loading over an infinite (or semi-infinite) domain; they are usually computed analytically in time and numerically in space and form a library of precalculated solutions.

Therefore, we now search a displacement field for the adjoint problem under the form:

ũ = nno PUM j=1 ψ j ũhand +ũ r
where ψ j is the classical FE shape function associated to node j, nno PUM is the total number of nodes enriched by the PUM and ũr is a displacement field to be calculated. The total solution (ẽ, s) then reads:

(ẽ, s)=(ẽ hand PUM , shand PUM )+(ẽ r , sr ). It is composed of two terms:

-an enrichment term (ẽ hand PUM , shand PUM ) that locally equilibrates the loading of the adjoint problem. However, it does not verify all the boundary conditions on ∂Ω;

-aFEterm(ẽ r h , sr h ) that can be seen as a residual solution and that enables to verify all the boundary conditions on ∂Ω.

We denote by Ω PUM the part of the domain Ω involved in the enrichment by the PUM. It is split into two parts (Figure 2

): a part Ω PUM 1 , such that nno PUM j=1 ψ j (M )= 1 ∀M ∈ Ω PUM 1
, that contains the area of the structure over which the loading of the adjoint problem is applied; a part Ω PUM 2 that is the complementary part of Ω PUM 1 in Ω PUM .

Figure 2. Definition of the zones introduced with the PUM.

The new problem we thus have to solve consists in finding the residual solution (ẽ r , sr ). It retains the same structure as the original adjoint problem except that the loading is changed, i.e. the equilibrium equation now reads:

Ω Tr σr ǫ(u * ) dΩ=- ∂Ω PUM 1 σhand n 12 .u * dΩ - Ω PUM 2 Tr σhand PUM ǫ(u * ) dΩ ∀t ∈ [0,T] ∀u * ∈U 0 [7]
where n 12 is the outgoing unit normal vector on ∂Ω PUM 1 .

Equation [7] shows that the force vector no more contains singular terms, which implies that the residual solution (ẽ r , sr ) is relatively smooth. We can thus compute an accurate approximate solution (ẽ r h , sr h ) of the residual solution using the FEM with the same time/space discretization as the one used for the reference problem. The method is called non-intrusive in this sense: we reuse the operators (factorized stiffness matrix, ...) ofthereferenceproblemandonlytheforcevectorhastobechanged. Practically, we solve the adjoint problem in the same time as the reference problem.

Eventually, we get an approximate solution (ẽ h , sh ) of the adjoint problem, such that (ẽ h , sh )=( ẽr h , sr h )+(ẽ hand PUM , shand PUM ). After computing an admissible residual solution ( êr h , ŝr h ), the bounding result [6] holds with:

xh = -B( ŝh ) -ėp h = -B( ŝr h ) -ėr,p h
due to the fact that the evolution laws are verified by the handbook solutions. As regards term I hh involved in [6], it is calculated using overintegration.

Case of pointwise quantities of interest

The expansion of the non-intrusive method presented above to pointwise in space quantities of interest is straightforward. Indeed, the loading of the adjoint problem (force, prestress, ...) being also pointwise in space in that case, the associated handbook functions correspond to the well-known Green functions. One can introduce such functions, even though they are infinite-energy, into the approximate solution of the adjoint problem as they do not appear in the expression of the dissipation error related to the adjoint problem. The Green functions are here calculated analytically in space and time, using a method based on strain nuclei [START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF] which leads to the calculation of Galerkin vectors that are solutions of a simple biharmonic equation. When dealing with a semi-infinite domain, we use the image method that consists in taking contributions of other singular sollicitations into account (Sneddon et al., 1964). In practice, these solicitations are applied to the image point I of the object point O where the initial pointwise loading is located (Figure 4). Even though the FE value I h of a pointwise quantity at some point P within Ω is not always defined (due to possible discontinuities of the derivatives across element boundaries), the bounding method can be applied. Indeed, [6] can be rewritten as:

|I ex -Îh -Îhh |≤2 1 2 E 2 diss (ê h , ŝh )+F 0 (∆ h ) 1 2 . F 2 (x h ) 1 2 [8]
where Îh and Îhh are some quantities defined at any point P using the admissible solution (ê h , ŝh ). Then, one can use the bounds of I ex givenby[8].AsinSection4.1, one has xh = -B( ŝr h )-ėr,p h and the calculation of the dissipation error for the adjoint problem requires the regular residual solution ( êr h , ŝr h ) alone.

Numerical results

In this section, we apply the non-intrusive error estimation method to a 2D problem. We consider a L-shaped structure clamped at its base and subjected to a prescribed displacement U d (t) along its upper right edge (Figure 5). We assume plane stress state and take a rheological model composed of three spring/damper sets. The finite element solution is obtained by discretizing the struc-ture spatially with 64 linear QUA4 elements and dividing the time interval [0,T] (T =20s) into 20 time steps.

Let us note that the calculation of I ex , used as the reference value, is performed using a "quasi-exact" solution obtained by means of a very refined finite element mesh ("overkill solution").

A first example

We consider the quantity of interest:

I = 1 |ω| ω ǫp 1 yy |T dω
where ω corresponds to one-quarter of an element of the reference mesh (Figure 6). The loading of the associated adjoint problem consists in a prestress σΣ in ω. We then introduce in the solution of the adjoint problem specific handbook functions calculated analytically in time and numerically in space. They represent the (quasi-)exact solution of the adjoint problem loading over a semi-infinite domain, taking the L-shape and the local traction-free conditions into account (Figure 7). These enrichment functions are introduced through the PUM at specific nodes of the mesh which are close to the zone of application of the adjoint problem loading (Figure 6). Eventually, we get the bounds:

ξinf = ξ inf I ex =0.97 ξsup = ξ sup I ex =1.02.
These results show that the non-intrusive method is very efficient and enables to obtain accurate bounds of localized quantities through the enrichment of only a few nodes of the space mesh.

Second example: error estimation on a pointwise quantity of interest

We now consider the quantity of interest:

I =ǫ p 1 yy (P ) T
where P is a point that lies within an element of the mesh (Figure 10). The loading of the adjoint problem consists in a pointwise prestress σΣ (M, t) at Point P in the form σΣ (t)δ(P ). The enrichment functions we use, taking traction-free boundary conditions into account, are similar to those given in Figure 3.

We then get the following bounds:

ξinf = ξ inf I ex =0, 96 ξsup = ξ sup I ex =1, 04.
In addition, one can seek lower and upper bounds of I ex (P ) for any P within a specific local zone of interest E (Figure 10). The procedure consists in sweeping Zone E and considering that the residual solution (ẽ r h , sr h ) of the adjoint problem does not depend on the localization of P over E (practically, this is verified if zone Ω PUM is sufficiently large). Thus only the handbook function has to be changed when sweeping over E, and the following result yields:

|I ex (P ) -Îh (P ) -Îhh (P )|≤2 1 2 E 2 diss (ê h , ŝh )+F 0 (∆ h ) 1 2 . F 2 (x h ) 1 2

∀P ∈ E

We thus get the following bounds for the extremum I max,E ex of I ex over E:

ξ E inf =1.23 ξ E sup =1.31
whereas the value of I max,E ex obtained from an "overkill solution"is1.26. Therefore, we are able to obtain high-quality lower and upper bounds for the extremum of I ex over a given zone (or L ∞ -norm of I ex ).

Conclusion

We presented in this paper a method that provides for strict and high-quality error bounds of local quantities in linear viscoelasticity problems. It is made non-intrusive due to the fact that by using handbook techniques, the adjoint problem is solved keeping the discretization parameters defined for the reference problem; only the loading has to be changed. As a result, the bounding process appears in a "black-box" manner for the analyst/designer. Furthermore, this technique enables one to easily tackle pointwise quantities by using the well-known Green functions. Several numerical tests clearly illustrated the interest and efficiency of the proposed method.

In summary, this work demonstrates that reliable local error bounds can be obtained at low cost for linear evolution problems, a fact which was not really accepted by the scientific community until now. It should also be mentioned that the goaloriented error estimation method proposed here does not use the orthogonality properties of the finite element solutions. Therefore, it could conceivably be applied to problems solved by approximation methods other than the FEM. It could also be applied to other linear parabolic problems. Sneddon I., Hill R., Progress in solid mechanics, North Holland Publishing Company, Amsterdam, 1964. Strouboulis T., Babuska I., Copps K., " The design and analysis of the Generalized Finite Element Method", Computer Methods in Applied Mechanics and Engineering, vol. 181, p. 43-69, 2000. 
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 1 Figure 1. Structure and its environment (left) and rheological model used (right).
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 3 Figure 3. Spatial distribution of the stress field corresponding to a pointwise prestress loading over an infinite domain: σhand xx
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 4 Figure 4. The image method.
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 5 Figure 5. The structure being considered (left) and its loading (right).
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 6 Figure 6. Map of Field ǫp 1 yy at time T (left), evolution in time of σΣ (center) and nodes involved in the enrichment through the PUM (right).
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 7 Figure 7. Spatial distribution of the handbook solution σhand at time T: σhand xx (left), σhand yy
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 8 Figure 8. Spatial distribution of the stress field σhand PUM at time T : σhand PUM xx (left), σhand PUM yy (center), σhand PUM xy (right).
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 9 Figure 9. Spatial distribution of the stress field σr h at time T : σr h xx (left), σr h yy (center), σr h xy (right).
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 10 Figure 10. Definition of Point P where the quantity of interest is defined (left) and definition of Zone E (right).