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Abstract

The transverse argumental vibration of a beam excited axially by an
harmonic motion transmitted through intermittent or permanent elastic
contact is studied. Previous results have shown, using a smooth model
and the averaging method, that a vibration in the fundamental trans-
verse mode of the beam can occur when the frequency of the excitation
is an even multiple (greater than 2) of the frequency of the fundamental
transverse mode. A few properties of the smooth model are brought out
in symbolic form, namely the conditions of occurrence of the stationary
regime, formulas pertaining to the excitation threshold, and the preci-
sion of the assessment of said thresholds. An all-case upper bound of the
relative error about the value of the excitation threshold is given.

Keywords— non-linear; argumental oscillator; beam; axial excitation; trans-
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1 Introduction.

The so-called argumental oscillator has a stable motion consisting of a periodic
motion at a frequency next to its natural frequency when submitted to an exter-
nal force whose frequency is close to a multiple of said natural frequency. One
condition for the phenomenon to arise is that the external force be dependent on
the space coordinate of the oscillator. An oscillator exhibiting such characteris-
tics has been described [1] in 1938. The word ”argumental” was forged in [10].
Further developments were carried out [8,9], particularly the multiple resonance
and the quantum effect. Argumental oscillations have also been observed and
described in [7, 11]. They have also been studied in [2–4].
In this paper, the transverse argumental vibration of a beam excited axially
by an harmonic motion transmitted through intermittent or permanent elastic
contact is studied. Previous results [5] have shown that this system obeys an
argumental equation, and, using a discontinuous natural model with numerical
calculus, as well as a smooth continuous model with the averaging method, that
a vibration in the fundamental transverse mode of the beam can occur when the
frequency of the excitation is an even multiple (greater than 2) of the frequency
of the fundamental transverse mode. Experimental results pertaining to this
configuration are given in [6].

2 System configuration.

The schematic system configuration is as shown in Fig. 1. A beam is repre-
sented, with its left end S and right end M, in an clamped-(clamped-guided)
configuration. Point M is intermittently pushed to the left by a plate C, which
is linked to a point A via a spring. ~F is the force intermittently applied by plate
C to the beam’s right end in M. F is negative when the beam is in compression.
Point A is in harmonic motion horizontally in the figure, in such a manner that
the contact between plate C and point M be intermittent when the beam and
point A are vibrating. When the beam is in resting (i.e. rectilinear) position
and point A is in center position, the force applied to point M is denoted by F0.

3 Stationary condition.

The argumental transverse vibration of an axially-excited beam has been mod-
eled and studied via the averaging method [5], with the help of a smooth model,
to derive the results summarized below.

Notations:

� ν is the angular frequency of the excitation source at point A,

� F0 is the force F when the beam is at rest and point A is at rest in central
position,

4



S

F

v(x,t)

C

M
A

v

x

Figure 1: system configuration. x is the horizontal abscissa, v is the transverse
displacement, t is the time, and ~F is the force applied by plate C to the beam
at point M.

� FB is the beam’s critical buckling force,

� ω0 is the beam’s natural angular frequency when point A is at rest in its

central position, with ω2
0 = a1

(π
L

)2 FB + F0

µS
, where a1 = 1 in the hinged-

(hinged-guided) case, and a1 = 4/3 in the clamped-(clamped-clamped)
case, µ =mass per volume unit of the beam, S = section of the beam,

� ω00 is the value of ω0 when F0 = 0,

� n is an even integer roughly equal to
ν

ω0
,

� ρ is a parameter, generally close to 1, chosen so as to have
ν

ρω0
= n,

� k is the spring’s stiffness,

� L is the beam’s length,

� a L is the amplitude of the beam’s motion (a is adimensioned),

� aS L is the amplitude of the beam’s stationary-motion (aS is adimen-
sioned),

� aA L is the amplitude of the excitation at point A (aA is adimensioned),

� ρ00 is defined as ρ

√
FB

FB + F0
,

� aAcrit is a parameter defined as aAcrit = −F0

kL
=
|F0|
kL

,

� B and C are constants defined as B = −π
2

2

kL

F0
=

π2

2 aAcrit
and C = 2 B,
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� The “Model validity upper limit” is the value which aA must not exceed

for the buckling force never to be exceeded [5], i.e.
FB + F0

kL
,

� A is a function of aA defined as

– If aA < aAcrit:

A(aA) =
kLaA
FB + F0

(1)

which, in this case, is actually independent of aA.

– If aA ≥ aAcrit:
A(aA) = − F0 − aAkL

2FB + F0 − aAkL
(2)

� Sn and Dn are two functions of a defined as

Sn(a) =
4

an+1

(
√

1 +Ba2 − 1)n

B
n
2 +1

(3)

Dn(a) =
Sn(a)√
1 +Ba2

(4)

Moreover:
1

Sn

∂Sn
∂a

=
1

a

(
n√

1 +Ba2
− 1

)
(5)

� G is a function of a and aA defined as

– If aA < aAcrit:

G(a, aA) = −1

2

F0

FB + F0
a

(
1− 2

Ca2
+

1

Ca2
2√

1 + Ca2

)
(6)

which, in this case, is actually independent of aA.

– If aA ≥ aAcrit:

G(a, aA) = −1

2

F0 − aAkL
2FB + F0 − aAkL

a

(
1− 2

Ca2
+

1

Ca2
2√

1 + Ca2

)
(7)

Results of the averaging method. The averaging method consists here in
searching a solution close to a slowly-varying sinusoid, carrying out the following
classic change of variables{

z(τ) = a(τ) sin(ρτ + ϕ(τ))

ż(τ) = a(τ)ρ cos(ρτ + ϕ(τ))

where the dot notation denotes the differentiation w.r.t. reduced time τ .
With the system configuration studied in this paper, the averaging method
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yields, among others, the following result: knowing that n =
ν

ρω0
is an even

integer, then the system obeys the following system of equations:
ȧ(τ) =

A(aA)

4ρ
Sn(a) sin(nϕ(τ))− βa

ϕ̇(τ) =
G(a, aA)

a
+
A(aA)

4a
Dn(a) cos(nϕ(τ))− ρ2 − 1

2

(8)

where ϕ(τ) is the motion’s phase shift w.r.t. the excitation force.
Under certain initial conditions, and when some relations between the pa-
rameters are satisfied, there is a stationary solution to system (8), namely
z(τ) = aS sin(ρτ + ϕS), where aS and ϕS are constants, which satisfies the
system (8) in which ȧ and ϕ̇ are set to 0. From this system, a number of sym-
bolic relations will be derived in this paper, which give clues about the stationary
condition.

Basic equation of the amplitude in stationary condition. Eliminating
ϕS by writing that sin2(nϕS) + cos2(nϕS) = 1, obtain from Eqs. (8):

(4ρβ)
2

+ 4
S2
n(aS)

D2
n(aS)

(
2G1(aS)− (ρ2 − 1)

)2
=
A2(aA)S2

n(aS)

a2S
(9)

β-curve, G-curve and stationary-solutions curve. To help visualizing
some results hereinafter, define a Fβ function of variable aS by

Fβ(aS) = (4ρβ)2 −
(
A(aA)Sn(aS)

aS

)2

,

and define the “β-curve” as the curve representing the solution to equation
Fβ(aS) = 0. Also, define a FG function of variable aS by

FG(aS) = 2G1(aS)− (ρ2 − 1),

and define the “G-curve” as the curve representing the solution of

FG(aS) = 0. (10)

Finally, define the “stationary-solutions curve” as the curve representing the
solution to Eq. (9). Then, Eq. (9) can be written:

Fβ(aS) + 4
S2
n(aS)

D2
n(aS)

F 2
G(aS) = 0 (11)

Excitation threshold. It is of interest to be able to assess the minimum value
aAmin of aA versus aS along a stationary-solutions curve, because this value of
aA is the excitation threshold allowing the argumental phenomenon to arise with
given parameters n, β, FB , F0, L, k, f00 and ρ00. The numerical plots show that
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the minimum of aA seems to be close to an intersection point of the β-curve
and the G-curve. Therefore, it is natural to carry out a local study around
said intersection point to confirm this impression. Said local study will be
given hereinafter in Section 3.3. Using a classical approach, by differentiation of
Eq. (9), leads to an intricate calculus, with no significant simplification in sight.
However, this differentiation leads to guess that Fβ(a) ≈ 0 and FG(a) ≈ 0 at
the minimum of the stationary-solutions curve.

Stationary-solutions curve. Fig. 2 shows the implicit stationary-solutions
curve, obtained numerically, giving aA against aS for the values of parameters
given in the figure’s legend. The solid-line curve represents the stationary-
solutions curve of Eq. (9), with a minimum at point Amin, which is close to the
calculated point of intersection of the β-curve and the G-curve. The solution

Figure 2: Stationary condition in the case ρ00 < 1 for the averaged system
with the smooth model of the external force. aS is the stationary-motion’s
amplitude, aA is the excitation’s amplitude. The dotted line is the G curve.
The solid line is the locus of the stationary solutions to the averaged smooth
model. The dashed line is the β-curve. S and U respectively represent the
stable and the unstable stationary conditions located at the intersection of the
stationary-solutions curve and the dash-dotted line representing the excitation
level. The space-dashed horizontal line is the “critical line”. Below said line,
Amin is the minimum of the stationary-solutions curve. Parameter values are:
n = 6, β = 2.4 10−3, FB = 51N , F0 = −8N , L = 0.95m, k = 130 kN/m,
f00 = 6.615Hz, fshaker = 39.500711Hz, ρ00 = 0.9952308, λ = 0.1569. Model
validity upper limit=4.48 10−4.

to System (8) can be seen as composed of two parts, depending on the position
with respect to the horizontal line aA = aAcrit = |F0|/(kL), herein called the
“critical line”:
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� An upper part (above said line) composed of two arcs, in contact at their
higher extremities at one point, and at their lower extremities at said line.

� A lower part, constituted by a V-shaped curve, presenting a minimum at
point Amin.

The upper and lower parts are connected at the critical line. The right (resp.
left) arc and the right (resp. left) part of the V-shaped curve represent the
stable (resp. unstable) stationary solutions. For a given value of the excitation,
i.e. a given amplitude aA, there are two possible values for aS , represented by
points S and U . Point S is the stable stationary condition, while point U is the
unstable one. The V-shaped curve represents cases where there is permanent
contact between the beam under test (BUT) and the excitation source when
the BUT is in rectilinear position. In these cases, the contact may or may not
remain permanent when the BUT enters a transversal vibration, depending on
the spring’s stiffness and the amplitudes of transversal vibration of the BUT
and of the excitation source.

Restriction on ρ00. Appendix B in Section 6 shows that only the values of
ρ200 comprised between 1−λ and 1 are valid to be in the case where a V-shaped
part exists. The calculus below are focused on the case ρ00 < 1, because when
ρ00 > 1, there is no V-shaped part of the stationary-solutions curve, which is
entirely above the critical line at ordinate aAcrit; in this case, it is sufficient to
take, as a minimum excitation threshold, the asymptotic limit of the G-curve
when aS → +∞, given in Appendix A in Section 5 as 2(1−1/ρ200)(FB+F0)−F0.
Fig. 3 shows the layout of the curves when ρ00 > 1: as the G-curve (dotted line)
never intersects the critical line, the intersection between the G-curve and the
β-curve never exists under the critical line, and therefore, the V-shaped part of
the stationary-solutions curve never shows up.

3.1 Intersection of the β-curve and the G-curve.

In this section, the intersection conditions of the β-curve and the G-curve will
be studied. The primary focus is not to give a general solution for any configura-
tion of the β-curve and the G-curve, but to bring out some limit configurations,
i.e. tangency conditions between said curves, corresponding to limit conditions
of possibility for the argumental phenomenon to arise. Those curves each have
two different versions: the upper version and the lower version. The upper
(resp. lower) versions are applicable when the point representing the stationary
condition in the(aS , aA)-plane is located above (resp. below) the critical line
aA = |F0|/(kL). But for the study in this section, the upper versions will be
prolonged in the region located below the critical line, for reasoning purposes
only. Call “forking point” F the point of intersection of the G-curve with the
critical line. The top of lower G-curve is said forking point. Define a0 as the
abscissa of said point.
Compare the upper versions, including their prolonged parts, and study the

9



Figure 3: Stationary condition in the case ρ00 > 1 for the averaged system with
the smooth model of the external force. The space-dotted line is the asymptote
of the G-curve when aS → +∞. Other graphical-element descriptions and
parameter values are the same as for Fig. 2, except fshaker = 39.88845Hz and
ρ00 = 1.005.

tangency condition between the upper β-curve and the upper G-curve. When
the tangency point is above the critical line, a slight contraction of the β-curve
upon the vertical direction (due to a lower value of β) starting from the tan-
gency condition, will produce two points of intersection between said curve and
the G-curve. Those points will both be above the critical line. The rightmost
point is close to the minimum of the crescent-shaped stationary-solutions curve
representing the stationary conditions of the averaged system. Now if the tan-
gency point is below the critical line, a slight contraction on the β-curve will
also produce two points of intersection, but those points will be at the right
of the vertical segment constituting the lower G-curve, and therefore, they will
not be on the lower G-curve. It will be necessary to apply a stronger contrac-
tion on the upper β-curve, until it intersects the G-curve at its forking point.
Then, substituting the lower β-curve for the upper β-curve, a slight contraction
on the lower β-curve will produce two points of intersection with the G-curve,
one located on the upper G-curve, the other on the lower G-curve. This latter
point is the point of interest. It is close to the minimum of the V-shaped part
of the stationary-solutions curve representing the stationary conditions of the
averaged system. Said substitution is legitimate, because the prolonged upper
β-curve and the lower β-curve intersect each other at the critical line, so that
continuity is preserved.
So, in the upper part of the (aS , aA)-plave (above the critical line), the tangency
of the β-curve and the G-curve is the limit condition for the intersection of said
curves to exist, and then for the existence of solutions to the averaged system.
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In the lower part of the plane, the limit condition is when the lower β-curve
goes through the G-curve’s forking point.
However, an approaching method is given at the end of this section, to assess
the intersection of the β-curve and the G-curve.

Figure 4: Tangent upper β-curve, case ρ00 < 1 and aT < a0. Parameters and
description are the same as for Fig. 2, except F0 = −9.7N . The solid curve is the
set of stationary solutions curve to the averaged system. F is the forking point.
The G-curve is the dotted curve. The upper dashed beta curve is tangent at T
to the G-curve. The β-curve giving the minimum value of aA is the lower dashed
curve. The horizontal space-dashed line is the critical line. Model validity upper
limit=3.34 10−4.

Case 1 < ρ00. Denote aA1(a) for the upper G-function, which writes:

aA1(a) =
F0

kL
+ 2

FB
kL

(ρ2 − 1)Ca2

ρ2Ca2 − 2 + 2√
Ca2+1

and denote aA2(a) for the upper β-function, which writes:

aA2(a) =
F0

kL
+ 2

FB
kL

1

1 + 1
ρβ

1
Ba2

(√
1+Ba2−1√
Ba2

)n
Using Eq. (50) of Appendix A, the tangency condition between the upper β-
curve and the upper G-curve is:

ρβ

ρ2 − 1
≈ 4n2

(n2 − 4)2

(
n− 2

n+ 2

)n/2
(12)
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Figure 5: Tangent upper β-curve, case ρ00 < 1 and a0 < aT . Parameters
and description are the same as for Fig. 2, except F0 = −19.3N , fshaker =
37.7055 Hz, ρ00 = 0.95. The solid curve is the set of stationary solutions to the
averaged system. F is the forking point. The prolonged G-curve in the domain
located below the critical line is the dot-dashed curve. The upper dashed beta
curve is tangent to the prolonged G-curve at point T. The dashed β-curve going
through point F is the limit β-curve having an intersection with the G-curve.
The β-curve giving the minimum value of aA along the stationary-solutions
curve is the lower dashed curve. The horizontal space-dashed line is the critical
line. The Model validity upper limit is visible on the graph.

Substituting ρ200
FB

FB + F0
for ρ2 yields:

ρ00
√

1− λ
ρ200 − 1 + λ

β <
4n2

(n2 − 4)2

(
n− 2

n+ 2

)n/2
(13)

with λ =
|F0|
FB

=
−F0

FB
.

To see how this condition translates in the (λ, ρ00)-plane, carry out some calcu-

lus, putting x = 1− λ, y = ρ200, F =
4n2

(n2 − 4)2

(
n− 2

n+ 2

)n/2
, and c = 1 +

1

2F 2
,

to obtain the inequality

(y − cx)2 − (c2 − 1)x2 > 0 (14)

which in turn yields 
y > (c+

√
c2 − 1)x

or

y < (c−
√
c2 − 1)x

(15)
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Getting back to the original parameters λ and ρ00, obtain:
λ > 1− ρ200

c+
√
c2 − 1

or

λ < 1− ρ200
c−
√
c2 − 1

(16)

Because c > 1 by definition, the second condition cannot be satisfied if ρ00 > 1.
It remains the first condition, meaning that the representative point in the
(λ, ρ00)-plane must be above an horizontal-axis parabola. The condition is ex-
pressed by the inequation

λ > 1− ρ200
c+
√
c2 − 1

(17)

Said point must also be under the parabola of equation λ = 1− ρ200
2

because of

condition (60) given in Appendix B.

Case ρ00 < 1. Denote aT for the abscissa of the tangency point between the
limit upper β-curve and the upper G-curve. Here two cases must be distin-
guished, depending on the relative abscissae aT and a0 of the tangency point
and the G-curve’s forking point. The expression of a20 is given in Eq. (21) and
the expression for a2T in Eq. (53). A simple criterion to compare aT and a0 is
given hereinafter.

� If aT < a0, the intersection points of the limit β-curve and the G-curve
are both above the critical line, and consequently are on the upper parts
of said curves. Therefore, the limit intersection condition of said curves is
the same as for the case ρ00 > 1.

� If a0 < aT , it has been showed above that the limit intersection condition
is constituted by the lower β-curve going through the G-curve’s forking
point. The lower β-function is

aA(a) = ρ00β

√
FB(FB + F0)

kL

1

1
Ba2

(√
1+Ba2−1√
Ba2

)n (18)

The condition for the lower β-curve and the lower G-curve to intersect is

aA(a0) < aAcrit (19)

where a0 is the forking point’s abscissa. Eq. (59) gives the expression of
a0.
Then substitute a0 for a in Equ (19) using Eq. (18) to obtain the condition
of intersection below the critical line:

β <
λ

ρ00
√

1− λ
1

Ba20

(√
1 +Ba20 − 1√

Ba20

)n
(20)
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Then transform the expression Ba20 using Eqs (59) and the definition of
constant B to obtain

Ba20 =
λ

1− ρ200
− 1

4
− 1

4

√
1 + 8

λ

1− ρ200
(21)

and finally substitute this expression of Ba20 into (20) to obtain a condition
based only on parameters λ, ρ00, β and n, valid when ρ00 < 1 and a0 < aT .

Finally, conditions (17) and (20) allow to plot in the (λ, ρ00)-plane, for given
values of β and n, the regions where the argumental phenomenon can arise.

A simple criterion to compare aT and a0. Here it is assumed that ρ00 < 1.
To form the criterion, firstly consider the case aT < a0. Using the expressions
of a20 from Eq. (21) and a2T from Eq. (53), transform expression a2T < a20 into

n2 − 12 <
4λ

1− ρ200
− 1−

√
1 +

8λ

1− ρ200

Then put u =
4λ

1− ρ200
to obtain

√
1 + 2u < u+ 11− n2

and then, assuming from now on that u+ 11− n2 > 0, obtain

u2 + 2(10− n2)u+ (10− n2)(12− n2) > 0 (22)

Deduce that u must be outside the interval between the roots, and also greater
than n2 − 11, which finally yields:

4λ

1− ρ200
> n2 − 10 +

√
2(n2 − 10) (23)

The condition a0 < aT yields an inequality opposed to (23).

3.2 Graphical representation of the argumental phenomenon’s
possibility of existence.

In Section 3.1, it has been shown that the condition of intersection of the β-curve
and the G-curve depends only on parameters λ, ρ00, β and n. This condition is
the condition of possibility of existence of the argumental phenomenon. Con-
sidering that β and f00 are fixed for a given configuration of the BUT, and that
n is an arbitrary even integer greater or equal to 4 accounting for the gross
frequency ratio between the excitation frequency and f00, one is leaded to use
the (λ, ρ00)-plane to represent the regions where the argumental phenomenon
is possible. Knowing that ρ00 = fexcit/(n f00), the variability of fexcit is ac-
counted for by the variability of ρ00, and the variability of F0 is accounted for
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by the variability of λ, with λ = |F0|/FB . Noticing that ρ00 appears only as ρ200,
preferably use the (λ, ρ200)-plane for the graphical representations. By so doing,
all parabolas having the axis of abscissae as principal axis become rectilinear
lines, so that plots are easier to read and manipulate.

Figure 6: Possibility of existence of the argumental phenomenon (in the shaded
region). Parameter values for n, β, FB , f00 and fshaker are the same as for
Fig. 16, whose values of λ and ρ00 are represented here by point P. The solid
lines are the upper and lower limits of the smooth model’s validity region. The
dotted line is the border between the case ρ00 < 1 and the case ρ00 > 1. The
dashed line is the border between the case aT < a0 and the case aT > a0.
The dash-dotted line is the border below which the β-curve and the G-curve
don’t intersect in the region above the dashed line. The dash-dotted line is
not relevant in the region below the dashed line. The solid curve is the curve
below which the β-curve and the G-curve don’t intersect in the region below
the dashed line. It is not relevant above the dashed line.
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Figure 7: Zoomed view of Fig. 6. The slight offset of the shaded area at
(0.08, 0.967) is due to the use of approximated symbolic formulas for aT and
a0.

Figure 8: Possibility of existence of the argumental phenomenon (in the shaded
region). Parameter values for n, β, FB and f00 are the same as in Figs. 2 and
3. Point P (resp. Q) represents the values of λ and ρ00 in Fig. 2 (resp. Fig. 3).
The description of the graphic elements is the same as for Fig. 6.
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Figure 9: Zoomed view of Fig. 8. The slight offset of the shaded area at
(0.145, 0.983) is due to the use of approximated symbolic formulas for aT and
a0.

Figure 10: Possibility of existence of the argumental phenomenon (in the shaded
region). Parameter values are: n = 14, β = 1.6 10−3, FB = 51N , f00 = 6.615Hz
and fshaker = 92.1495Hz, ρ00 = 0.995, λ = 0.45. Point P represents the values
of λ and ρ00. The description of the graphic elements is the same as for Fig. 6.
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Figure 11: Zoomed view of Fig. 10.

18



3.3 Validity of the localization of the minimum of the
stationary-solutions curve as the intersection of the
β-curve and the G-curve.

One purpose of the study of the stationary-solutions curve is to assess the ex-
citation threshold introduced in Section 3, which is the minimum value of the
excitation aA necessary to obtain an argumental phenomenon. So far, the min-
imum of the stationary-solutions curve, located at point Amin in Fig. 2, has
been considered close to the intersection of the β-curve and the G-curve. In this
section, the validity of this approximation is studied, and an upper bound of
the error involved in this approximation is given in symbolic form. An all-case
numeric upper bound is then derived. Only the case ρ00 < 1 is considered,
because when ρ00 > 1, the minimum of the stationary-solutions curve is always
above acrit, and it is approached for large values of aS . In this case, acrit is a
convenient lower bound of the stationary-solutions curve.
In the case ρ00 < 1, said lower bound can get close to 0, and a more detailed
study deserves to be carried out.

Parameterized β-curves. Recall the first equation of System (8):

A(aA)

4ρ
Sn(aS) sin(nϕS)− βaS = 0 (24)

with A(aA) =
kLaA
FB + F0

as per Equ. (1), knowing that ρ00 < 1. This equa-

tion defines a family of β-curves, parameterized by ϕS . Consider Equ. (24) as
defining a function A(aS) with ϕS as a parameter, and study the way the rep-
resentative curve evolves in the (aS , A)-plane when ϕS varies.
From Equ. (3) applied to a = aS , deduce that function Sn(aS) is always neg-
ative and consequently that sin(nϕS) is negative. Substituting the expression
(3) into Equ. (24), obtain

A(aS) = − ρβ

n sin(ϕS)

an+2
S B

n
2 +1(√

1 +Ba2S − 1
)n (25)

It follows that when ϕS decreases and comes next to −π/2, with −π/2 < nϕS <
0, A decreases. And as A is a monotonic increasing function of aA, it follows
that aA decreases and that the parmeterized β-curves are localized below each
other with no contact point between each other, and globally move toward the
abscissae axis as ϕS decreases toward −π/2.
In the (aS , aA)-plane, the abscissa of the intersection point of the β-curve and
the G-curve has been denoted a0. Denote by A0 the corresponding value of A on
the β-curve. Equ. (24) applied at aS = a0 writes, knowing that sin(nϕS) = −1
at this point:

A0

4ρ
Sn(a0) + βa0 = 0 (26)
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Develop Equ. (24) to the first order with respect to aS and to the second order
w.r.t. ϕ to obtain, using Equ. (26):

A−A0 +

(
A0

S′0
S0

+
4ρβ

S0

)
(aS − a0)−A0

ε2

2
≈ 0

with ε = nϕ− nϕ0 and S′0 =
dSn
da

(a0). Using Equ. (26) once again, obtain:

A−A0

A0
+

(
S′0
S0
− 1

a0

)
(a− a0)− ε2

2
≈ 0 (27)

Parameterized G-curves. Recall the second equation of System (8):

G1(aS) +
A

4aS
Dn(aS) cos(nϕS)− ρ2 − 1

2
= 0 (28)

This equation defines a family of G-curves, also parameterized by ϕS . Consider
Equ. (28) as defining a function A(aS) with ϕS as a parameter, and study the
way the representative curve evolves in the (aS , A)-plane when ϕS varies.
First notice that this curve family has a fixed point Q located at (a0, 0), because

at this point, G1(a0)− ρ
2 − 1

2
= 0, which is the definition of the G-curve as per

Equ. (10), and A = 0: it follows that at point Q, Equ (28) holds for all values
of ϕS .
Second, substitute G(aS)/aS for G1(aS) in Equ. (28) and develop to the first
order w.r.t. aS and ϕ. Because, by definition of A0 and a0, Equ. (28) holds for
aS = a0 and A = A0, with cos(nϕ0) = 0 and sin(nϕ0) = −1, it holds

G(A0, a0)− ρ2 − 1

2
a0 = 0 (29)

and consequently, the limited development of Equ. (28) writes:

(A−A0)H0 + (aS − a0)J0 +
A0D0

4
ε = 0 (30)

with H0 = G′A(A0, a0), J0 = G′a(A0, a0)− (ρ2 − 1)/2 and D0 = Dn(a0).
Because ρ00 < 1 and the study is in the region aA < aAcrit, the expression for
G is, as per Equ. (6):

G(A, aS) = −1

2

F0

FB + F0
a

(
1− 2

Ca2S
+

1

Ca2S

2√
Ca2S + 1

)
(31)

It follows that G′A(A0, a0) = 0, and consequently, Equ. (30) writes:

(aS − a0)J0 +
A0D0

4
ε = 0 (32)

Note that J0 can be symbolically expressed as

J0 = − F0

FB + F0

1

Ca20

(
2− 3Ca20 + 2

(Ca20 + 1)
3/2

)
(33)
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Approached stationary-solutions curve about (A0, a0). To build an ap-
proached expression of the stationary-solutions curve about point (A0, a0), elim-
inate ε between the approached expressions (27) and (32) of the parameterized
β-curves and G-curves about said point. After a few calculus, obtain:

A2
0D

2
0

8

A−A0

A0
+
A2

0D
2
0

8

(
S′0
S0
a0 − 1

)
aS − a0
a0

= J2
0 (aS − a0)2 (34)

Consider this as a definition of function A of variable aS . The representative
curve is a parabola. Search an extremum of A by differentiating (34) and writing
that dA/daS = 0, thus obtaining

Am −A0

A0
= −

(
A0D0

4J0a0

(
S′0
S0
a0 − 1

))2

(35)

where Am is the minimum value of A on the approached stationary-solutions
curve.
Using Eqs. (4), (5), (26) and (33), obtain

Am −A0

A0
= −

FB + F0

F0

ρβ

1
Ca20

(
2− 3Ca20+2

(Ca20+1)
3/2

√
1 +Ba20

) ( n√
1 +Ba20

− 2

)
2

(36)
with a0 as per Equ. (21).

Because ρ00 < 1, Equ. (1) applies, giving A =
kLaA
FB + F0

. It follows that

aAm − aA0

aA0
=
A−A0

A0
(37)

where aAm is the minimum value of aA on the approached stationary-solutions
curve.

Finally, put λ = |F0|/FB , x = Ca20, and substitute ρ00

√
FB

FB + F0
for ρ to

obtain, with the help of Equ (37):

aAm − aA0

aA0
= −1− λ

λ2
ρ200β

2

 x(
2− 3x+2

(x+1)3/2

√
1 + x/2

) ( n√
1 + x/2

− 2

)2

(38)
aAm is the approached minimum of the stationary-solutions curve using limited
developments of the parameterized β-curve and G-curve, while aA0 is the value
of aA at the intersection of the β-curve and the G-curve at abscissa a0. Assum-
ing that aAm is the exact value of the stationary-solutions curve’s minimum,
Equ. (38) gives the relative error on the value of aAm about aA0. Notice that
because λ < 1, this error is always negative, which is in good agreement with
the intuition.
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Upper bound of the relative error. In the paragraphs below, an upper
bound is searched for the expression given in Equ. (38) in the case where the
intersection point is below the critical line. If it can be shown that the relative
error actually has a small magnitude, this will give foundation to the initial
hypothesis according to which the intersection point of the β-curve and the
G-curve is close to the minimum of the stationary-solutions curve and, conse-
quently, to the procedure of limited development applied to the β-curve, the
G-curve and the stationary-solutions curve.
In the (λ, ρ200)-plane, define:

� A “grey zone” as the region where an intersection exists between the β-
curve and the G-curve under the critical line in the (aS , aA)-plane.

� An “orange zone” as the region where the relative error on aAm, i.e.
aAm − aA0

aA0
, is below a given threshold.

Each of these zones has a shape which depends on the system’s parameters and
the error threshold. It will be shown in the paragraphs below that the grey
zone is entirely included in an orange zone corresponding to an appropriate
threshold. Then it will be shown that there is a global maximum for all the
possible thresholds involved in this process, and that this global minimum is
independent of any system parameter. This will show that the relative error on
aAm admits a small upper bound independent of the system parameters.

The grey zone. Note that Equ. (20) is also valid for a0 > aT , but, when in
this case, is more restrictive than Equ. (17), because it is limited to the region
below the critical line. However, it will be of use here, because the condition
of intersection below the critical line is now to be studied regardless of the
respective values of aT and a0. By definition, Equ. (20) defines the grey zone
in the (λ, ρ200)-plane. Rearrange this equation by putting z = Ba20:

ρ00β

√
1− λ
λ

<
1

z

(√
1 + z − 1√

z

)n
(39)

The developed expression for z is given in Equ. (21) as:

z =
λ

1− ρ200
− 1

4
− 1

4

√
1 + 8

λ

1− ρ200
(40)

The orange zone. Equ. (38) gives the definition of the relative error on aAm,
and thus, knowing that expression (38) is always negative, the orange zone can
be defined by:

1− λ
λ2

ρ200β
2

(
2z

2− 6z+2
(2z+1)3/2

√
1 + z)

(
n√

1 + z
− 2

))2

< ErrMax (41)
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Figure 12: Grey zone and orange zone. Parameters: same as Fig. 16. Point
P represents the ρ00 and λ values of Fig. 16. The orange zone is drawn for
ErrMax = 0.008.

Figure 13: Zoomed view of Fig. 12.

where ErrMax is a given value of the maximum acceptable relative error inside
the orange zone, and z = Ba20 = x/2.
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Figure 14: Grey zone and orange zone. Parameters: same as Fig. 2. Point
P represents the ρ00 and λ values of Fig. 2. The orange zone is drawn for
ErrMax = 0.0195.

Figure 15: Zoomed view of Fig. 14.

Points in the orange zone where the relative error vanishes. Notice
that when λ 6= 0 and

n√
1 + z

− 2 = 0 (42)

inequality (41) is always defined and is verified for ErrMax = 0. Substituting
expression (40) for z in (42), and rearranging, yields

ρ200 = 1− λ/k1 (43)
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with k1 = n2/2− 1 + 1/2
√
n2/2− 1.

This is a straight line in the (λ, ρ200)-plane, passing through point (λ = 0, ρ200 =
1). This line is included in the orange zone, in the region 0 < λ < 1.

A point in the orange zone which is not included in the grey zone.
Along this line, Equ. (42) holds, which means that z = n2/4− 1. Substituting
this expression for z in Equ. (39) yields the condition for points on said line to
be included in the grey zone:

ρ00β

√
1− λ
λ

< N (44)

with N =
1

n2/4− 1

(
n/2− 1√
n2/4− 1

)n
being a constant.

In (44), substituting ρ00 for its expression (43) yields√
1− λ

k1
β

√
1− λ
λ

< N (45)

And because the limit of the left-hand member is +∞ when λ approaches 0,
there is a value λ0 below which the points on the line are not inside the grey
zone. It follows that, on the line defined by (43), point at abscissa λ0/2 is in
the orange zone but not in the grey zone.

A point included in both the orange zone and the grey zone. One
point which is inside both zones is (λ = 1, ρ200 = 7/15). At this point, z = 5/8,
and inequalities (39) and (41) are verified.

Contact condition between the borders of the grey zone and the or-
ange zone. For a given grey zone, if it can be shown that for a sufficiently
large value of ErrMax, there is no contact point between said borders, it will be
possible to conclude that the grey zone is entirely contained inside the orange
zone, because it has been shown above that their interiors have at least one
point in common and that the orange zone contains at least one point which is
not inside the grey zone. Then it will be possible to conclude that the relative
error inside the whole grey zone, i.e. for all intersection points of the β-curve
and the G-curve below the critical line, is below ErrMax.

Intersection of the borders of the grey zone and the orange zone.
Equ. (41) can be written√

1− λ
λ2

ρ00β

∣∣∣∣∣ 2z

2− 6z+2
(2z+1)3/2

√
1 + z

(
n√

1 + z
− 2

)∣∣∣∣∣ < √ErrMax (46)
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Eliminate ρ00β

√
1− λ
λ

between the border equations corresponding to inequal-

ities (39) and (46) to obtain the equation of the intersection of the borders of
the grey zone and the orange zone:

√
ErrMax =

2
∣∣∣ n√

1+z
− 2
∣∣∣ (√z+1−1√

z

)n∣∣∣2− 6z+2
(2z+1)3/2

∣∣∣√1 + z
(47)

A numerical study of the function of z at the right-hand member of this equation
for 0 ≤ z ≤ 1000 and 4 ≤ n ≤ 1000 shows that its magnitude is always
less than 0.14. It follows that if the magnitude of ErrMax is greater than
0.142 ≈ 2 10−2, Equ. (47) has no solution, and consequently, that the grey zone
is entirely included in the orange zone, because there exists at least one point
inside the orange zone which is not inside the grey zone, and there exists at
least one point inside both zones.

Conclusion about the relative error. The result above means that, over
large ranges of z and n, when the β-curve and the G-curve intersect below the
critical line in the (aS , aA)-plane, the relative error caused by the substitution
of the ordinate aA0 of the intersection of the β-curve and the G-curve for the
minimum aAm of the stationary-solutions curve is lower than 2 10−2.

3.4 Approximate symbolic solution for the intersection
above the critical line.

In this section, the intersection of the β-curve and the G-curve is assessed when
above the critical line. As for the intersection below the critical line, it arises
at an abscissa a0 which is calculated in Appendix B. Then, substituting a0 for
aS in the lower β-curve’s equation (18) yields the ordinate of the intersection
point. If the conditions of intersection studied above are satisfied, it is possible
to solve approximately Eq. (48) by putting z = Ba2S and using the following
remarks:

� Function 1− 1

z
+

1

z
√

2z + 1
can be approximated by function

√
2z

1 +
√

2z
.

� Function J(z) =
1

z

(√
1 + z − 1√

z

)n
can be approximated by function

K(z) =
hz

bz2 + cz + 1
,

with c = 8
n2 + 4

(n2 − 4)2
, b =

16

(n2 − 4)2
, and h =

4

n2 − 4

(
n− 2

n+ 2

)n/2(
c+

8

n2 − 4

)
=

64n2

(n2 − 4)3

(
n− 2

n+ 2

)n/2
.
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Thus, Eq. (48) becomes:

E

√
2z

1 +
√

2z
=

hz

bz2 + cz + 1

with E =
ρβ

ρ2 − 1
. This is a second-degree equation in z, which, once solved in z,

and due to the definition of z by z = Ba2S , yields the abscissae of points Amin−
and Amin+. This second-degree equation in z is:

E
√

2bz2 +
√

2(Ec− h)z + E
√

2− h = 0

The condition to have real roots is: 2(Ec− h)2 − 4E
√

2(E
√

2)− h) ≥ 0. Then,
using Eq. (48), the ordinates of said points can be calculated. Those points are
represented in Fig. 2.

Figure 16: Stationary condition, aA (point A’s amplitude) against aS (sta-
tionary motion’s amplitude). Comparison between second-order equation (with
natural model), represented as diamonds, and averaged system (with smooth
model), represented as a solid line. The G-curve is the dotted line, while the
β-curve is the dashed line. Parameters are: n = 4, FB = 51N , F0 = −6.4N ,
f00 = 6.615Hz, β = 2.4 10−3, L = 0.95m, k = 200 10−3N/m, ν = 162.419s−1,
ρ00 = 0.976938, λ = 0.1254. In the same way as in Fig. 2, where stable and un-
stable stationary solutions are represented as an infinity of points belonging to
solid lines, a discrete series of stable (solid diamonds) and unstable (diamonds)
stationary points are represented here. Model validity upper limit=2.347 10−4.

27



Figure 17: Stationary condition, aA (point A’s amplitude) against aS (sta-
tionary motion’s amplitude). Comparison between second-order equation (with
natural model) and averaged system (with smooth model). Parameters are the
same as in Fig. 2, except F0 = −7.2N . In the same way as in Fig. 2, stable and
unstable stationary points are represented. Results of numerical simulations us-
ing the natural model are represented as diamonds (unstable points) and solid
diamonds (stable points). Model validity upper limit=3.54 10−4.
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4 Conclusion.

It has been presented a symbolic study of the stationary transverse vibrations of
a system consisting of a beam submitted, through a permanent or an intermit-
tent elastic contact, to an harmonic axial excitation which is an even multiple
(greater than 2) of the beam’s fundamental transverse frequency. This consti-
tutes an argumental phenomenon.
An symbolic approximation giving a symbolic expression of the excitation thresh-
old as a function of the physical system’s parameters has been given, as the
intersection of two curves in the (oscillator’s amplitude, excitation’s amplitude)-
plane, whose symbolic expressions have been brought out.
A study of the validity of said approximation has yielded a symbolic expression
of the relative error and confirmed that this error is in all cases lower than 2%.
A study of the symbolic limit conditions for the argumental phenomenon to
arise has been given and represented in the (λ, ρ200)-plane.
A study of the symbolic limit conditions for permanent contact seems of interest.
Numerical simulations show that this case may arise under ordinary conditions.
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5 Appendix A: tangency condition between the
upper β-curve and the upper G-curve.

In this Appendix, the tangency condition between the curves representing the
upper G-function

aA1(a) =
F0

kL
+ 2

FB
kL

(ρ2 − 1)Ca2

ρ2Ca2 − 2 + 2√
Ca2+1

and the upper beta-function

aA2(a) =
F0

kL
+ 2

FB
kL

1

1 + 1
ρβ

1
Ba2

(√
1+Ba2−1√
Ba2

)n
will be studied in the (a, aA)-plane for a real positive and n integer with n ≥ 4.
The equation of the intersection between aA1(a) and aA2(a) will first be formed,
then the tangency condition will be studied.

Equation of the intersection between aA1(a) and aA2(a). Write aA1(a) =
aA2(a) and substitute the developed expressions of aA1(a) and aA2(a) given
above, then carry out basic calculus to obtain, denoting Ba2 by z for clarity:

1

z

(√
1 + z − 1√

z

)n
= E

(
1− 1

z
+

1

z

1√
1 + 2z

)
(48)

with E =
ρβ

ρ2 − 1
. The tangency condition between the curves of aA1(a) and

aA2(a) for a > 0 is the same as the tangency condition between the functions

y1(z) = E

(
1− 1

z
+

1

z
√

1 + 2z

)
and y2(z) =

1

z

(√
1 + z − 1√

z

)n
for z > 0.

What is searched is a condition on E.

So the curves representing function y1(z) = E

(
1− 1

z
+

1

z
√

2z + 1

)
and func-

tion y2(z) =
1

z

(√
1 + z − 1√

z

)n
will be studied for z real positive, n ≥ 4, and

E =positive constant.

Function y1(z) = E

(
1− 1

z
+

1

z
√

2z + 1

)
. This function is an increasing

function for z > 0. Near zero, the function is equivalent to 3 z/2 − 5 z2/2.
The asymptotic limit for z → +∞ is 1. The plot for E = 1 is given in Fig. 18.

Function y2(z) =
1

z

(√
1 + z − 1√

z

)n
. This function is defined for every real

positive z, and can be extended to 0 in z = 0.
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Figure 18: Plot of y1(z), with E = 1.

Near zero, the function is equivalent to
z

n
2−1

2n
.

Near infinity, the function is equivalent to
1

x

(
1− n√

z

)
.

The function increases from z = 0 to z2max =
n2

4
− 1, then decreases asymptot-

ically to 0.

The value of the maximum is y2max =
4

n2 − 4

(
n− 2

n+ 2

)n/2
.

The plot for n = 6 is given in Fig. 19.

Tangency of functions y1(z) and y2(z). Knowing the behaviour of functions
y1 and y2, one is led to consider that when those curves are tangent, the tangency
point is approximately at the maximum of y2, provided that y1(z2max) = y2max.
Hence the value ET of E which satisfies this tangency must verify:

ET

(
1− 1

z2max
+

1

z2max
√

2z2max + 1

)
=

4

n2 − 4

(
n− 2

n+ 2

)n/2
Using the approximation

1− 1

z2max
+

1

z2max
√

2z2max + 1
≈ 1− 4

n2
(49)

for n ≥ 4, finally obtain:

ET ≈
4n2

(n2 − 4)2

(
n− 2

n+ 2

)n/2
(50)
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Figure 19: Plot of y2(z), with n = 6.

with ET =
ρβ

ρ2 − 1
. As for the tangency point’s ordinate, assume that it is

the same as the maximum of the y2(z) curve, i.e. y2max. Note that ET =
n2

n2 − 4
y2max.

The following hypothesis are made:

� For E < ET , the curves of y1 and y2 intersect at z = 0 and at least at two
other points, one located at z < z2max and one at z > z2max.

� For E > ET , the curves of y1 and y2 intersect at z = 0.

A typical case is represented in Fig. 20 for n = 6 and ET = 9/512 according to
Eq. (50). On the plots, it can be seen that the value of y1 in z2max is slightly
greater than expected. This is due to approximation (49), which partially com-
pensates for a better tangency estimate. Other values of n give similarly good
results for ET , except for n = 4, where it is better to use a value of 1.03 ET .

Basis for a numerical study. To assess the relative error on zT , form an
equation giving the exact value of the tangency abscissa, by putting y(z) =
y1(z) − y2(z) and writing that both y(z) = 0 and dy/dz = 0. First transform
the equation y(z) = 0 to obtain

E

(
z − 1 +

1√
1 + 2z

)
=

(√
1 + z − 1√

z

)n
(51)
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Figure 20: Tangency of y1(z) and y2(z), with n = 6.

Then calculate dy/dz(z) to obtain

dy

dz
=
E

z2

(
1− 1√

2z + 1
− z

(2z + 1)3/2

)
+

1

z2

(√
1 + z − 1√

z

)n(
1− n

2
√

1 + z

)
and put dy/dz(z) = 0. Then write y(z) =

dy

dz
(z) and, based on Eq. (51),

substitute E

(
z − 1 +

1√
1 + 2z

)
for

(√
1 + z − 1√

z

)n
to obtain:

√
2z + 1− 1− z

2z + 1
=
(
(z − 1)

√
2z + 1 + 1

)( n

2
√

1 + z
− 1

)
(52)

On the basis of the study above, which concludes that z2max is a good approx-

imation for the abscissa of the tangency point, try the expression zT =
n2

4
− 1

to assess an approximate solution to Eq. (52). A numerical analysis, based on
the numerical solutions in z of Eq. (52), shows that this results in a good ap-
proximation for zT , except for the lower values of n. It also shows that if the
expression for zT is changed to become

zT =
n2

4
− 3 (53)

the approximation is much better for the lower values of n, without being no-
ticeably modified for the higher values. Note that the asymptotic development
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(49), which is limited to second-order in 1/n, is unchanged by this adjustment;
the modification shows up only at the fourth-order term. Consequently, the for-

mula giving E is also unchanged. The formula zT =
n2

4
− 3 yields a maximum

relative error of +3.25% on E at n = 4, and −0.8% at n = 6. For the other val-
ues of n beyond 6, the relative error is negative and has a magnitude below 0.8%.
As a conclusion, the chosen formulas for zT and ET are those given in Eqs. (50) and (53).
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6 Appendix B: position of the G-curve versus
the critical line.

In this Appendix, the position of the G-curve versus the critical line is studied,
and a simple condition on ρ00 is brought out, indicating whether the G-curve is
entirely above the critical line or if it intersects said line.
Eqs. (6) and (7) show that the G-curve has a different equation, depending on
whether the region of interest is above or under the critical line. This appears
in Figs. 2 and 3. Therefore, to study the intersection between the G-curve and
the critical line, first study the behaviour of the G-curve when the G-function
is expressed as in Eq. (7), i.e. when the current point on the G-curve is above
the critical line. The equation of the G-curve above the critical line is given by
Equ. (7):

G(a, aA)

a
=
ρ2 − 1

2
= −1

2

F0 − aAkL
2FB + F0 − aAkL

(
1− 2

Ca2
+

1

Ca2
2√

1 + Ca2

)

which yields aA =
y(a)

kL
, with

y(a) = F0 + 2FB
(ρ2 − 1)Ca2

ρ2Ca2 − 2 + 2√
Ca2+1

(54)

Notation In this Appendix, the value
|F0|
FB

will be denoted by λ.

Definition domain. The definition domain of y(a) is:

� If ρ2 < 1: R+\ {a2} and lim
a→a2−

y(a) = +∞, lim
a→a2+

y(a) = −∞

� If ρ2 > 1: R+

with

a2 =

√√√√ 2

ρ2C
−

1 +
√

1 + 8
ρ2

2C
(55)

Limit at 0 and at +∞. It holds lim
a→0+

y(a) = F0 + 2FB . The function y(a)

can be extended by continuity to 2FB + F0 at a = 0.
Also:

lim
a→+∞

y(a) = F0 + 2FB
ρ2 − 1

ρ2
= 2

(
1− 1

ρ200

)
(FB + F0)− F0 (56)

and therefore:

� If ρ2 < 1, i.e. ρ200 < 1− λ, this limit is negative.
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� If ρ2 > 1, this limit is negative or positive:

– If 1− λ < ρ200 < 1, this limit is lower than |F0|.
– If 1 < ρ200, this limit is higher than |F0|.

Direction of variation. The derivative
dy

da
is the same sign as 1−ρ2. There-

fore, if ρ < 1, y(a) is increasing.

Intersection with the critical line. Recall that the critical line is aA =
|F0|
kL

, i.e. y(a) = |F0| = −F0. Substituting this value for y(a) and ρ200
FB

FB + F0

for ρ2 in Eq. (54) yields

(ρ200 − 1)Ca2 = 2
F0

FB

(
1− 1√

Ca2 + 1

)
with a 6= 0. Put x =

√
Ca2 + 1, and rearrange terms to obtain, discarding the

case x = 1:
x2 + x− 2R = 0 (57)

with R = − F0

FB(1− ρ200)
and therefore, R > 0 because ρ200 < 1 and F0 < 0.

Discard the negative root, and write that the positive root is greater than 1 to

obtain the condition R > 1, i.e. ρ200 > 1− |F0|
FB

.

Finally, the condition for the intersection of the G-curve and the critical line to
exist is

1− λ < ρ200 < 1 (58)

with λ =
|F0|
FB

.

To calculate the abscissa a0 of said intersection, use relation x2 − 1 = Ca2

together with Eq. (57) to obtain

a20 =
|F0|
π2kL

(
4λ

1− ρ200
− 1−

√
1 +

8λ

1− ρ200

)
(59)

Allowed values for ρ and ρ00. It has been shown in [5] that a necessary
condition for the smooth model to be valid is that aAkL < FB +F0. Therefore:

� If ρ < 1, i.e. ρ200 < 1− λ, and because y(a) is then always increasing and
y(0) = 2FB + F0 > FB + F0, it can be seen that y(a) will never go under
FB + F0 for 0 ≤ a < a2 (a2 as defined in Eq. (55)), so that said model
is not valid over this interval; it is not valid either for a2 < a, because in
this case, y(a) < 0. As a conclusion, this case must be discarded.
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� If ρ > 1, i.e. 1−λ < ρ200, and because the G-curve starts at aA = 2FB+F0

for a = 0 and is always decreasing, it then can enter the validity domain
of the smooth model if it crosses the horizontal line aA = (FB +F0)/(kL).
However, for this to happen, it is necessary that lim

a→+∞
y(a) < FB + F0,

i.e., using Eq. (56), ρ200 < 2(1 − λ). If this condition is met, y(a) then
decreases to a finite value lower than |F0| = kLaAcrit. So:

– If 1 − λ < ρ200 < 1, the function aA(a) intersects the critical line
aA = aAcrit = |F0|/(kL) at aS = a0, then decreases toward a limit
lower than aAcrit, which means that the function never intersects
again the critical line.

– If 1 < ρ200, the function aA(a) is entirely located above the critical
line.

* If 1 < ρ200 < 2(1 − λ), at least a part of the G-curve is in the
validity domain of the smooth model. This condition implies
λ < 1/2.

* If 2(1−λ) < ρ200, there is no part of the G-curve is in the validity
domain of the smooth model. This condition must be discarded.

Conclusion. The approached smooth model can be studied only if

1− λ < ρ200 < 2(1− λ)

� If 1− λ < ρ200 < 1, the G-curve has an upper part above the critical line,
then a lower part consisting of a vertical segment.

� If 1 < ρ200 < 2(1 − λ), the G-curve is entirely located above the critical
line.
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