
HAL Id: hal-01581369
https://hal.science/hal-01581369

Submitted on 11 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strict and practical bounds through a non-intrusive and
goal-oriented error estimation method for linear

viscoelasticity problems
Ludovic Chamoin, Pierre Ladevèze

To cite this version:
Ludovic Chamoin, Pierre Ladevèze. Strict and practical bounds through a non-intrusive and goal-
oriented error estimation method for linear viscoelasticity problems. Finite Elements in Analysis and
Design, 2009, 45 (4), pp.251-262. �10.1016/j.finel.2008.10.003�. �hal-01581369�

https://hal.science/hal-01581369
https://hal.archives-ouvertes.fr


Strict and practical bounds through a non-intrusive and goal-oriented error estimation
method for linear viscoelasticity problems

Ludovic Chamoina,∗, Pierre Ladevèzea,b

aLMT-Cachan (ENS-Cachan/CNRS/Paris 6 University), 61 Avenue du Président Wilson, 94235 CACHAN Cedex, France
bEADS Foundation Chair, Advanced Computational Structural Mechanics, France

In this work, we set up a non-intrusive procedure that yields for strict and high-quality error bounds 
of quantities of interest in linear viscoelasticity problems solved by means of the finite element method 
(FEM). The goal-oriented error estimation approach uses the concept of dissipation error and classical du-
ality techniques involving the solution of an adjoint problem. The non-intrusive feature of this approach is 
achieved by introducing enrichment functions, via a partition of unity, when solving the adjoint problem 
numerically (handbook techniques), so that the discretization parameters defined for the primal problem 
can be reused. The resulting local error estimation method is thus highly effective, easy to implement in a 
finite element code, and it enables to consider discretization error on truly pointwise quantities of interest.

1. Introduction

In the widespread numerical simulations carried out nowadays,

a major concern is the control of the quality of the numerical

solutions obtained through approximation methods (such as the

finite element method, FEM). Given a mathematical model, consid-

ered as the reference, such a control can be relevantly achieved by

assessing the so-called discretization error. Since the 1970s, several

effective techniques have been introduced to deal with global dis-

cretization error, i.e. error defined over the global domain of inter-

est; pioneering works on the subject can be found in [1–3]. Today,

research intensely focuses on goal-oriented error estimation, that is

estimation of the discretization error on local quantities which are

relevant for design purposes. On this latter topic, the most accom-

plishedworks deal with elliptic problems and give reliable local error

bounds [4–8]. However, very few works are dedicated to evolution

and non-linear problems [9,10]; furthermore these usually provide

for bounds which lack reliability as they are not guaranteed or not

sharp, which is a serious drawback for robust design. In the frame-

work of linear viscoelasticity problems described through internal

variables and solved with the FEM, we presented in [11] an approach

that yields for strict and effective error bounds on local quantities.

This approach, which illustrates and extends ideas first introduced

in [12], uses classical extraction techniques (leading to the solution
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of an adjoint problem), the concept of dissipation error, and con-

vexity properties. Moreover, it takes history effects into account and

may lead to very sharp error bounds provided that the adjoint prob-

lem is solved precisely. A simple but intrusive way to reach such an

accurate numerical solution to the adjoint problem was also inves-

tigated in [11]; it consists of a local refinement of the time/space

mesh being used.

In this paper, we go a step further by setting up a non-intrusive

procedure to solve the adjoint problem effectively, in the sense that

we reuse the discretization parameters (mesh, operators) defined for

the reference (or primal) problem [13]. The procedure is based on

handbook techniques [14] and consists in introducing enrichment

functions, via the partition of unity method (PUM), when solving the

adjoint problemwith the FEM. The enrichment functions correspond

to locally (quasi-)exact solutions to the adjoint problem; they are

given analytically or precomputed numerically in a (semi-)infinite

domain. As a result, we get strict and high-quality error bounds

at reasonable computational cost, without any remeshing, and the

goal-oriented error estimation method can then be implemented

quite easily in finite element codes. Furthermore, the non-intrusive

framework enables to consider truly pointwise quantities of interest

in space and time by using as enrichment functions the well known

and possibly infinite energy Green functions.

The present paper is organized as follows: after this introduction,

we define in Section 2 the reference linear viscoelasticity problem of

interest and the notion of dissipation error. In Section 3, we present

the basic goal-oriented error estimation method that enables to

get strict error bounds on specific quantities of interest. The non-

intrusive version of this method, which is the major breakthrough in
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Fig. 1. Structure and its environment (a) and rheological model used (b).

the paper, is described in details in Section 4. Section 5 gives repre-

sentative results of two-dimensional and three-dimensional numer-

ical experiments. Finally, conclusions are given in Section 6.

2. Reference problem and dissipation error

2.1. Reference problem

Let �, with boundary ��, be an open bounded domain repre-

senting a mechanical structure (Fig. 1(a)). This structure is subjected,

over the time interval [0, T], to prescribed time-dependent mechan-

ical solicitations. We assume the solicitations can be modeled by a

displacement field Ud(M, t) on a part �1� ⊂ ��, �1��], a body

force field f
d
(M, t) in �, and a traction force density Fd(M, t) on the

part �2� complementary to �1�, such that �1� ∪ �2� = �� and

�1� ∩ �2� =] (Fig. 1(a)).

Under small perturbations assumption, we consider that the be-

havior of the material can be described by the linear viscoelasticity

theory. We choose here the generalized Maxwell model whose rhe-

ological model, constituted of an assembly of springs and dashpots,

is given in Fig. 1(b). We denote by �(u) the linearized strain tensor,

where u(M, t) ∈ U
[0,T] stands for the displacement field in �. In each

{spring + dashpot} set i, i = 1, . . . ,n, �(u) can be decomposed into an

elastic part �e
i
and an inelastic part �p

i
, such that �e

i
+ �p

i
= �(u). We

also denote by �i the dual variable (in the energy sense) in set i,

i = 1, . . . ,n, such that the Cauchy stress tensor can be defined as

�(u) =

n
∑

i=1

�i

In the following, previously defined internal variables are rep-

resented in a compact form using generalized internal variables

(n-vectors):

s =

⎡

⎣

�1

·

�n

⎤

⎦ , ee =

⎡

⎣

�e1
·

�en

⎤

⎦ , ep =

⎡

⎣

�p1
·

�pn

⎤

⎦ , e = ee + ep =

⎡

⎣

1

·

1

⎤

⎦ �(u)

Therefore, the intrinsic dissipation reads

d =

n
∑

i=1

Tr[�i�̇
p
i
] = s · ėp

where �̇ denotes the time derivative of function �. In the numerical

computations, we will choose n = 3.

Under quasi-static and isothermal states, the reference problem

consists of finding the pair (ep, s) that verifies

• the compatibility equations:

e ∈ E
[0,T]; e = ee + ep; u|�1�

= Ud ∀t ∈ [0, T] (1)

• the balance equations:

s ∈ S
[0,T];

∫

�
Tr[��(v)]d� =

∫

�
f
d

· vd�

+

∫

�2�
Fd · vdS ∀v ∈ V ∀t ∈ [0, T] (2)

• the initial conditions:

ep|t=0 = 0 (3)

• the constitutive relations, which can be split into two parts:

state equations: ee =Ks; � =

n
∑

i=1

�i (4)

evolution laws: ėp = Bs (5)

Here, E[0,T] and S
[0,T] are spaces ensuring enough regularity to get

finite energy solutions, and V is the Banach space of test functions

which vanish on �1�. Operators K and B are linear, symmetric, and

positive define; K is provided by classical Hooke's law, whereas B is

derived from pseudo-potentials of dissipation.

Remark 1. The reference problem can also be written under a more

usual weak form. Find u ∈ U
[0,T] such that

B(u, v̇) = F(v̇) ∀v ∈ V
[0,T] (6)

where B and F are some bilinear and linear operators, respectively,

defined globally over the time–space domain. However, we conserve

the definition of the reference problem using (1)–(5) as it points

out the evolution laws which are a fundamental concept for the

dissipation error which we present in the following.

The exact solution (e
p
ex, sex) of the reference problem is out of

reach in practical cases, and we thus resort to numerical methods in

order to compute an approximate solution. Practically, we discretize

the physical domain � using a space mesh Mh, and we split the

time domain [0, T] into N time steps of equal length �t. We then use

the FEM associated to a backward-Euler scheme so that we obtain

an approximate solution (e
p

h,k
, sh,k) at each time point tk = k × �t,

k=0, . . . ,N. Finally, we linearly interpolate over [0, T] the approximate

solutions obtained at time points and get an approximate solution

(e
p

h
, sh) over � × [0, T]. We define the discretization error on the

displacement field as �u=uex−uh. This error can bemeasured globally

by means of a given norm (such as an energy norm). It can also

be specifically defined with respect to quantities of interest, which

leads to a local error we will define and assess in Section 3.

2.2. Dissipation error

The concept of dissipation error, introduced in [15], aims at as-

sessing the global discretization error. It requires the possession of

a solution (êp, ŝ), called an admissible solution, that should verify all

the equations of the reference problem except the evolution laws

(5). Such a solution can be built from the finite element solution

(e
p

h
, sh) at hand [11,16]; it is, therefore, denoted by (ê

p

h
, ŝh) in the fol-

lowing. The numerical construction of (ê
p

h
, ŝh) merely assumes that

the loading (Ud, f d, Fd) evolves piecewise linearly in time and can be

spatially represented by piecewise polynomial functions. Practically,

at each time point tk, k = 0, . . . ,N:

• We take êh,k = eh,k as the (displacement) FEM enables to verify

Dirichlet boundary conditions.

• We construct a stress field �̂h,k that verifies the balance Eqs. (2)

at t = tk. This major technical point uses properties of �h,k and
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Fig. 2. The reference problem (a), evolution of the loading with time (b), and �h,yy component of the approximate finite element stress field at t = T (c).

requires the solution of local problems over each element of the

finite element mesh Mh [2,16].

• We define a unique solution ŝh,k that minimizes the dissipation

error (defined below) over [tk−1, tk]. This step boils down to the

solution of constrained minimization problems at Gauss points.

• We compute ê
p

h,k
as ê

p

h,k
= êh,k −Kŝh,k.

Finally, the pairs (ê
p

h,k
, ŝh,k) obtained at points tk, k = 0, . . . ,N, are lin-

early interpolated over the time steps in order to obtain an admis-

sible solution (êh, ŝh) defined over � × [0, T].

The dissipation error is then defined as a global measure of how

much the admissible solution (ê
p

h
, ŝh) fails to verify (5). It reads

E2diss(ê
p

h
, ŝh) =

1

2

∫ T

0

∫

�
a(t)( ˙̂e

p

h − Bŝh) · B−1( ˙̂e
p

h − Bŝh) d�dt�0 (7)

The time function a(t), positive over [0, T], has been introduced in

[11]; it provides a weighted dissipation error, compared to the orig-

inal definition given in [15,16] and obtained taking a(t) = 1. Using

a weighted dissipation error enables to take history effects into ac-

count, which is a critical aspect for goal-oriented error estimation in

evolution problems (see [11] for complete details). The dissipation

error is a robust and powerful tool that accounts for all sources of

discretization error (time and space discretizations in our case) in

nonlinear time-dependent problems. It verifies

Ediss(ê
p

h
, ŝh) = 0 ⇐⇒ (ê

p

h
, ŝh) = (e

p
ex, sex)

A fundamental property, which is the true engine to get strict lo-

cal error bounds, is the relation between Ediss(ê
p

h
, ŝh) and the exact

solution (e
p
ex, sex). It is of the form

E2diss(ê
p

h
, ŝh) = G(sex − ŝh) (8)

where G is a given quadratic functional based on free energy and

pseudo-potentials of dissipation [11].

We conclude this section with a two-dimensional application of

the dissipation error. We consider the structure defined in Fig. 2(a).

Its base is clamped and it is subjected to a given time-dependent

displacement Ud(t) on the top right boundary. The evolution of Ud(t)

with time is given in Fig. 2(b). A regular space mesh Mh, composed

of 100 linear quadrilateral elements with characteristic size h=0.2, is

used for the computations.We divide the time interval [0, T] (T=20 s)

into 20 time steps. Fig. 2(c) shows the approximate solution obtained

at time T using the FEM with a backward-Euler time scheme. After

calculating an admissible solution (ê
p

h
, ŝh), we can compute the cor-

responding dissipation error Ediss(ê
p

h
, ŝh). The evolution of Ediss with

respect to the discretization parameters, i.e. the finite element size
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Fig. 3. Evolution of E2
diss

with discretization parameters h and �t.

h and the time step �t, is given in Fig. 3. We observe that this error

tends to zero when both h and �t become small.

3. Goal-oriented error estimation

We describe in this section the procedure presented in [11] to get

guaranteed bounds of the error on a specified quantity of interest

related to the reference linear viscoelasticity problem. The quantity

of interest, denoted by I in the following, may be the displacement

at a point, the average of a stress component over a local critical

region, etc.

3.1. The adjoint problem

We assume that I can be written as a linear functional of the

displacement field u, under the global form

I(u) =

∫ T

0

∫

�

n
∑

i=1

Tr[�i(u)
˙̃��i] d�dt = 〈〈s(u), ˙̃e�〉〉 (9)

where the n-vector ˙̃e�, known analytically, is called the extraction

function or extractor. Equivalently, we can define by duality the ex-

tractor s̃� as ˙̃e� =K˙̃s� − Bs̃�, s̃�|t=T = 0, so that

I = −〈〈ė(u), s̃�〉〉 (10)
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As an example, we consider the quantity of interest:

I =
1

�

∫

�
e
p
1,yy|t∗ d� (11)

that is the mean over a subregion � ⊂ �, and at t = t∗, of the

component e
p
1,yy of the internal variable e

p
1. It is straightforward to

show that a corresponding extraction function is obtained taking

˙̃e�,1 =

⎧

⎪

⎨

⎪

⎩

B

[

0 0

0 1

]

∀ (M, t) ∈ � × [0, t∗],
[

0 0

0 0

]

otherwise
(12)

the other components of ˙̃e� being zero.

We aim at assessing the local discretization error:

�I = Iex − Ih = I(uex) − I(uh) = I(uex − uh)

Following the procedure described in [17], we define I(uex) as the

result of the constrained minimization problem:

I(uex) = min
(u∗)∈A

I(u∗)

where A = {w ∈ U
[0,T],B(w, v̇) = F(v̇) ∀v ∈ V

[0,T]
} is the space of

displacement fields w∗ ∈ U
[0,T] solutions of the reference problem.

Using the optimal control theory and searching the saddle-point of

the associated Lagrangian:

L(w, p) = I(w) − B(w, ṗ) + F(ṗ) ∀(w, p) ∈ U
[0,T]

×V
[0,T]

we derive the following adjoint problem:

Find (ẽp, s̃) ∈ E
[0,T]

×S
[0,T] that verifies:

• the compatibility equations:

ẽ = ẽe + ẽp ; ũ|�1�
= 0 ∀t ∈ [0, T]

• the balance equations:

∫

�
Tr[(�̃ − �̃�)�(v)] d� = 0 ∀v ∈ V, ∀t ∈ [0, T]

• the final conditions:

ẽp|t=T = 0

• the constitutive relations:

state equations: ẽe =Ks̃; �̃ =

n
∑

i=1

�̃i (13)

evolution laws: ˙̃e
p

= −Bs̃ (14)

This adjoint problem is reverse in time but remains similar to the

(primal) reference problem; actually, with the change of variables

� = T − t, the two problems have exactly the same structure. The

extractor defined in (10) intervenes in the adjoint problem as a pre-

stress loading.

Remark 2. When considering a quantity of interest I that is directly

related to the displacement field (pointwise value of a component

of the displacement for instance), the extractor �̃� may be defined

implicitly. However, the quantity of interest can be in this case de-

fined globally under the form I =
∫ T
0

∫

� f
�

· ud�dt, and the load-

ing of the adjoint problem corresponds to a prescribed body force

field f
�
.

Using again the two-dimensional example of Fig. 2, and consid-

ering the quantity of interest defined in (11) where � is a local

critical region located in the angle and t∗ = T, the adjoint problem

loading consists of a prestress in � evolving exponentially in time

(see Fig. 4).

The corresponding (quasi-) exact stress field �̃ is given in

Fig. 5 for t = T. It is obtained from a very refined time/space mesh

(“overkill solution”). We remark that �̃ presents singularities around

the loading region, and that it is very localized (due to St-Venant

principle).

3.2. The bounding result

In practice, the exact solution (ẽ
p
ex, s̃ex) to the adjoint problem

is approximated numerically, with discretization parameters which

may be different from those defined to solve the reference problem.

We denote by (ẽ
p

h
, s̃h) the obtained approximate solution. As for the

reference problem, we can construct an admissible solution ( ˆ̃e
p

h,
ˆ̃sh)

verifying all the equations of the adjoint problem except (14), and

compute the corresponding dissipation error:

e2diss(
ˆ̃e
p

h,
ˆ̃sh) =

1

2

∫ T

0

∫

�
(
˙̂
ẽ
p

h + Bˆ̃sh) · B−1(
˙̂
ẽ
p

h + Bˆ̃sh) d�dt (15)
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Fig. 5. Quasi-exact solution of the adjoint problem at time T: �̃xx (a), �̃yy (b), and �̃xy (c).

Using duality techniques and the properties of the dissipation error,

the following result can be shown (see [11,18] for complete details):

∣

∣

∣

∣

Iex − Ih − Ihh

∣

∣

∣

∣

�2
[

1
2E

2
diss

(

ê
p

h
, ŝh

)

+ F0(	h)
]1/2

·
[

F2(x̃h)ig
]1/2

(16)

In this expression, Ihh is a correction term computable from the ap-

proximate solutions of both reference and adjoint problems, F0 and

F2 are some functions known analytically, 	h is a given term that

is not explicited here, and x̃h =
˙̂
ẽ
p

h + B(ˆ̃sh). The term F2(x̃h) is very

similar to e2
diss

( ˆ̃e
p

h,
ˆ̃sh) and behaves the same way, despite the two ex-

pressions are different. We thus obtain from (16) some guaranteed

bounds 
inf and 
sup of Iex:


inf = Ih + Ihh − 2[ 12E
2
diss(ê

p

h
, ŝh) + F0(	h)]

1/2.[F2(x̃h)]
1/2


sup = Ih + Ihh + 2[ 12E
2
diss(ê

p

h
, ŝh) + F0(	h)]

1/2
· [F2(x̃h)]

1/2 (17)

and Ih+Ihh can be viewed as a new approximation of Iex. Equivalently,

bounds for the local error Iex−Ih can be derived from (16). It is fruitful

noticing that the robust local error estimation we obtain requires

the solution of a complementary problem and the computation of

the two global error estimates E2
diss

(ê
p

h
, ŝh) and F2(x̃h).

Another important remark is that the upper bound in (16) may

be reduced by making the term F2(x̃h) small, which is the case when

the numerical solution of the adjoint problem is accurate enough.

Therefore, from any given approximate solution to the reference

problem, bounds 
inf and 
sup of the exact unknown value Iex can

be very sharp provided that the adjoint problem is solved precisely.

Ultimately, when the approximate solution (ẽ
p

h
, s̃h) converges to the

exact solution (ẽ
p
ex, s̃ex), F2(x̃h) tends to zero and the correction term

Ihh tends to Iex−Ih. In [11], an accurate solution of the adjoint problem

was obtained by refining locally the time/space mesh used to solve

the adjoint problem (see Fig. 6 for an example of a locally refined

space mesh for the adjoint problem defined in Fig. 4). However, this

technique is non-intrusive as it leads to large modifications in a finite

element code. Furthermore, it can be prohibitive in cases where a

very fine mesh is necessary to obtain an acceptable solution.

Fig. 6. Locally refined space mesh providing an accurate approximate solution to

the adjoint problem. The refinement is performed in subregions of � where the

dissipation error e2
diss

( ˆ̃e
p

h ,
ˆ̃sh) has large contributions.

4. Non-intrusive approach to get sharp local error bounds

4.1. The non-intrusive procedure

We present now a concurrent procedure to solve the adjoint

problem with high accuracy. It is inspired from the fact that the so-

lution to the adjoint problem can be divided into two parts: a part

with high gradients (in space and time) in localized regions of the

domain [0, T] × �, and a smooth part in the remainder of the time-

space domain. The former may be difficult to catch by means of a

standard FEM and requires high computational costs. However, the

singularities due to the loading of the adjoint problem are usually

well known as they are directly related to the quantity of interest

which is considered and to material parameters. Aiming at intro-

ducing the singular part of the solution explicitly when solving the

adjoint problem with the FEM, we use a procedure based on the

handbook techniques developed in [14]. There are two steps in

the procedure:

(1) We first define some enrichment functions which correspond

to singular solutions (ẽhand,p, s̃hand) of the adjoint problem load-

ings over an infinite (or semi-infinite) domain. They are usually

computed analytically in time (using the Laplace transform) and

numerically in space, and constitute a library of pre-calculated

solutions (examples are given in Figs. 7 and 8).
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(2) Secondly, we introduce the adequate enrichment functions, via

the PUM, in the set of basis functions describing the approximate

displacement field of the adjoint problem.

The expression of the latter displacement field then becomes

ũ =
∑

j∈NPUM

�jũ
hand

+ ũ
r

(18)

where �j is the classical linear finite element shape function as-

sociated to node j, NPUM is the set of nodes in Mh concerned

by the enrichment with the PUM, and ũ
r
is a displacement field

to be calculated. Let us note that we do not introduce any new

degree of freedom in the formulation: the degrees of freedom as-

sociated to the PUM are known, i.e. the enrichment is entirely

determined, and only the field ũ
r
is unknown. The global solution

thus reads (ẽp, s̃) = (ẽ
hand,p
PUM , s̃handPUM ) + (ẽr,p, s̃r). It is composed of two

terms:

(i) an enrichment term (ẽ
hand,p
PUM , s̃handPUM ) which locally equilibrates the

loading of the adjoint problem but does not verify all the bound-

ary conditions on ��;

(ii) an unknown term (ẽr,p, s̃r)which can be seen as a residual solu-

tion and that enables to verify all the boundary conditions on

��.

The new problem we thus have to solve consists in finding the

residual solution (ẽr,p, s̃r). It retains the same structure as the original

Zone Ω1

nodes enriched by the PUM

PUM

Zone Ω2
PUM

Fig. 9. Definition of zones �
PUM
1 and �

PUM
2 .

adjoint problem except that the balance equations read

∫

�
Tr[�̃r�(v)] d� =

∫

�
Tr[(�̃� − �̃hand

PUM )�(v)] d� ∀v ∈ V, ∀t ∈ [0, T]

(19)

We denote by �PUM the region in � which is involved in the enrich-

ment with the PUM; it corresponds to the support of
∑

j∈NPUM�j.

�PUM can be divided into two subregions �PUM
1 and �PUM

2 , with

�PUM
1 ∪ �PUM

2 = �PUM and �PUM
1 ∩ �PUM

2 =], �PUM
1 corresponding to

the region where
∑

j∈NPUM�j = 1 (see Fig. 9). With these notations,
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Fig. 10. Spatial distribution of the stress field corresponding to a pointwise prestress loading over a two-dimensional infinite domain: �̃hand
xx (a), �̃hand

yy (b), and �̃hand
xy (c).

Fig. 11. General implementation of the non-intrusive local error estimation method into a finite element code. Elements corresponding to the basic framework for the finite

element computation are given in black; elements corresponding to the postprocessing of the numerical solution with a global error estimation are given in blue; elements

corresponding to the goal-oriented error estimation are given in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article).

(19) can be recast in the form

∫

�
Tr[�̃r�(v)] d� = −

∫

��PUM
1

�̃handn12 · vd�

−

∫

�PUM
2

Tr[�̃hand
PUM �(v)] d� ∀v ∈ V, ∀t ∈ [0, T]

(20)

where n12 is the outgoing normal vector on the boundary ��PUM
1 .

Properties of the enrichment function are used to obtain (20).

We observe from (20) that the loading of the new adjoint problem

is now smoother, and therefore an accurate approximation (ẽ
r,p
h
, s̃r

h
)

of the residual term (ẽr,p, s̃r) can be obtained using the FEM with

the same time/space discretization as the one used for the reference

problem. The method is called non-intrusive in this sense: we reuse

the discretization parameters (space–time mesh, factorized stiffness

matrix, etc.) defined for the numerical solution of the reference prob-

lem; only the loading vector and Dirichlet boundary conditions have

to be changed between the two computations. Practically, reference

and adjoint problems are solved in the same time.

Eventually, we get an approximate solution (ẽ
p

h
, s̃h) of the adjoint

problem, such that (ẽ
p

h
, s̃h) = (ẽ

hand,p
PUM , s̃handPUM ) + (ẽ

r,p
h
, s̃r

h
). After comput-

ing an admissible residual solution ( ˆ̃e
r,p

h , ˆ̃s
r

h) with classical tools, the

bounding result (16) holds with

x̃h = − B(ˆ̃sh) −
˙̂
ẽ
p

h

= − B(ˆ̃s
r

h) −
˙̂
ẽ
r,p

h

due to the fact that the evolution laws are verified by the handbook

solutions. As regards term Ihh involved in (16), which involves the

enrichment (ẽ
hand,p
PUM , s̃handPUM ), it is calculated using overintegration.

4.2. Case of pointwise quantities of interest

The extension of the non-intrusive method to pointwise in space

quantities of interest is straightforward. Indeed, the associated

handbook functions correspond, in that case, to the well known

Green functions (whereas handbook functions in the general case

7



Fig. 12. Evolution in space of the handbook function �̃hand
at time T: �̃hand

xx (a), �̃hand
yy (b), and �̃hand

xy (c).

correspond to the generalized Green functions). One can introduce

such functions, even though they are usually infinite-energy, into

the approximate solution to the adjoint problem as they do not

appear in the expression of the upper bound given in (16). The

Green functions are here calculated analytically in space and time,

using techniques based on strain nuclei and the image method (see

[19–21] for details). An example of such a Green function is given

in Fig. 10.

However, as the finite element value Ih of a pointwise quantity

at some point P within � is not always defined (due to possible

discontinuities of the derivatives across element boundaries), we

recast (16) into the form

∣

∣

∣

∣

Iex − Îh − Îhh

∣

∣

∣

∣

�2
[

1
2E

2
diss

(

ê
p

h
, ŝh

)

+ F0 (	h)
]1/2

·
[

F2(x̃h)
]1/2

(21)

where Îh and Îhh are some quantities defined at any regular point P

from the admissible solution (ê
p

h
, ŝh). Therefore, (21) provides some

strict and guaranteed bounds of the exact value Iex of a pointwise

quantity, such as a component of displacement or stress at a point.

As a conclusion of this section, we given Fig. 11 a diagram illus-

trating the implementation of the non-intrusive local error estima-

tion method into a finite element code equipped with a global error

estimator based on the dissipation error beforehand.We observe that

blocks preexisting in the code are reused, and little effort is required

to insert the goal-oriented error estimation method (blocks in red).

5. Numerical results

In the following examples, the calculation of Iex, used as the ref-

erence value, is performed using a “quasi-exact” solution obtained

by means of a very refined finite element mesh (“overkill solution”).

Practically, the mesh is refined until the approximate value of Iex has

converged.

5.1. A two-dimensional example with a quantity of interest defined as

an average

We apply the non-intrusive procedure to the adjoint prob-

lem defined in Fig. 4. The reference problem is the one given in

Fig. 2 and the quantity of interest we consider is

I =
1

�

∫

�
e
p
1,yy|T d� (22)

Fig. 12 shows the enrichment function which is used to solve the

adjoint problem.

PUM
Ω2

Ω1
PUM

Fig. 13. Enrichment with the PUM and definition of zones �
PUM
1 et �

PUM
2 : enriched

nodes are circled.

The enrichment is introduced with the PUM over a subregion of

� located in the neighborhood of the loading of the adjoint problem

(Fig. 13). We therefore obtain solutions (ẽ
hand,p
PUM , s̃handPUM ), (ẽr,p, s̃r), and

(ẽ
p

h
, s̃h) = (ẽ

hand,p
PUM , s̃handPUM ) + (ẽr,p, s̃r) whose corresponding stress fields

are given in Figs. 14, 15, and 16, respectively.

We thus obtain the strict bounds:


̄inf =

inf

Iex
= 0.97, 
̄sup =


sup

Iex
= 1.02

that is an approximation of Iex with a precision higher than 3%.

5.2. A two-dimensional example with a pointwise quantity of interest

We now consider the pointwise quantity of interest

I = �̇p1yy (P)|T

where P is located in an element close to a traction free boundary of

� (Fig. 17).

Remark 3. It would be possible to take P inside the critical region

� defined previously. However, as the solution has a singularity in

this region, considering a pointwise quantity of interest is not very

relevant for design purposes. Taking quantities of interest such as

stress intensity factors would make more sense in that case.

The adjoint problem corresponds to a pointwise prestress located

at point P and evolving exponentially in time (Fig. 18).

The analytical enrichment function we use, taking traction-free

boundary conditions into account, is similar to the one given in
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Fig. 14. Evolution in space of the stress field �̃hand
PUM at time T: �̃hand

PUMxx
(a), �̃hand

PUMyy
(b), and �̃hand

PUMxy
(c).

Fig. 15. Evolution in space of the stress field �̃r
h at time T: �̃r

hxx
(a), �̃r

hyy
(b), and �̃r

hxy
(c).

Fig. 16. Evolution in space of the stress field �̃h at time T: �̃hxx (a), �̃hyy (b), and �̃hxy (c).
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Fig. 10; it represents the exact solution of the adjoint problem load-

ing over a semi-infinite domain. The enrichment is introduced in the

approximate solution to the adjoint problem through the PUM ap-

plied at specific nodes of the mesh i.e. nodes close to point P (these

nodes are circled in Fig. 18). We then get the following bounds:


̄inf = 0.96, 
̄sup = 1.04

which shows that the non-intrusive method is very effective and

enables to obtain accurate bounds of localized quantities through the

enrichment of only a few nodes of the space mesh. However, even

−1

−0.5

0

0.5

1

1.5

P

Fig. 17. Definition of the point P where the quantity of interest is defined.

0 2 4 6 8 10 12 14 16 18 20

−25

−20

−15

−10

−5

0

t

σ
Σ

y
y

σΣyy

Fig. 18. Definition of the loading for the adjoint problem.
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−0.5
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0.5

1

1.5

E

4 6 8 16 18

Fig. 19. Evolution of �̃� with respect to time (a), nodes involved in the enrichment through the PUM (b), and definition of zone E (c).

higher precision could be reached by enlarging the size of �PUM , i.e.

introducing the enrichment on more nodes.

In addition, the non-intrusive local error estimation method en-

ables to seek lower and upper bounds of Iex(P) for any point P within

a specific local zone of interest E ⊂ � (Fig. 19). The procedure consists

in sweeping over E, considering that the residual solution (ẽ
r,p
h
, s̃r

h
) of

the adjoint problem does not depend on the localization of P over

E (practically, this is verified if the enrichment zone is sufficiently

large). Therefore, only the handbook function has to be changed

when sweeping over E, and the following result yields:

∣

∣

∣

∣

Iex(P)−Îh(P)−Îhh(P)

∣

∣

∣

∣

�2
[

1
2E

2
diss

(

ê
p

h
, ŝh

)

+ F0(	h)
]1/2

· [F2(x̃h)]
1/2

∀P ∈ E

The method provides the following bounds for the extremum

Imax,E
ex of Iex over E:


̄
E

inf =


E
inf

Imax,E
ex

= 0.95, 
̄
E

sup =


E
sup

Imax,E
ex

= 1.05

As a result, we are able to obtain high-quality lower and upper

bounds for the extremum of Iex (or L∞-norm of Iex) over a given

subregion of �, which may constitute useful information for ana-

lysts/designers.
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Fig. 20. Definition of the three-dimensional reference problem.
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Fig. 21. Definition of the subregion of interest � (a), and enrichment function used in the non-intrusive procedure (b).

5.3. A three-dimensional example

The last application deals with a three-dimensional structure

which is clamped at its base and subjected to a uniform pressure p

on its upper face (Fig. 20). Pressure p is imposed with a cyclic evo-

lution in time.

The structure is discretized in space with a regular mesh Mh

made of linear cubic finite elements (10098 degrees of freedom).

We consider the quantity of interest:

I =
1

�

∫

�
�xx|T d�

where � corresponds to a finite element defined in a critical region

of � (Fig. 21).

The enrichment function corresponds to a prestress loading over a

semi-infinite domain (see Fig. 21); it is given analytically in time and

computed numerically in space. It is introduced in the formulation of

the adjoint problem by enriching with the PUM two layers of nodes

around zone �. The non-intrusive goal-oriented error estimation

method then provides for the bounds:


̄inf = 0.95, 
̄sup = 1.07

6. Conclusion

We presented in this paper a method that gives strict, high-

quality, and practical error bounds of local quantities in linear vis-

coelasticity problems. It is made non-intrusive due to the fact that

by using handbook techniques, the adjoint problem is solved pre-

cisely while keeping unchanged the discretization parameters and

operators defined for the reference problem; only the loading and

boundary conditions have to be changed. As a result, the bounding

process appears in a “black-box” manner for the analyst/designer

whose only intervention consists in defining the quantity of in-

terest. Furthermore, the non-intrusive technique enables one to

easily tackle pointwise quantities by using Green's functions. Sev-

eral numerical tests in two-dimensional and three-dimensional

clearly illustrate the interest and efficiency of the proposed

method.

In summary, this work demonstrates that reliable local error

bounds can be obtained at reasonable cost for linear evolution prob-

lems, a fact which was not really accepted by the scientific commu-

nity until now. It should be mentioned that the goal-oriented error

estimation method proposed here does not use the orthogonality

properties of the finite element solutions. Therefore, it could con-

ceivably be applied to problems solved by approximation methods

11



other than the FEM; it could moreover be extended to other linear

parabolic problems.
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