
HAL Id: hal-01581361
https://hal.science/hal-01581361

Submitted on 4 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A parallel tabu search for the unconstrained binary
quadratic programming problem

Jialong Shi, Qingfu Zhang, Bilel Derbel, Arnaud Liefooghe

To cite this version:
Jialong Shi, Qingfu Zhang, Bilel Derbel, Arnaud Liefooghe. A parallel tabu search for the uncon-
strained binary quadratic programming problem. IEEE Congress on Evolutionary Computation (CEC
2017), Jun 2017, Donostia - San Sebastián, Spain. pp.557-564. �hal-01581361�

https://hal.science/hal-01581361
https://hal.archives-ouvertes.fr

A Parallel Tabu Search for the Unconstrained
Binary Quadratic Programming Problem

Jialong Shi, Qingfu Zhang
Department of Computer Science

City University of Hong Kong
Kowloon, Hong Kong

jlshi2-c@my.cityu.edu.hk, qingfu.zhang@cityu.edu.hk

Bilel Derbel, Arnaud Liefooghe
Univ. Lille, CNRS, Centrale Lille, UMR 9189 – CRIStAL

Dolphin, Inria Lille – Nord Europe
F-59000 Lille, France

{bilel.derbel, arnaud.liefooghe}@univ-lille1.fr

Abstract—Although several sequential heuristics have been
proposed for dealing with the Unconstrained Binary Quadratic
Programming (UBQP), very little effort has been made for
designing parallel algorithms for the UBQP. This paper propose
a novel decentralized parallel search algorithm, called Parallel
Elite Biased Tabu Search (PEBTS). It is based on D2TS, a state-
of-the-art sequential UBQP metaheuristic. The key strategies in
the PEBTS algorithm include: (i) a lazy distributed cooperation
procedure to maintain diversity among different search processes
and (ii) finely tuned bit-flip operators which can help the
search escape local optima efficiently. Our experiments on the
Tianhe-2 supercomputer with up to 24 computing cores show
the accuracy of the efficiency of PEBTS compared with a
straightforward parallel algorithm running multiple independent
and non-cooperating D2TS processes.

I. INTRODUCTION

The Unconstrained Binary Quadratic Programming (UBQP)
problem is a well-known NP hard problem [1]. Given a col-
lection of items such that each pair is associated with a profit
value that can be positive, negative or zero, the UBQP problem
seeks a subset of items that maximizes the sum of their paired
values. The value of a pair is summed up only if the two corre-
sponding items are selected. Besides its theoretical interest [2],
UBQP is often a bottleneck on a wide variety of application
fields [1], hence making it particularly appealing to study and
solve. Randomized heuristics, including metaheuristics [3] like
Tabu Search (TS) and Evolutionary Algorithm (EA) are widely
used to handle the UBQP. Very little effort has been made on
parallel UBQP algorithms. It is still a very challenging issue
to design efficient UBQP metaheuristics which can make the
best use of modern and massively parallel multi-processors
computing platforms. In this paper, we propose and study
a parallel TS algorithm, called Parallel Elite Biased Tabu
Search (PEBTS), as a first step towards the design of effective
and efficient parallel search heuristics for the UBQP problem.
The proposed PEBTS algorithm is based on a state-of-the-art
sequential UBQP metaheuristic, namely, the Diversification-
driven Tabu Search (D2TS) proposed by Glover at al. [4]. In
the proposed PEBTS, a good trade-off between the diversifica-
tion and intensification in the TS is maintained in a distributed
manner. Different search processes start from different initial
solutions and conduct their search concurrently. The parallel
processes are mapped to the computing cores and organized in

a torus topology. Each core provides its current best solution
asynchronically to the four neighboring cores within the torus,
and uses the best solution it found or received to guide its
search process. This is achieved by leveraging existing bit-
flip variation operators, the core of the TS search procedures,
and by renovating their design components in order to enable
an effective cooperative search among the different parallel
processes. In fact, through the designed parallel cooperation
strategy, we are able to show that the search efficiency can
be improved and that the diversity of solutions maintained
distributively over all the PEBTS processes can accurately be
maintained.

The rest of this paper is organized as follows. In Section II,
we provide some background and related work on the UBQP
problem. For completeness, in Section III, we review the
state-of-the-art D2TS sequential procedure in a nutshell. In
Section IV, we describe the proposed PEBTS algorithm and
its general design components. In Section V, we report our
experimental findings when deploying our algorithm using the
Tianhe-2 supercomputer. In Section VI, we conclude the paper.

II. UNCONSTRAINED BINARY QUADRATIC PROGRAMMING

The UBQP problem can be formalized as follows [5].

maximize f(x) = x′Qx =
n∑

i=1

n∑

j=1

qijxixj

subject to x ∈ {0, 1}n

where Q = [qij] is a n × n matrix, and x is a vector of
n binary (0-1) variables. In recent years, the UBQP problem
has received a growing interest, and appears in many areas
such as financial analysis [6], social psychology [7], machine
scheduling [8], computer aided design [9] and cellular radio
channel allocation [10]. This problem is also related to a
wide range of combinatorial optimization problems from graph
theory, such as maximum cliques, maximum cuts, maximum
vertex packing and minimum coverings [11], [12]. A recent
survey of the UBQP can be found in [1]. Some related research
developments are reviewed in the following.

Katayama and Narihisa [13] proposed the Parthenogenet-
ic Algorithm (PA). PA can be seen as an Iterated Local
Search (ILS), where the perturbation is performed by means

978-1-5090-4601-0/17/$31.00 c⃝2017 IEEE
557

of a mutation operator. Merz and Katayama [14] addressed
the fitness landscape of UBQP instances. They also proposed
a Memetic Algorithm (MA) in which an EA procedure is
combined with a k-opt local search. Palubeckis [15] pro-
posed the Multi-start Tabu Search (MST), in which the initial
solution is constructed independently at each iteration, and
improved by means of TS. Later in [16], an Iterated Tabu
Search (ITS) algorithm, is proposed where the initial solution
from which TS starts the search is generated by perturbing the
resulting solution found by TS at the previous round. Glover
et al. [4] proposed the Diversification-Driven Tabu Search
(D2TS), where a population of elite solutions is managed using
an internal memory. At each iteration of D2TS, a solution
selected at random within the elite population, it is then
perturbed based on a memory-based strategy, and improved
by means of TS. The resulting solution is then used to update
the elite population.

The TS is actually the core component of a number of
other metaheuristics. For instance, Lü et al. [17] designed
a Hybrid Metaheuristic Approach (HMA), in which TS is
incorporated into an EA. In HMA, offspring solutions are
generated by means of a path-relinking procedure, and im-
proved by means of TS. The population updating mechanism
is based on a distance-and-quality goodness score function.
Wang et al. [18] presented the Backbone Guided Tabu Search
(BGTS). Backbone variables are the ones having the same
value in all optimal solutions. BGTS divides the variables into
a backbone set and a free set, both of which change members
at each iteration. Fixing or freeing a variable is determined
by the result of TS. The initial solution of TS is generated by
fixing the backbone variables and randomly assigning values
to free variables. A Backbone Multilevel Memetic Algorithm
(BMMA) is also designed in [19], which includes a backbone-
based coarsening phase, an uncoarsening phase, and a memetic
refinement phase. The coarsening phase creates coarser sub-
problems. Then, the memetic refinement and the uncoarsening
phases try to solve the sub-problems from simple to complex.
In another work from Wang et al. [20], a path-relinking based
algorithm is proposed. In this algorithm, an elite population is
iteratively updated by a path-relinking phase and a TS phase.
Recently, Wang et al. [21] introduced a GRASP-Tabu Search
(GRASP-TS) algorithm and an enhanced variant based on a
population management strategy.

All of the aforementioned metaheuristics are intrinsically
sequential. They cannot fully benefit from the computational
resources available in multi-processor computers. In [22], an
island model approach using a basic master-slave centralized
migration strategy is proposed. However, it does not incor-
porate TS, which has been shown to be a state-of-the-art
component when tackling the UBQP problem, as mentioned
before. To our best knowledge, there does not exist any other
parallel algorithms for the UBQP problem. In this paper,
we intend to fill this gap by proposing a parallel TS-based
algorithm. This parallel algorithm takes inspiration from the
state-of-the-art sequential D2TS, as detailed in the next section
for the sake of completeness.

III. DIVERSIFICATION-DRIVEN TABU SEARCH

Proposed by Glover et al. [4], D2TS maintains a popula-
tion of at most R elite solutions, denoted EliteSol, in the
algorithm internal memory. A vector of size n (the problem
size), denoted EliteFreq, is used to record the total number
of times each variable is assigned a value of 1 in EliteSol.
Besides, D2TS also maintains another vector of size n, denoted
FlipFreq, in order to record the number of times each
variable has been flipped. At each iteration, D2TS first selects
at random a solution from EliteSol, for which a memory-
based perturbation operator is applied. The perturbed solution
is then improved by a simple TS procedure. After the TS
improvement phase, the resulting elite solution is used to
update EliteSol, if it is not already included there-in. If
EliteSol has reached its full capacity (R), and if the new
solution is better than the worst one in EliteSol, then the
worst one is replaced by the new one. D2TS starts from a
randomly generated solution and stops once the computational
budget is exhausted. The main ingredient of D2TS are depicted
in the pseudo-code of Algorithm 1 and discussed briefly in
next paragraphs.

In D2TS, the TS procedure is based on 1-Flip moves.
At each move, TS checks the flip of variables that are not
contained in the tabu list, and selects the move that leads to the
best neighboring solution. The flipped variable in the selected
neighboring solution is used to update the tabu list, and is
forbidden to be flipped until a number of TabuTenure(i)
moves have elapsed. Following [4], TabuTenure(i) is set as:

TabuTenure(i) = c+ rand(10), (1)

where c is a predefined constant and rand(10) is a random
integer in [1, 10]. Notice that a fast move evaluation procedure
is proposed in [23] in order to calculate the move gain of
a given neighbor, and hence its fitness value. In addition, a
simple aspiration criterion is applied: if a move leads to a
solution better than the current best solution x⋆, this move will
be permitted in spite of being tabu. The TS terminates when
the current best solution x⋆ is unchanged for α moves. Here
α is called improvement cutoff and is a predefined constant.

The perturbation step is based on EliteFreq and FlipFreq.
It first requires to compute the score of each variable i:

Score(i) = EliteFreq(i)(r−EliteFreq(i))
r2

+ β(1− FlipFreq(i)
max Freq), (2)

where β is a predefined constant and max Freq is the largest
value in FlipFreq. After the scoring step, the perturbation
operator sorts all the variables in the non-increasing order of
their scores, and selects γ different variables to be flipped. At
each round of selection, the j-th highly-scored variable has a
probability Pj = j−λ

∑n
i=1 i−λ to be flipped, where γ and λ are

predefined constants.
Based on this sequential D2TS algorithm and its compo-

nents, we are able to introduce our proposed parallel meta-
heuristic for UBQP, which is the purpose of the next section.

558

Algorithm 1: Diversification-Driven Tabu Search (D2TS)
Input: Q,α, c, R,β,λ, γ
Output: the best binary n-vector x⋆ found so far

1 EliteSol← {}; r ← 0;EliteFreq(i)← 0, i = 1, . . . , n;
2 x← randomly generate an initial solution;
3 while r < R do
4 x′ ← TabuSearch(x,Q,α, c);
5 if x′ is not in EliteSol then
6 EliteSol← EliteSol + {x′};
7 r ← r + 1;
8 EliteFreq = EliteFreq + x′;

9 x← randomly select a solution from EliteSol;
10 x← Perturbation(x,EliteSol, EliteFreq,β,λ, γ);

11 while Stopping criterion is not met do
12 x← randomly select a solution from EliteSol;
13 x← Perturbation(x,EliteFreq, F lipFreq,β,λ, γ);
14 x′ ← TabuSearch(x,Q,α, c);
15 xw ← the worst solution in EliteSol;
16 if x′ is not in EliteSol and f(x′) > f(xw) then
17 EliteSol = EliteSol + {x′}− {xw};
18 EliteFreq = EliteFreq + x′ − xw;

IV. PARALLEL ELITE BIASED TABU SEARCH

Due to the stochastic nature of metaheuristics, the time it
takes to reach a target function value is a random variable.
Hence, running multiple algorithm processes in parallel can
reduce the hitting time. In addition, many experimental studies
from the literature prove that the cooperation among differ-
ent processes can achieve even better efficiency. Therefore,
designing a parallel cooperative metaheuristic for the UBQP
can be a good alternative to leverage existing sequential start-
of-the-art algorithms. Before going into the details of our
parallel algorithm, we shall first briefly review existing work
on parallel metaheuristics to better position our contribution.

A. Overview of Parallel Metaheuristics

Some recent surveys of parallel metaheuristics can be found
in [24]–[26]. Generally speaking, the class of metaheuristic
approaches can be divided into two categories: (i) population-
based metaheuristics such as EA, and (ii) trajectory-based
metaheuristics such as TS. The parallelization of population-
based metaheuristics can either aim at: (1) parallelizing the
variation operators applied to the individuals, or (2) paralleliz-
ing the evolution of different individual in the population. For
trajectory-based metaheuristics, three mainstream strategies
can be reported.

• Parallel single solution evaluation scheme. This scheme
requires that the flow of the evaluation function can be
run in a parallel way and aims at speeding up costly
fitness function evaluations. A master-slave approach is
generally applied, where the master executes the main
procedure of the algorithm, whereas the slaves are in

charge of running the parallel tasks when one new single
solution is to be evaluated in parallel.

• Parallel multiple solution evaluation scheme. In this
scheme, multiple candidate solution are evaluated in
parallel, typically when exploring the neighborhood of
the current solution evolved by the metaheuristic.

• Parallel multistart scheme. In this scheme, different pro-
cesses start from different initial solutions and produce
different search trajectories. They may have different
configurations. During the search process, these processes
can communicate with each other in order to exchange
useful information. The parallel TS algorithm proposed
in this paper belongs to this third category.

It is important to notice that parallel TS algorithms exist for
other problem classes. In fact, De Falco et al. [27] proposed
a simple parallel variant of TS based on exchanging best
solutions. Al-Yamani et al. [28] developed a heterogeneous
parallel TS algorithm for the VLSI placement problem, which
integrates the first and third schemes sketched previously. Bort-
feldt et al. [29] designed a distributed parallel TS metaheuristic
for the container loading problem, in which each process
periodically adopts solution from its predecessor and restarts
from the adopted solution. Attanasio et al. [30] also proposed
a distributed parallel TS metaheuristic for the dynamic multi-
vehicle dial-a-ride problem, in which two different cooperation
strategies are investigated. Banos et al. [31] presented a
parallel metaheuristic for the graph partitioning problem which
hybridizes Simulated Annealing (SA) and TS. Blazewicz
et al. [32] proposed a master-slave parallel TS algorithm
for the two-dimensional cutting problem. Le Bouthillier and
Crainic [33] proposed a cooperative parallel metaheuristic for
the vehicle routing problem with time windows, in which
TS processes and EA processes are executed in parallel.
Talbi and Bachelet [34] proposed a parallel metaheuristic
for the quadratic assignment problem, which uses TS as the
main search agent. Maischberger [35] proposed a synchronous
distributed parallel metaheuristic for the vehicle routing prob-
lems, in which each process executes ILS extended with TS.

It is worth noticing that the parallel algorithm proposed in
this paper is different from the aforementioned parallel algo-
rithms, essentially because it uses a novel cooperation strategy
and, more importantly, a finely-tuned UBQP-dedicated bit-flip
perturbation operator.

B. Proposed Approach

The proposed parallel TS algorithm for UBQP is called
Parallel Elite Biased Tabu Search (PEBTS). In PEBTS, m pro-
cesses following the same search strategy are run in parallel,
starting from different initial solutions. The basic procedure
of each process repeatedly alternates between a TS phase
and a perturbation phase until the stopping condition is sat-
isfied. Each process has four neighbors and communicates
with its neighbors aperiodically. The messages transmitted
among processes are the newest best-found solutions. In the
meantime, each process keeps one elite solution xe in its

559

Fig. 1. A 4× 4 torus topology of
the PEBTS processes

Fig. 2. A sketch of the communi-
cation among the PEBTS processes

memory, corresponding to the best one of the solutions it
received and found.

Starting from a randomly-generated solution, each PEBTS
process performs a TS procedure. Similar to D2TS, when
the best solution x⋆ remains unchanged for α moves, the
TS procedure terminates. However, after this TS phase, the
PEBTS process directly perturbs the current best solution x⋆

and uses the perturbed solution as the initial solution of the
next round of TS. This strategy is different from the pertur-
bation strategy in D2TS, which randomly selects a solution
from the EliteSol set to be perturbed, i.e., there is no elite
set maintained explicitly in PEBTS.

The parallel processes of PEBTS are organized following a
torus topology. For instance, in Fig. 1, the four neighbors of
the yellow process are colored in blue. During the search, each
process only communicates with its neighbors. Specifically,
when a process finds a new best solution x⋆, it sends this
solution to all of its neighbors. Meanwhile, each process
periodically checks whether there are new solutions coming
from its neighbors, and receive those solutions if they exist.
Notice that, although a process may receive better solutions
from its neighbors, it still sends the one it found itself to its
neighbors. Fig. 2 sketches the communication between one
PEBTS process and its neighbors. Let Sr denote the set of
solutions that a process receives from its neighbors. In PEBTS,
each process maintains one elite solution xe in its memory,
which is the best one from Sr ∪ {x⋆}. The elite solution xe

guides both the TS phase and the perturbation phase.
During the TS phase, when a new variable is added to the

tabu list, if the same value is taken by this variable within
the current solution and xe, its TabuTenure will be added
an extra constant c′. Accordingly, we set:

TabuTenure(i) =

{
c+ c′ + rand(10) if xi = xe,i

c+ rand(10) otherwise, (3)

where c′ is a predefined constant, xe,i is the value of variable i
in xe. By adopting this rule at every parallel process, when
a variable is flipped to the same value it takes in xe, it will

Algorithm 2: Parallel Elite Biased Tabu Search (PEBTS)
Input: Q,α, c, c′,β,λ, γ
Output: the best binary n-vector x⋆ found so far

1 x← randomly generate an initial solution;
2 k ← 0; x⋆ ← x; TabuTenure(i)← 0, i = 1, . . . , n;
3 while Stopping criterion is not met do
4 if x⋆ has updated then SendToNeighbors(x⋆) ;
5 Sr ←TryToReceive();
6 xe ←SelectBestSolution(Sr ∪ {x⋆});
7 for each i that TabuTenure(i) > 0 do
8 TabuTenure(i)← TabuTenure(i)− 1

9 ∆f ′ ← −∞;
10 ∆fi ← the move value of flipping xi, i = 1, . . . , n;
11 for each i such that TabuTenure(i) = 0 or

f(x) +∆fi > f(x⋆) do
12 if ∆f ′ < ∆fi then ∆f ′ ← ∆fi; i′ ← i

13 Flip the variable i′ in x;
14 FlipFreq(i′)← FlipFreq(i′) + 1;
15 if xi′ = xe,i′ then
16 TabuTenure(i′)← c+ c′ + rand(10);
17 else TabuTenure(i′)← c+ rand(10) ;
18 if f(x) > f(x⋆) then
19 x⋆ ← x; k ← 0
20 else k ← k + 1 ;
21 if k > α then
22 x← x⋆;
23 x←EliteBiasedPerturbation(x, xe, F lipFreq,β,λ, γ);
24 k ← 0; TabuTenure(i)← 0; i = 1, . . . , n;

be forbidden to flip back for a longer tenure. This will tend
to let the current solution of a parallel process to be more
similar to its elite solution xe, and hence to encourage the
search direction to be attracted by xe.

The perturbation operator is also influenced by xe. In
PEBTS, the score of variable i computed at every parallel
process is defined as follows:

Score(i) = |xi − xe,i|+ β
(
1− FlipFreq(i)

max Freq

)
. (4)

A number of variables are then selected and flipped according
to this modified score function, following the same probability
distribution as defined previously in sequential D2TS. From
the left term of Eq. (4), we can see that the variables that take
different values in the current solution and in xe tend to have
a higher score. As a consequence, they are more likely to be
selected and flipped, and the perturbed solution will tend to
get more similar to xe.

The entire procedure of a PEBTS process is shown in
Algorithm 2. Lines 4-6 correspond the communication phase,
Lines 7-20 to the TS phase, and Lines 21-24 to the perturbation
phase.

560

C. Design Principles of PEBTS and Discussion

Compared to D2TS, PEBTS has the following design fea-
tures:

• Each PEBTS process restarts from the best solution x⋆

that it has found locally (D2TS restarts with one solution
from global EliteSol).

• Each PEBTS process sends its own best solution x⋆ to
its neighboring processes whenever there is a change, and
possibly receives new solutions from its neighbors.

• In PEBTS, both the TS phase and the perturbation phase
are guided by the elite solution xe, which is the best one
from received solutions and x⋆.

In order to maintain diversity, D2TS keeps R solutions in
EliteSol, and restarts from one of them at each iteration.
However, in PEBTS, there are m parallel processes which
start from different initial solutions and search in different
areas of the search space. Notice that the elite solution xe

maintained locally by each parallel process is not used as a
restarting point just before the perturbation phase. Instead, the
local best solution x⋆ is considered for perturbation. As such,
we prevent xe to flood the distributed search and we expect the
diversification of PEBTS to be intrinsically maintained. Notice
also that this allows us to get rid of explicitly maintaining
any EliteSol set in PEBTS, which is likely to be implicitly
achieved due to its distributed nature. This is the reason why
we adopted the first design feature in PEBTS.

The goal of the second feature is to let different processes
share information with each other. In fact, we believe that the
most useful information is hidden in the best solutions found
distributively by the PEBTS processes. On the other hand,
since communication with a restricted number of other pro-
cesses (namely, four) only happens when a new best solution
is found, the distributed protocol underlying PEBTS tends to
reduce the overall network communication load, and in the
meantime to enables an accurate level of solution diversity.

The third design feature reflects how the PEBTS processes
benefit from the information hidden in the received elite
solutions. According to the fitness-distance correlation analysis
of Merz and Katayama [14], high-quality UBQP solutions are
typically contained in a small fraction of the search space,
and there exists a high correlation between the fitness of high-
quality solutions and the (Hamming) distance to the optimum.
The higher the quality of a solution, the more likely it is
close to the optimum. Considering these characteristics of
UBQP, each PEBTS process is designed to use solely one elite
solution xe, which is the best one from the set Sr∪{x⋆}. After
getting a new xe, a PEBTS parallel process does not update its
current solution to xe, because we do not want the process to
forget the current region of the search space where it is actually
operating. Instead, we want to encourage the different parallel
PEBTS processes to search in diverse regions of the search
space. Therefore, when a process is given a new xe, it does
not directly jump to xe, but instead it is simply attracted by xe.
Here the “attraction” of xe is completed by adaptively pushing
the resulting solutions of the TS and perturbation phases to be

more similar to xe, as described in Section IV-B.

V. EXPERIMENTAL ANALYSIS

In order to investigate the accuracy and the relative per-
formance of the proposed parallel algorithm, we consider the
following two sets of instances. The first set contains the 10
UBQP instances of size n = 2500 in the ORLIB [36] reposito-
ry. These instances are named {b2500.1, . . . ,b2500.10},
and all have a density of 0.1, where the density refers to
the proportion of non-zero numbers in the matrix Q. The
second set of instances contains the 21 large instances named
{p3000.1, . . . ,p7000.3}, with a problem size ranging
from n = 3000 to 7 000, and with densities ranging from
0.5 to 1.0. Both instance sets have known optima and are
widely used in the literature; see e.g. [4], [14]–[21]. They are
commonly believed to be very challenging. In our experiments,
algorithms are implemented in GNU C++ with the -O2 opti-
mization option. The fast move evaluation method from [23]
is used in our implementation. The communication between
different processes is achieved using MPI. The computer
platform is the Tianhe-2 supercomputer. Notice that Tianhe-2
is one of the world’s top-ranked supercomputers. It is equipped
with 17 920 computer nodes, each comprising two Intel Xeon
E5-2692 12C (2.200 GHz) processors. The operating system
of Tianhe-2 is based on Ubuntu.

A. Impact of Cooperation
One notable feature of the proposed PEBTS algorithm is the

cooperation mechanism designed to coordinate the actions of
the parallel search processes. In order to evaluate the benefit
of the underlying cooperative parallel search, we consider
the aforementioned first set of instances and we conduct
the following set of experiments, as detailed in the next
paragraphs.

For each instance, PEBTS is compared to a simple parallel
algorithm, called PITS, in which several parallel independent
TS processes are executed without any cooperation mech-
anism. More precisely, the search procedure of each PITS
process is set to be similar to that of the PEBTS process,
except that PITS processes do not communicate. Hence, at
each PITS process, the elite solution xe is equal to the current
best solution x⋆, instead of the best one from Sr ∪ {x⋆}.
Moreover, based on some preliminary pilot testing, we were
able to observe that the best solution x⋆ found by a parallel
process has a relatively low quality at the early stages of
the search process. Besides, x⋆ changes very quickly at the

TABLE I
PARAMETER SETTINGS OF THE EXPERIMENT IN SECTION V-A.

Parameters Description Values
m Process number 16
c′ Influence strength of xe in TS {0, 6, 12, 18, 24}
c Tabu tenure constant n/100
α Improvement cutoff of TS 20n
β Frequency-related weight in perturbation scoring 1
λ Perturbation selection importance factor 1.2
γ Perturbation strength n/4
Tmax Max runtime 60s
CST Communication start time After n TS moves

561

TABLE II
PEBTS vs. PITS ON UBQP INSTANCES OF SIZE n = 2500. gavr IS THE AVERAGE GAP TO THE OPTIMAL OBJECTIVE VALUE, suc IS THE SUCCESS RATE

OVER THE 100 RUNS, tavr IS THE AVERAGE RUNTIME AND tmdn IS THE MEDIAN RUNTIME (IN SECONDS). FOR EACH ALGORITHM THE LAST ROW
(“AVERAGE”) SUMMARIZES THE ALGORITHM’S AVERAGE PERFORMANCE OVER ALL THE CONSIDERED INSTANCES.

Instances PEBTS (c′=0) PEBTS (c′=6) PEBTS (c′=12) PEBTS (c′=18) PEBTS (c′=24)
gavr suc tavr tmdn gavr suc tavr tmdn gavr suc tavr tmdn gavr suc tavr tmdn gavr suc tavr tmdn

b2500.1 0.0 100 0.19 0.16 0.0 100 0.17 0.16 0.0 100 0.16 0.15 0.0 100 0.15 0.14 0.0 100 0.19 0.15
b2500.2 0.0 100 1.38 1.16 0.0 100 1.15 0.82 7.2 98 3.92 0.90 78.3 70 19.77 0.78 131.6 52 30.11 16.80
b2500.3 0.0 100 1.06 0.29 0.0 100 0.28 0.21 5.3 98 1.43 0.22 5.3 98 1.39 0.17 29.7 89 6.77 0.17
b2500.4 0.0 100 0.11 0.10 0.0 100 0.11 0.10 0.0 100 0.10 0.10 0.0 100 0.09 0.09 0.0 100 0.09 0.09
b2500.5 0.0 100 0.16 0.15 0.0 100 0.16 0.15 0.0 100 0.15 0.13 0.0 100 0.17 0.12 0.0 100 0.26 0.11
b2500.6 0.0 100 0.26 0.23 0.0 100 0.23 0.21 0.0 100 0.18 0.17 0.0 100 0.16 0.15 0.0 100 0.15 0.14
b2500.7 0.0 100 0.55 0.49 0.0 100 0.47 0.41 0.0 100 0.33 0.29 0.0 100 0.30 0.28 7.3 99 0.88 0.25
b2500.8 0.0 100 0.18 0.14 0.0 100 0.17 0.13 0.1 99 0.75 0.13 1.0 93 4.34 0.13 1.5 89 6.73 0.13
b2500.9 0.0 100 0.63 0.44 0.0 100 1.02 0.33 1.7 88 9.94 0.23 3.2 77 14.79 0.19 4.1 71 18.00 0.18
b2500.10 0.0 100 0.50 0.33 0.0 100 0.46 0.36 0.0 100 0.46 0.27 13.4 97 3.84 0.26 40.4 89 8.25 0.28
Average 0.0 100 0.50 0.35 0.0 100 0.42 0.29 1.4 98.3 1.74 0.26 10.1 93.5 4.50 0.23 21.5 88.9 7.14 1.83

Instances PITS (c′=0) PITS (c′=6) PITS (c′=12) PITS (c′=18) PITS (c′=24)
gavr suc tavr tmdn gavr suc tavr tmdn gavr suc tavr tmdn gavr suc tavr tmdn gavr suc tavr tmdn

b2500.1 0.0 100 0.17 0.16 0.0 100 0.19 0.17 0.0 100 0.18 0.17 0.0 100 0.20 0.17 0.0 100 0.24 0.19
b2500.2 0.0 100 1.77 1.17 0.0 100 2.13 1.03 6.1 97 6.77 2.28 24.3 88 12.72 4.42 40.2 83 20.29 8.90
b2500.3 0.0 100 0.80 0.31 0.0 100 0.42 0.28 0.0 100 0.41 0.29 0.0 100 0.60 0.26 2.7 99 1.16 0.34
b2500.4 0.0 100 0.11 0.11 0.0 100 0.11 0.10 0.0 100 0.11 0.10 0.0 100 0.11 0.10 0.0 100 0.12 0.11
b2500.5 0.0 100 0.15 0.14 0.0 100 0.16 0.14 0.0 100 0.16 0.14 0.0 100 0.18 0.15 0.0 100 0.19 0.16
b2500.6 0.0 100 0.26 0.23 0.0 100 0.26 0.25 0.0 100 0.25 0.22 0.0 100 0.28 0.24 0.0 100 0.31 0.29
b2500.7 0.0 100 0.57 0.52 0.0 100 0.55 0.46 0.0 100 0.64 0.59 0.0 100 0.80 0.60 0.0 100 1.41 0.82
b2500.8 0.0 100 0.23 0.14 0.0 100 0.19 0.17 0.0 100 0.17 0.14 0.0 100 0.21 0.17 0.0 100 0.26 0.17
b2500.9 0.0 100 0.77 0.26 0.0 100 0.65 0.35 0.0 100 0.74 0.30 0.7 95 3.68 0.28 0.4 97 2.69 0.29
b2500.10 0.0 100 0.56 0.41 0.0 100 0.66 0.38 0.0 100 1.49 0.54 3.4 99 2.86 0.56 6.9 98 6.44 0.94
Average 0.0 100 0.54 0.34 0.0 100 0.53 0.33 0.6 99.7 1.09 0.48 2.8 98.2 2.16 0.69 5.0 97.7 3.31 1.22

early stages, which may cause a heavy communication load
in PEBTS. As a consequence, we configured each PEBTS
process so that it only starts to communicate (by sending and
receiving x⋆) with its neighbors after a predefined number of
TS moves, which is set empirically to n (the problem size).

The parameter setting is summarized in Table I. We set the
number of processes to m = 16. Each parallel process starts
from a randomly and independently-generated solution. The
termination criteria is set to a maximum runtime, namely 60
seconds, and each considered algorithm configuration is exe-
cuted for 100 independent runs on each benchmark instance.
Note that the runtime measured here is a wall-clock time.
Since the TS phase constitutes the core stage of PEBTS and
PITS, we also study the impact of the c′ parameter, which
is used to control the attraction strength of xe during the TS
phase, i.e., c′ ∈ {0, 6, 12, 18, 24} for both PEBTS and PITS.
Notice that when c′ = 0, xe does not have any impact on TS,
it only influences the perturbation phase. All other parameter
values are the ones recommended in [4], except for β. In fact,
considering that the left term of the original scoring formula
(Eq. 2) ranges from 0 to 1/4, and that the left term of the new
scoring formula (Eq. 4) ranges from 0 to 1, we set β = 1 in
PEBTS.

The results of this first set experiments are reported in
Table II, where three performance measures are shown: (i)
the average percentage gap to the optimum, (ii) the success
rate, which is the percentage of runs where the optimum was
found, and (iii) the (average and median) time to hit the
optimum. Interestingly, we observe that higher values of c′

have a negative effect on both competing algorithms, and more
importantly, that PEBTS is no longer able to beat PITS. This
clearly indicates that cooperation among the parallel processes
when solving UBQP instances can only be beneficial when
carefully tuned in order to maintain a good diversity balance.

TABLE III
PEBTS vs. PITS (c′ = 6) ON UBQP INSTANCES OF SIZE n = 2500.

Instance Median Runtime (s) P-value of
Mann-Whitney U-testPEBTS PITS

b2500.1 0.16 0.17 0.2774
b2500.2 0.82(+) 1.03 0.0337
b2500.3 0.21(+) 0.28 0.0214
b2500.4 0.10 0.10 0.8496
b2500.5 0.15 0.14 0.3584
b2500.6 0.21(+) 0.25 0.0267
b2500.7 0.41 0.46 0.2288
b2500.8 0.13(+) 0.17 0.0450
b2500.9 0.33 0.35 0.9018
b2500.10 0.36 0.38 0.6521

Actually, both competing algorithms are able to perform at
their best for c′ = 6, and PEBTS is able to significantly
outperform PITS. In fact, the results of a Mann-Whitney U-
test with respect to the running time of PEBTS and PITS for
c′ = 6 are shown in Table III, where bold font means better
median runtime value and a “(+)” means that the difference is
statistically significant with a 5% level. In summary, PEBTS
performs significantly better than PITS on 4 instances, whereas
it is not worse than PITS on the remaining ones. These first
results prove that the cooperation among different finely-tuned
PEBTS processes globally improves the overall efficiency.

B. Comparison with Multi-Start Parallel Variant of D2TS
The other notable feature of the PEBTS algorithm is the fact

that no explicit elite set is maintained within each parallel
search process. In order to evaluate the relevance of such
a design choice, we conduct a second set of experiments
where the performance of PEBTS is compared against a multi-
start parallel algorithm, called Parallel Independent D2TS
(PID2TS), where multiple independent D2TS are executed in
parallel on the available processes. Hence PID2TS is a parallel
variant of D2TS which is faster than the sequential D2TS.We

562

TABLE IV
PARAMETER SETTINGS OF THE EXPERIMENT IN SECTION V-B.

Parameters PEBTS PID2TS
m 24 24
R - 8
c′ n/400 -
c n/100 n/100
α 20n 20n
β 1 0.3
λ 1.2 1.2
γ n/4 n/4
Tmax {60s,120s,360s,720s} {60s,120s,360s,720s}
CST After n TS moves -

consider the second set of UBQP instances and the parameter
setting depicted in Table IV. Notice that the maximum runtime
is set to 60, 120, 360, 720 and 720 seconds, respectively, for
instances with 3 000, 4 000, 5 000, 6 000 and 7 000 variables.
For both algorithms, we perform 20 runs using m = 24
parallel processes. The parameter values of D2TS are set as
in the original paper [4]. The parameter values for PEBTS
are seemingly the same, expect for the value of c′, which
was shown to have a high impact in the previous section. In
fact, by performing a linear extrapolation from our first set
of experiments, we empirically choose c′ as a function of the
problem size n, i.e., c′ = n/400. Finally, we also included the
baseline PITS algorithm discussed in the previous section for
completeness.

Our experimental findings are summarized in Table V.
Overall, PEBTS achieves the highest average success rate suc
and the shortest average runtime tavr, while PID2TS achieves
the lowest average gap to the optimum gavr. Specifically,
on the instances with 3 000 and 4 000 variables, PEBTS
typically reaches the optimal function value faster than PITS
and PID2TS. On the instances with 5 000 and 6 000 variables,
PID2TS typically gets better solutions, but PEBTS is much
faster than PID2TS and PITS. On the instances with 7 000
variables, the success rate of PEBTS is the highest one, and
approximately twice larger than the one from PID2TS, while
still achieving a better runtime.

Notice that the performance of PEBTS and PID2TS is
compared using 3 metrics: gavr, suc and tavr. As a conse-
quence, we can use the Pareto-dominance relation to better
judge which one is better. Indeed, if algorithm A is not worse
than algorithm B on all 3 metrics, and A is better than B on
at least one metric, then we state that A outperforms B. In
Table V, PEBTS outperforms PID2TS on 10 instances while
PID2TS outperforms PEBTS on only 2 instances. Based on the
above analysis, we state that the proposed parallel cooperative
approach performs better than PID2TS in most cases.

VI. CONCLUSION

In this paper, we proposed a parallel metaheuristic called
PEBTS, which to our best knowledge is the first cooperative
parallel tabu search designed for the UBQP problem. We
conducted two sets of experiments in order to fairly evaluate
the behavior of the proposed algorithm when compared against
independent parallel TS processes operating independently.

Our findings reveal that cooperation can indeed speedup the
overall search procedure, while increasing the probability to
hit the optimum. It is our hope that these results can lead to
the developments of further highly effective parallel algorithms
dedicated to the challenging UBQP problem. One particularly
interesting alternative is to consider a distributed elite memory
that is maintained explicitly and cooperatively by the parallel
processes involved in the search. However, this implies to
design advanced adaptive operators and control rules that can
operate distributively in order to maintain a good balance of
solution diversity among the parallel processes.

Acknowledgments. The authors gratefully acknowledge Jin-Kao Hao
for fruitful discussions about UBQP. The work described in this paper
was supported by a grant from ANR/RCC Joint Research Scheme
sponsored by the Research Grants Council of the Hong Kong Special
Administrative Region, China and France National Research Agency
(Project No. A-CityU101/16).

REFERENCES

[1] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lü, H. Wang, and
Y. Wang, “The unconstrained binary quadratic programming problem:
a survey,” Journal of Combinatorial Optimization, vol. 28, no. 1, pp.
58–81, 2014.

[2] M. R. Garey and D. S. Johnson, “A guide to the theory of np-
completeness,” WH Freemann, New York, 1979.

[3] F. Glover and G. A. Kochenberger, Handbook of metaheuristics.
Springer Science & Business Media, 2003.

[4] F. Glover, Z. Lü, and J.-K. Hao, “Diversification-driven tabu search for
unconstrained binary quadratic problems,” 4OR, vol. 8, no. 3, pp. 239–
253, 2010.

[5] A. Liefooghe, S. Verel, and J.-K. Hao, “A hybrid metaheuristic for
multiobjective unconstrained binary quadratic programming,” Applied
Soft Computing, vol. 16, pp. 10–19, 2014.

[6] R. McBride and J. Yormark, “An implicit enumeration algorithm for
quadratic integer programming,” Management Science, vol. 26, no. 3,
pp. 282–296, 1980.

[7] F. Harary et al., “On the notion of balance of a signed graph.” The
Michigan Mathematical Journal, vol. 2, no. 2, pp. 143–146, 1953.

[8] B. Alidaee, G. A. Kochenberger, and A. Ahmadian, “0-1 quadratic pro-
gramming approach for optimum solutions of two scheduling problems,”
International Journal of Systems Science, vol. 25, no. 2, pp. 401–408,
1994.

[9] J. Krarup and P. M. Pruzan, “Computer-aided layout design,” in Math-
ematical programming in use. Springer, 1978, pp. 75–94.

[10] P. Chardaire and A. Sutter, “A decomposition method for quadratic zero-
one programming,” Management Science, vol. 41, no. 4, pp. 704–712,
1995.

[11] P. M. Pardalos and G. P. Rodgers, “Computational aspects of a branch
and bound algorithm for quadratic zero-one programming,” Computing,
vol. 45, no. 2, pp. 131–144, 1990.

[12] P. M. Pardalos and J. Xue, “The maximum clique problem,” Journal of
global Optimization, vol. 4, no. 3, pp. 301–328, 1994.

[13] K. Katayama and H. Narihisa, “On fundamental design of partheno-
genetic algorithm for the binary quadratic programming problem,” in
Congress on Evolutionary Computation, CEC. IEEE, 2001, pp. 356–
363.

[14] P. Merz and K. Katayama, “Memetic algorithms for the unconstrained
binary quadratic programming problem,” BioSystems, vol. 78, no. 1, pp.
99–118, 2004.

[15] G. Palubeckis, “Multistart tabu search strategies for the unconstrained
binary quadratic optimization problem,” Annals of Operations Research,
vol. 131, no. 1-4, pp. 259–282, 2004.

[16] ——, “Iterated tabu search for the unconstrained binary quadratic
optimization problem,” Informatica, vol. 17, no. 2, pp. 279–296, 2006.

[17] Z. Lü, F. Glover, and J.-K. Hao, “A hybrid metaheuristic approach to
solving the ubqp problem,” European Journal of Operational Research,
vol. 207, no. 3, pp. 1254–1262, 2010.

563

TABLE V
PEBTS COMPARED AGAINST PITS AND PID2TS ON UBQP INSTANCES WITH SIZE n ∈ {3 000, 4 000, . . . , 7 000}. gavr IS THE AVERAGE GAP TO THE

OPTIMAL OBJECTIVE VALUE, suc IS THE SUCCESS RATE OVER THE 100 RUNS, tavr IS THE AVERAGE RUNTIME AND tmdn IS THE MEDIAN RUNTIME (IN
SECONDS), dens IS THE DENSITY AND f∗ IS THE KNOWN OPTIMAL FUNCTION VALUE FOR THE CORRESPONDING UBQP INSTANCE. THE BEST METRIC

VALUES ARE MARKED BY BOLD FONT. FOR EACH ALGORITHM THE LAST ROW (“AVERAGE”) SUMMARIZES THE ALGORITHM’S AVERAGE PERFORMANCE
OVER ALL THE CONSIDERED INSTANCES.

Instances dens f∗ PITS PID2TS PEBTS
gavr suc tavr tmdn gavr suc tavr tmdn gavr suc tavr tmdn

p3000.1 0.5 3931583 0.0 20 3.07 2.44 0.0 20 3.76 2.24 0.0 20 1.90 1.74
p3000.2 0.8 5193073 0.0 20 2.84 2.43 0.0 20 2.46 1.98 0.0 20 1.97 1.69
p3000.3 0.8 5111533 7.3 19 7.44 3.77 0.0 20 8.16 6.61 0.0 20 5.13 3.73
p3000.4 1.0 5761822 0.0 20 5.47 5.22 0.0 20 3.12 2.94 0.0 20 3.87 4.09
p3000.5 1.0 5675625 0.0 20 20.36 18.29 1.4 19 19.45 14.64 0.0 20 9.37 7.24
p4000.1 0.5 6181830 0.0 20 3.36 3.37 0.0 20 4.17 3.83 0.0 20 2.37 2.26
p4000.2 0.8 7801355 0.0 20 21.57 22.28 0.0 20 16.71 14.63 0.0 20 11.96 10.41
p4000.3 0.8 7741685 0.0 20 13.08 10.55 0.0 20 12.04 9.97 2.7 19 12.21 5.70
p4000.4 1.0 8711822 0.0 20 21.91 20.34 0.0 20 29.73 18.18 0.0 20 12.71 10.90
p4000.5 1.0 8908979 35.2 17 45.80 35.27 0.0 20 33.26 23.99 0.0 20 21.78 17.20
p5000.1 0.5 8559680 408.6 4 305.73 360.00 276.1 6 286.13 360.00 508.4 2 326.76 360.00
p5000.2 0.8 10836019 228.7 13 192.19 182.88 186.2 12 209.20 229.97 291.0 10 192.53 206.69
p5000.3 0.8 10489137 185.8 5 315.20 360.00 73.8 10 249.09 318.00 88.5 15 145.91 91.82
p5000.4 1.0 12252318 558.3 3 338.18 360.00 378.6 7 272.10 360.00 582.5 6 268.59 360.00
p5000.5 1.0 12731803 51.2 14 187.12 153.43 0.0 20 104.44 78.82 51.3 19 78.10 48.04
p6000.1 0.5 11384976 169.8 6 594.23 720.00 126.8 8 572.03 720.00 139.4 7 488.83 720.00
p6000.2 0.8 14333855 200.2 6 623.08 720.00 115.8 8 516.52 720.00 169.1 7 497.18 720.00
p6000.3 1.0 16132915 1428.1 1 713.34 720.00 490.4 9 548.92 720.00 1101.3 11 387.90 231.09
p7000.1 0.5 14478676 750.5 1 688.37 720.00 621.5 3 684.84 720.00 544.0 7 498.60 720.00
p7000.2 0.8 18249948 1078.9 1 689.48 720.00 546.2 1 705.89 720.00 669.4 4 590.89 720.00
p7000.3 1.0 20446407 349.3 4 653.66 720.00 189.8 7 558.25 720.00 44.5 17 272.94 222.89
Average 259.6 12.1 259.31 279.06 143.2 13.8 230.49 274.57 199.6 14.5 182.45 212.64

[18] Y. Wang, Z. Lü, F. Glover, and J.-K. Hao, “Backbone guided tabu search
for solving the ubqp problem,” Journal of Heuristics, vol. 19, no. 4, pp.
679–695, 2013.

[19] ——, “A multilevel algorithm for large unconstrained binary quadratic
optimization,” in International Conference on Integration of Artificial In-
telligence (AI) and Operations Research (OR) Techniques in Constraint
Programming. Springer, 2012, pp. 395–408.

[20] ——, “Path relinking for unconstrained binary quadratic programming,”
European Journal of Operational Research, vol. 223, no. 3, pp. 595–604,
2012.

[21] ——, “Probabilistic grasp-tabu search algorithms for the ubqp problem,”
Computers & Operations Research, vol. 40, no. 12, pp. 3100–3107,
2013.

[22] I. Borgulya, “A parallel evolutionary algorithm for unconstrained binary
quadratic problems,” in the 10th Annual Conference on Genetic and
Evolutionary Computation. New York, NY, USA: ACM, 2008, pp. 603–
604. [Online]. Available: http://doi.acm.org/10.1145/1389095.1389213

[23] F. Glover and J.-K. Hao, “Efficient evaluations for solving large 0-1
unconstrained quadratic optimisation problems,” International Journal
of Metaheuristics, vol. 1, no. 1, pp. 3–10, 2010.

[24] E. Alba, G. Luque, and S. Nesmachnow, “Parallel metaheuristics: recent
advances and new trends,” International Transactions in Operational
Research, vol. 20, no. 1, pp. 1–48, 2013.

[25] T. G. Crainic, “Parallel meta-heuristic search,” Interuniversity Research
Center on Enterprise Networks, Logistics and Transportation, Tech. Rep.
CIRRELT-2015-42, 2015.

[26] D. Sudholt, “Parallel evolutionary algorithms,” in Springer Handbook of
Computational Intelligence. Springer, 2015, pp. 929–959.

[27] I. De Falco, R. Del Balio, E. Tarantino, and R. Vaccaro, “Improving
search by incorporating evolution principles in parallel tabu search,” in
IEEE Conference on Evolutionary Computation, IEEE World Congress
on Computational Intelligence. IEEE, 1994, pp. 823–828.

[28] A. Al-Yamani, S. M. Sait, and H. R. Barada, “HPTS: heterogeneous
parallel tabu search for vlsi placement,” in Congress on Evolutionary
Computation, CEC. IEEE, 2002, pp. 351–355.

[29] A. Bortfeldt, H. Gehring, and D. Mack, “A parallel tabu search algorithm
for solving the container loading problem,” Parallel Computing, vol. 29,
no. 5, pp. 641–662, 2003.

[30] A. Attanasio, J.-F. Cordeau, G. Ghiani, and G. Laporte, “Parallel tabu
search heuristics for the dynamic multi-vehicle dial-a-ride problem,”
Parallel Computing, vol. 30, no. 3, pp. 377–387, 2004.

[31] R. Banos, C. Gil, J. Ortega, and F. G. Montoya, “A parallel multilevel
metaheuristic for graph partitioning,” Journal of Heuristics, vol. 10,
no. 3, pp. 315–336, 2004.

[32] J. Blazewicz, A. Moret-Salvador, and R. Walkowiak, “Parallel tabu
search approaches for two-dimensional cutting,” Parallel processing
letters, vol. 14, no. 01, pp. 23–32, 2004.

[33] A. Le Bouthillier and T. G. Crainic, “A cooperative parallel meta-
heuristic for the vehicle routing problem with time windows,” Computers
& Operations Research, vol. 32, no. 7, pp. 1685–1708, 2005.

[34] E.-G. Talbi and V. Bachelet, “Cosearch: A parallel cooperative meta-
heuristic,” Journal of Mathematical Modelling and Algorithms, vol. 5,
no. 1, pp. 5–22, 2006.

[35] J.-F. Cordeau and M. Maischberger, “A parallel iterated tabu search
heuristic for vehicle routing problems,” Computers & Operations Re-
search, vol. 39, no. 9, pp. 2033–2050, 2012.

[36] J. E. Beasley, “Obtaining test problems via internet,” Journal of Global
Optimization, vol. 8, no. 4, pp. 429–433, 1996.

564

