
HAL Id: hal-01581257
https://hal.science/hal-01581257v1

Submitted on 4 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Parallel Strategies to Speed Up Pareto Local
Search

Jialong Shi, Qingfu Zhang, Bilel Derbel, Arnaud Liefooghe, Sébastien Verel

To cite this version:
Jialong Shi, Qingfu Zhang, Bilel Derbel, Arnaud Liefooghe, Sébastien Verel. Using Parallel Strategies
to Speed Up Pareto Local Search. 11th International Conference on Simulated Evolution and Learning
(SEAL 2017), Nov 2017, Shenzhen, China. �hal-01581257�

https://hal.science/hal-01581257v1
https://hal.archives-ouvertes.fr


Using Parallel Strategies to
Speed Up Pareto Local Search

Jialong Shi1, Qingfu Zhang1, Bilel Derbel2, Arnaud Liefooghe2, and
Sébastien Verel3

1 Department of Computer Science, City University of Hong Kong
Kowloon, Hong Kong

jlshi2-c@my.cityu.edu.hk qingfu.zhang@cityu.edu.hk
2 Univ. Lille, CNRS, Centrale Lille, UMR 9189 – CRIStAL, F-59000 Lille, France

Dolphin, Inria Lille – Nord Europe, F-59000 Lille, France
{bilel.derbel,arnaud.liefooghe}@univ-lille1.fr

3 Univ. Littoral Côte d’Opale, LISIC, 62100 Calais, France
verel@lisic.univ-littoral.fr

Abstract. Pareto Local Search (PLS) is a basic building block in many
state-of-the-art multiobjective combinatorial optimization algorithms.
However, the basic PLS requires a long time to find high-quality
solutions. In this paper, we propose and investigate several parallel
strategies to speed up PLS. These strategies are based on a parallel
multi-search framework. In our experiments, we investigate the per-
formances of different parallel variants of PLS on the multiobjective
unconstrained binary quadratic programming problem. Each PLS variant
is a combination of the proposed parallel strategies. The experimental
results show that the proposed approaches can significantly speed up
PLS while maintaining about the same solution quality. In addition, we
introduce a new way to visualize the search process of PLS on two-
objective problems, which is helpful to understand the behaviors of PLS
algorithms.

Keywords: multiobjective combinatorial optimization, Pareto local
search, parallel metaheuristics, unconstrained binary quadratic program-
ming.

1 Introduction

Pareto Local Search (PLS) [14] is an important building block in many state-
of-the-art multiobjective combinatorial optimization algorithms. PLS naturally
stops after reaching a Pareto local optimum set [15]. However, it is well known
that the convergence speed of the basic PLS is low. Several strategies have been
proposed [3, 4, 6, 8] in order to overcome this issue. However, those strategies are
inherently sequential, i.e. only a single computing unit is considered. With the
increasing popularity of multi-core computers, parallel algorithms have attracted
a lot of research interest in the optimization community since they constitute
both a highly valuable alternative when tackling computing tasks, and an
opportunity to design highly effective solving methodologies. In this paper, we
propose and investigate a flexible parallel algorithm framework offering several



2 J. Shi, Q. Zhang, B. Derbel, A. Liefooghe and S. Verel

alternative speed-up PLS strategies. In our framework, multiple PLS processes
are executed in parallel and their results are combined at the end of the search
process to provide a Pareto set approximation. More specifically, we focus on
four components of the PLS procedure. For each component, we define two
alternative strategies, one alternative corresponds to the basic PLS procedure
while the other alternative is a proposed speed-up strategy. Consequently, we
end-up with 12 parallel PLS variants, each one being a unique combination of the
considered strategies with respect to the PLS components. The performances of
the so-obtained parallel variants are studied on the multiobjective Unconstrained
Binary Quadratic Programming (mUBQP) problem with two objectives. Our
experimental results show that the proposed parallel strategies significantly
speed up the convergence of PLS while maintaining approximately the same
approximation quality. Additionally, we introduce a kind of diagram to visualize
the PLS process on two-objective problems that we term as “trajectory tree”. By
referring to the shape of the trajectory tree, we are able to visualize the behavior
of PLS, hence providing both a friendly and insightful tool to understand what
makes a PLS variant efficient.

The paper is organized as follows. In Section 2, we introduce the related
concepts of multiobjective combinatorial optimization and the basic PLS
procedure. In Section 3, we present the mUBQP and the details about the
proposed parallel strategies. In Section 4, we provide a sound experimental
analysis of the proposed approaches. In Section 5, we conclude the paper.

2 Pareto Local Search

A multiobjective optimization problem (MOP) is defined as follows:

maximize F (x) = (f1(x), . . . , fm(x))
subject to x ∈ Ω

(1)

where Ω is set of feasible solutions in the decision space. When Ω is a discrete set,
we face a Multiobjective Combinatorial Optimization Problem (MCOP). Many
MCOPs are challenging because of their NP-hardness and their intractability [5].
This is the case of the mUBQP problem considered in the paper [9].

Definition 1 (Pareto dominance). An objective vector u = (u1, . . . , um) is
said to dominate an objective vector v = (v1, . . . , vm), if and only if uk > vk
∀k ∈ {1, . . . ,m} ∧ ∃k ∈ {1, . . . ,m} such that uk > vk. We denote it as
u ≻ v.

Definition 2 (Pareto optimal solution). A feasible solution x⋆ ∈ Ω is called
a Pareto optimal solution, if and only if @y ∈ Ω such that F (y) ≻ F (x⋆).

Definition 3 (Pareto set). The set of all Pareto optimal solutions is called
the Pareto Set (PS), denoted as PS = {x ∈ Ω | @y ∈ Ω,F (y) ≻ F (x)}.

Due to the conflicting nature between the different objectives, the PS, which
represents the best trade-off solutions, constitutes a highly valuable information



Using Parallel Strategies to Speed Up Pareto Local Search 3

Algorithm 1 Pareto Local Search (standard sequential version)
input: An initial set of non-dominated solutions A0

∀x ∈ A0, set explored(x)← FALSE
A← A0

while A0 ̸= ∅ do
x← a randomly selected solution from A0 // selection step
for each x′ in the neighborhood of x do // neighborhood exploration

if x′ ⊀ A then // acceptance criterion
explored(x′)← FALSE
A← Update(A, x′)

end if
end for
explored(x)← TRUE
A0 ← {x ∈ A | explored(x) = FALSE}

end while
return A

to the decision maker. In order to compute (or approximate) the PS, a number
of metaheuristics have be proposed in the past [3, 6, 7, 13], and many of them
actually use PLS as a core building block.

PLS can be seen as a natural extension of single-objective local search meth-
ods. Starting from an initial set of non-dominated solutions, PLS approaches the
PS by exploring the neighborhood of solutions in its archive. The basic version
of PLS iteratively inserts new non-dominated solutions contained within the
archive, and removes dominated solutions from this archive. Algorithm 1 shows
the pseudocode of the basic PLS. In practice, the basic PLS procedure shown
in Algorithm 1 requires a long time to converge to a good approximation of the
PS. Several speed-up strategies have been proposed in recent years [3, 4, 6, 8],
but they are in the scope of sequential algorithms. In this paper, we discuss the
possible speed-up strategies of PLS in a parallel algorithm framework.

3 Parallel Speed-up Strategies

Before discussing the speed-up strategies of PLS in a parallel multi-search
framework, let us first introduce the mUBQP problem considered as a benchmark
and visualize how PLS is actually operating in the objective space.

3.1 The mUBQP Problem

The multiobjective Unconstrained Binary Quadratic Programming (mUBQP)
problem can be formalized as follows.

maximize fk(x) = x′Qkx =
n∑

i=1

n∑
j=1

qkijxixj , k = 1, . . . ,m

subject to x ∈ {0, 1}n

where F = (f1, . . . , fm) is an objective function vector with m > 2, Qk = [qkij ]
is a n × n matrix for the kth objective, and x is a vector of n binary (0-1)
variables. In this paper, the neighborhood structure is taken as the 1-bit-flip,



4 J. Shi, Q. Zhang, B. Derbel, A. Liefooghe and S. Verel

x0

x1
x2

x3

x4 x5

x6

f2

f1

(a) A sketch

0 0.5 1 1.5 2 2.5
f1 ×104

0.5

1

1.5

2

2.5

f2

×104

(b) A real case of the basic PLS

Fig. 1. Using trajectory tree to visualize PLS process.

which is directly related to a Hamming distance 1. In this paper, we only consider
mUBQP instances from [9] with m = 2 objectives. Notice that PLS has been
shown to provide a high-quality Pareto set approximation for those instances,
and is actually a core building block of the state-of-the-art [10].

3.2 Trajectory Tree

In order to better understand the behaviors of PLS in the objective space, we
here introduce a diagram called “trajectory tree”. Let’s consider a step of PLS
where a solution x from the archive is selected to be explored. Then each time a
neighboring solution x′ is accepted to be inserted into the archive, the diagram
maps x with x′ in the objective space by drawing an edge connecting them.
In the trajectory tree example of Fig. 1(a), we can read that from an initial
solution x0, three neighboring solutions {x1, x2, x3} were actually included into
the archive. Then, at the next step, x2 is selected to be explored and three of
its neighbors {x4, x5, x6} are included to the archive. Note that the trajectory
tree records the entire history of PLS, hence the solutions that are removed from
the archive based on Pareto dominance will actually not be removed from the
trajectory tree (e.g. x0, x1, x2 and x3 in Fig. 1(a)). A real case of the PLS
trajectory is given in Fig. 1(b), where a standard PLS process starts from a
randomly-generated solution and stops naturally into a Pareto local optimum
set. In Fig. 1(b) the two-objective mUBQP instance has n = 100 variables with
a correlation coefficient between both objectives of ρ = 0.

3.3 Designed Methodology and Rationale

In this paper we aim at speeding up the standard PLS by running L parallel
PLS processes. The core design principle behind of our framework is inspired by
the concept of decomposition in the objective space. In fact, let us consider L
weight vectors {λℓ | ℓ = 1, . . . , L}, where λℓ = (λℓ

1, . . . , λ
ℓ
m) is defined such that∑m

k=1 λ
ℓ
k = 1 and λℓ

k > 0 for all k ∈ {1, . . . ,m}. The standard (sequential) PLS
workflow is then carefully modified in order to map the parallel PLS processes



Using Parallel Strategies to Speed Up Pareto Local Search 5

Fig. 2. Parallel speed-up framework: replacing one “▽”-tree by multiple “T”-trees.

to the weight vectors. More concretely, we manage to independently guide the
ℓth PLS process on the basis of the ℓth weight vector λℓ, hence our framework
maintains ℓ archives that are updated independently in parallel. After all PLS
processes terminate, we merge their respective archives (maintained locally and
in parallel) and remove dominated solutions in order to obtain a Pareto set
approximation. In addition, we remark from Fig. 1(b) that there can be many
branches in the middle phase of the PLS trajectory tree, which makes the tree be
in a shape of a triangle “▽”. However, having too many branches in the middle
phase might be unnecessary and could actually be a waste of computing effort.
We hence argue that reducing the number of branches in the middle phase of PLS
is a key ingredient to speed-up the search. Roughly speaking, in our framework,
we try to convert the “▽”-shape trajectory tree to multiple parallel “T”-shape
trajectory trees as illustrated in Fig. 2. For this purpose, we propose to review
the main PLS components accordingly, which is described in details in the next
section.

3.4 Alternative Algorithm Components

As depicted in Algorithm 1, sequential PLS has three main problem-independent
components: the selection step, the acceptance criterion and the neighborhood
exploration. In [4, 8], the design of these components was shown to be crucially
important for the anytime performance of sequential PLS. In this paper,
we similarly discuss possible alternatives for these components, however our
proposed alternatives are designed specifically with respect to the target parallel
multi-search framework. For this reason, we also involve an additional component
in our discussion: the boundary setting.

Alternatives for selection step. In this step, PLS selects a solution from the
current archive to explore its neighborhood. The basic strategy is to randomly
select a solution from the archive, which we denote as ⟨RND⟩. Since each PLS
process now has a weight vector λℓ, the other alternative that we consider
is to select the solution that has the highest weighted-sum function value,
i.e., fws(x) =

∑m
k=1 λ

ℓ
kfk(x), which we denote as ⟨HWF⟩.

Alternatives for acceptance criterion. The basic version of PLS accepts
any non-dominated solution to be included into the archive, and we denote this
strategy as ⟨⊀⟩. We propose the following alternative strategy denoted ⟨w> ⊀⟩:



6 J. Shi, Q. Zhang, B. Derbel, A. Liefooghe and S. Verel

if a neighboring solution that has an even higher fws-value than the highest fws-
value from the archive is found, only such neighboring solutions are accepted, and
if no such neighboring solution can be found, the acceptance criterion switches
to accepting solutions that are non-dominated.

Alternatives for neighborhood exploration. In the basic version of PLS,
all neighboring solutions are evaluated. This can be seen as an extension of the
best-improving rule in single-objective local search, hence we denote this strategy
as ⟨⋆⟩ [8]. The alternative could correspond to the first-improving rule in single-
objective local search: if a neighboring solution that satisfies the acceptance
criterion is found, the neighborhood exploration stops immediately and the
current solution is marked as explored. In addition, after all solutions from
the archive have been marked as explored using the first-improving rule, all
solutions will be marked as unexplored and be explored again using the best-
improving rule. We denote this alternative strategy as ⟨1⋆⟩. Note here that, if the
⟨w> ⊀⟩ acceptance criterion is used, the ⟨1⋆⟩ strategy changes to: if a neighboring
solution is accepted because it has an even higher fws-value than the archive’s
highest fws-value, the neighborhood exploration stops immediately, otherwise
the neighborhood exploration continues, and after all solutions in the archive
have been marked as explored using the first-improving rule, all solutions will
be marked as unexplored and be explored again using the best-improving rule.

Alternatives for boundary setting.We notice that the parallel PLS processes
are expected to approach the Pareto front from different directions in the objec-
tive space when different weight vectors are used in the selection/acceptance step.
We additionally manage to set boundaries between different PLS processes to
avoid wasting computing resource. We denote the original unbounded alternative
as ⟨UB⟩, and the bounded alternative as ⟨B⟩. More precisely, in the bounded
alternative ⟨B⟩, the boundaries are defined as the middle lines between adjacent
weight vectors, as shown in Fig. 3. At the early stage of PLS, the space between
the boundaries are relatively narrow, hence it is very likely that all solutions
in the archive are outside the boundary. To prevent premature termination, we
define the alternative ⟨B⟩ as: the neighboring solutions outside the boundary will
not be accepted, except when the archive is empty or all solutions in the archive
are outside the boundary.

By combining the aforementioned alternatives, we can design different
parallel PLS variants. For instance, a basic parallel PLS, which executes multiple
basic PLS processes in parallel, is obtained by the combination ⟨RND,⊀, ⋆,UB⟩.

3.5 Related Works and Positioning

Liefooghe et al. [8] decompose the PLS procedure into several problem-
independent components and investigate the performance of the PLS variants
obtained using different alternative strategies. A similar methodology can be
found in the work of Dubois-Lacoste et al. [4], which intends to improve the
anytime performance of PLS. Our proposal differs from those works in the sense
that we aim to speed up PLS in a parallel multi-search framework. We decompose



Using Parallel Strategies to Speed Up Pareto Local Search 7

λ1

λ2

λ3

Boundary(λ1, λ2)

Boundary(λ2, λ3)

Boundary(λ1, λ3)

Fig. 3. Defining boundaries for 3 weight vectors.

the original problem by assigning different weight vectors to the parallel PLS
processes, and previous works do not consider such an alternative in the setting
of PLS components.

The concept of decomposition in our parallel framework is inspired by the
widely-used MOEA/D framework [16], in which the original multiobjective
problem is decomposed into a number of scalarized single-objective sub-problems
and the algorithm tries to solve them in a cooperative manner. Derbel et al. [2]
investigate the hybridization of single-objective local search move strategies
within the MOEA/D framework. Besides, the multiobjective memetic algorithm
based on decomposition (MOMAD) proposed by Ke et al. [7] is one of
the state-of-the-art algorithms for MCOPs. At each iteration of MOMAD, a
PLS procedure and multiple scalarized single-objective local search procedures
are conducted. Liu et al. [11] propose the MOEA/D-M2M algorithm, which
decomposes the original problem into a number of sub-problems by setting
weight vectors in the objective space. In MOEA/D-M2M, each sub-problem
corresponds to a sub-population and all sub-populations evolve in a collaborative
way. MOEA/D-M2M is similar to the NSGA-II variant proposed by Branke et
al. [1], in which the problem decomposition is based on cone separation.

Other works intend to enhance PLS by using a higher-level control frame-
work. Lust and Teghem [13] propose the Two-Phase Pareto Local Search
(2PPLS) algorithm which starts PLS from the high-quality solutions generated
by heuristic methods. Lust and Jaszkiewicz [12] speed up 2PPLS on the
multiobjective traveling salesman problem by using TSP-specific heuristic rules.
Geiger [6] presents the Pareto Iterated Local Search (PILS) in which a variable
neighborhood search framework is applied to PLS. Drugan and Thierens [3]
discuss different neighborhood exploration strategies and restart strategies for
PLS. At last, for the mUBQP problem, Liefooghe et al. [9, 10] conduct an
experimental analysis on the characteristics of small-size instances and the
performances of some metaheuristics, including PLS, on larger instances.



8 J. Shi, Q. Zhang, B. Derbel, A. Liefooghe and S. Verel

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

f1

f2

 

 

PLS1
PLS2
PLS3

(a) ⟨RND,⊀, ⋆,UB⟩

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

f1

f2

 

 

PLS1
PLS2
PLS3

(b) ⟨HWF,⊀, ⋆,UB⟩

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

f1

f2

 

 

PLS1
PLS2
PLS3

(c) ⟨HWF, w> ⊀, ⋆,UB⟩

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

f1

f2

 

 

PLS1
PLS2
PLS3

(d) ⟨HWF, w> ⊀, 1⋆,UB⟩

0 0.5 1 1.5 2

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

f1

f2

 

 

PLS1
PLS2
PLS3

(e) ⟨HWF, w> ⊀, 1⋆,B⟩

Fig. 4. Trajectory trees of different parallel PLS variants.

4 Experimental Analysis

4.1 Pilot Experiment

To visualize the change of trajectory tree when different alternatives are used,
we execute five parallel PLS variants on a {m = 2, n = 100, ρ = 0} mUBQP
instance. In each execution, L = 3 PLS processes start from the same initial
solution, which is randomly generated. Fig. 4 shows the trajectory trees of
those five parallel PLS variants in sequence: ⟨RND,⊀, ⋆,UB⟩, ⟨HWF,⊀, ⋆,UB⟩,
⟨HWF, w> ⊀, ⋆,UB⟩, ⟨HWF, w> ⊀, 1⋆,UB⟩ and ⟨HWF, w> ⊀, 1⋆,B⟩. In this
sequence, we alter one component of the algorithm at a time.

Fig. 4(a) shows the trajectory trees of the basic parallel PLS ⟨RND,⊀, ⋆,UB⟩,
which simply runs multiple basic PLS processes in parallel. Fig. 4(b) shows
the trajectory trees of ⟨HWF,⊀, ⋆,UB⟩. By comparing Fig. 4(a) and Fig. 4(b),
we can see that after changing the selection step from ⟨RND⟩ (i.e. random)
to ⟨HWF⟩ (i.e. based on the weighted-sum function), different PLS processes
are navigated to different direction in the objective space. Then, as shown in
Fig. 4(c), after changing the acceptance criterion from ⟨⊀⟩ (non-dominance) to
⟨w> ⊀⟩ (higher weighted-sum function value and non-domination), the number of



Using Parallel Strategies to Speed Up Pareto Local Search 9

Boundary 

setting

Selection 

step

Neighborhood 

exploration

Acceptance 

criterion

〈RND〉 〈HWF〉

〈*〉

〈B〉

〈*〉〈1*〉

Parallel PLS 

variant
(1) (2) (4) (5) (6) (7) (8) (9) (10) (11) (12)(3)

〈*〉 〈*〉〈1*〉〈*〉 〈*〉〈1*〉〈*〉 〈*〉〈1*〉

〈RND〉 〈HWF〉

〈UB〉

Fig. 5. The 12 investigated parallel PLS variants.

branches in each trajectory tree decreases. From Fig. 4(d) we can see that, after
changing the neighborhood exploration strategy from ⟨⋆⟩ (best-improvement)
to ⟨1⋆⟩ (first-improvement and best-improvement), the branch number in each
trajectory tree is further reduced. Actually, in Fig. 4(d) the search trajectory of
each PLS process is a single-line trajectory in the middle phase of the search. In
the last variant, we set boundaries between different PLS processes, and we can
see from Fig. 4(e) that the overlaps between different PLS processes are reduced.
Notice that Fig. 4(e) perfectly presents the parallel multi-search framework we
aim to achieve, as previously sketched in Fig. 2.

4.2 Performance Comparison

In this section, we investigate 12 different Parallel PLS (PPLS) variants. The
different variants’ strategies are summarized in Fig. 5. Among the variants,
PPLS-1 is the basic variant ⟨RND,⊀, ⋆,UB⟩ as illustrated in Fig. 4(a) and
PPLS-12 is the ultimate variant ⟨HWF, w> ⊀, 1⋆,B⟩ as illustrated in Fig. 4(e).
We consider 9 standard mUBQP instances by setting m = 2, density = 0.8,
n = {200, 300, 500} and ρ = {0.0, 0.5,−0.5}. On each instance, 20 runs of each
PPLS variant are performed. In each run, L = 6 parallel processes start from
the same randomly-generated solution and terminate naturally. The algorithms
are implemented in GNU C++ with the -O2 compilation option. The computing
platform is two 6-core 2.00GHz Intel Xeon E5-2620 CPUs (24 Logical Processors)
under CentOS 6.4. Table 1 shows the obtained results. We use the hypervolume
metric [17] to measure the quality of the Pareto set approximations obtained by
each variant, and we also record the runtime of each variant. Note here that the
runtime of PPLS equals to the runtime of its slowest PLS process. In Table 1
the best metric values are marked by bold font.

From Table 1, we can see that the difference of hypervolume-values between
different variants is relative small, which means that all variants get approx-
imately the same solution quality. In general the variants without boundaries
(i.e. PPLS-1,· · ·, PPLS-6) achieve slightly higher hypervolume values than the
variants with boundaries (i.e. PPLS-7,· · ·,PPLS-12). It is because, when there
is no boundary, the overlaps between the PLS processes increase the chance to



10 J. Shi, Q. Zhang, B. Derbel, A. Liefooghe and S. Verel

Table 1. Experimental results of the 12 PPLS variants.

PPLS-1 PPLS-2 PPLS-3 PPLS-4 PPLS-5 PPLS-6 PPLS-7 PPLS-8 PPLS-9 PPLS-10 PPLS-11 PPLS-12

n ρ Average hypervolume (×109)

-0.5 7.948 7.948 7.949 7.949 7.949 7.948 7.938 7.939 7.942 7.942 7.943 7.943
200 0.0 4.008 4.008 4.008 4.009 4.009 4.008 4.000 4.006 4.006 4.005 4.005 4.000

0.5 1.296 1.295 1.299 1.300 1.300 1.300 1.294 1.295 1.297 1.297 1.295 1.296

-0.5 28.55 28.56 28.57 28.57 28.57 28.58 28.52 28.52 28.56 28.56 28.56 28.52
300 0.0 14.44 14.45 14.46 14.45 14.45 14.45 14.40 14.39 14.42 14.42 14.42 14.42

0.5 3.753 3.752 3.755 3.750 3.750 3.751 3.739 3.738 3.741 3.736 3.734 3.738

-0.5 124.47 124.46 124.50 124.50 124.49 124.48 124.24 124.23 124.35 124.4 124.41 124.39
500 0.0 62.74 62.74 62.79 62.78 62.77 62.77 62.43 62.44 62.48 62.54 62.51 62.49

0.5 15.38 15.38 15.40 15.41 15.40 15.40 15.32 15.33 15.37 15.32 15.31 15.31

n ρ Average runtime (s)

-0.5 1310.41 1371.06 1194.99 547.25 546.30 516.81 219.53 356.07 48.00 22.91 21.10 19.56
200 0.0 9.91 10.98 10.87 7.21 7.04 7.27 2.50 2.98 0.43 0.22 0.20 0.20

0.5 73.52 86.51 85.54 38.59 38.17 39.23 20.31 26.08 3.18 1.69 1.75 1.59

-0.5 122.89 130.12 109.57 52.95 53.79 49.30 88.46 97.65 77.81 36.84 39.57 35.39
300 0.0 1.29 1.20 1.18 0.61 0.54 0.59 1.00 0.96 0.80 0.45 0.46 0.42

0.5 10.77 10.81 10.50 4.84 4.71 4.32 6.55 7.00 5.41 2.97 2.99 2.81

-0.5 3193.27 3350.61 2592.14 2013.39 1935.30 1574.11 363.24 554.65 210.56 147.73 171.51 151.51
500 0.0 43.89 49.51 44.88 22.53 23.01 23.13 4.07 5.65 3.36 2.32 2.36 2.21

0.5 287.82 326.62 275.87 125.07 122.76 118.43 30.49 62.49 12.50 7.93 7.62 7.59

find better solutions. On the contrary, the runtime difference between different
variants is relatively large. We can see that the variants with boundaries are
significantly faster than the variants without boundaries. It is because, within
the bounded strategy, each PLS process only needs to search in a limited
region of the objective space. Among all variants, PPLS-3 and PPLS-4, i.e.
⟨RND, w> ⊀, 1⋆,UB⟩ and ⟨HWF,⊀, ⋆,UB⟩, get the highest hypervolume in
most cases. Compared to the basic variant PPLS-1, PPLS-3 does not show an
obvious speedup, while PPLS-4 does. Indeed, on most instances PPLS-4 reaches
a higher hypervolume with a much smaller runtime than PPLS-1. Among all
variants, PPLS-12, i.e. ⟨HWF, w> ⊀, 1⋆,B⟩, is the one with the overall smallest
runtime. At last, Fig. 6 reports the boxplots of hypervolume and runtime of the
PPLS variants on the three instances with n = 500 variables. We can see that
the proposed parallel strategies can speed up the basic PLS with a relatively
small loss in terms of approximation quality. In particular, while the obtained
hypervolume decreases slightly when using the bounded strategy (for ρ < 0, i.e.
conflicting objectives), the gap with the unbounded strategy in terms of runtime
is consistently much more impressive.

5 Conclusions

In this paper, several speed-up strategies for PLS have been investigated.
Compared to the existing works, our strategies are proposed in a parallel
multi-search framework. In addition, we propose a diagram called trajectory
tree to visualize the search process of PLS. In our experiments, we test the
performance of 12 different parallel PLS variants on nine mUBQP instances
with two objectives. Each variant is a unique combination of the proposed
parallel strategies. The experimental results show that, compared against the
basic parallel PLS variant, some variants can get a better solution quality with
a shorter runtime, and some variants can significantly speed up PLS while
maintaining approximately the same solution quality. In the future, we plan



Using Parallel Strategies to Speed Up Pareto Local Search 11

1 2 3 4 5 6 7 8 9 10 11 12
PPLS variant

1.24

1.241

1.242

1.243

1.244

1.245
H

yp
er

vo
lu

m
e

×1011

1 2 3 4 5 6 7 8 9 10 11 12
PPLS variant

0

1000

2000

3000

4000

5000

R
un

tim
e 

(s
)

(a) n : 500, ρ : −0.5

1 2 3 4 5 6 7 8 9 10 11 12
PPLS variant

6.18

6.2

6.22

6.24

6.26

6.28

H
yp

er
vo

lu
m

e

×1010

1 2 3 4 5 6 7 8 9 10 11 12
PPLS variant

0

20

40

60

R
un

tim
e 

(s
)

(b) n : 500, ρ : 0

1 2 3 4 5 6 7 8 9 10 11 12
PPLS variant

1.5

1.51

1.52

1.53

1.54

H
yp

er
vo

lu
m

e

×1010

1 2 3 4 5 6 7 8 9 10 11 12
PPLS variant

0

100

200

300

400

R
un

tim
e 

(s
)

(c) n : 500, ρ : 0.5

Fig. 6. Experimental results on three mUBQP instances with n = 500.

to investigate the performance of the proposed approaches on multiobjective
combinatorial problems with different characteristics and to investigate the
scalability of the parallel PLS variants.

Acknowledgments. The work has been supported jointly by the Research Grants

Council of the Hong Kong Special Administrative Region, China (RGC Project No. A-

CityU101/16) and the French national research agency (ANR-16-CE23-0013-01) within

the ‘bigMO’ project.



12 J. Shi, Q. Zhang, B. Derbel, A. Liefooghe and S. Verel

References

1. Branke, J., Schmeck, H., Deb, K., et al.: Parallelizing multi-objective evolutionary
algorithms: Cone separation. In: Evolutionary Computation, 2004. CEC2004.
Congress on. vol. 2, pp. 1952–1957. IEEE (2004)

2. Derbel, B., Liefooghe, A., Zhang, Q., Aguirre, H., Tanaka, K.: Multi-objective local
search based on decomposition. In: International Conference on Parallel Problem
Solving from Nature. pp. 431–441. Springer (2016)

3. Drugan, M.M., Thierens, D.: Stochastic Pareto local search: Pareto neighbourhood
exploration and perturbation strategies. Journal of Heuristics 18(5), 727–766 (2012)

4. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Anytime pareto local search.
European journal of operational research 243(2), 369–385 (2015)

5. Ehrgott, M.: Multicriteria optimization. Springer Science & Business Media (2006)
6. Geiger, M.J.: Decision support for multi-objective flow shop scheduling by the

Pareto iterated local search methodology. Computers & industrial engineering 61(3),
805–812 (2011)

7. Ke, L., Zhang, Q., Battiti, R.: Hybridization of decomposition and local search for
multiobjective optimization. IEEE transactions on cybernetics 44(10), 1808–1820
(2014)

8. Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.G.: On dominance-
based multiobjective local search: design, implementation and experimental analysis
on scheduling and traveling salesman problems. Journal of Heuristics 18(2), 317–352
(2012)

9. Liefooghe, A., Verel, S., Hao, J.K.: A hybrid metaheuristic for multiobjective
unconstrained binary quadratic programming. Applied Soft Computing 16, 10–19
(2014)

10. Liefooghe, A., Verel, S., Paquete, L., Hao, J.K.: Experiments on local search
for bi-objective unconstrained binary quadratic programming. In: EMO-2015 8th
International Conference on Evolutionary Multi-Criterion Optimization. vol. 9018,
pp. 171–186 (2015)

11. Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization
problem into a number of simple multiobjective subproblems. IEEE Transactions
on Evolutionary Computation 18(3), 450–455 (2014)

12. Lust, T., Jaszkiewicz, A.: Speed-up techniques for solving large-scale biobjective
TSP. Computers & Operations Research 37(3), 521–533 (2010)

13. Lust, T., Teghem, J.: Two-phase Pareto local search for the biobjective traveling
salesman problem. Journal of Heuristics 16(3), 475–510 (2010)

14. Paquete, L., Chiarandini, M., Stützle, T.: Pareto local optimum sets in the
biobjective traveling salesman problem: An experimental study. In: Metaheuristics
for Multiobjective Optimisation, pp. 177–199. Springer (2004)

15. Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective
combinatorial optimization problems. Annals of Operations Research 156(1), 83–
97 (2007)

16. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on
decomposition. Evolutionary Computation, IEEE Transactions on 11(6), 712–731
(2007)

17. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.:
Performance assessment of multiobjective optimizers: An analysis and review. IEEE
Transactions on evolutionary computation 7(2), 117–132 (2003)


