
HAL Id: hal-01581111
https://hal.science/hal-01581111v1

Submitted on 21 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic run-time versioning for BPEL processes
Paulo Melo, Paulo Rupino da Cunha, Catarina Ferreira da Silva, André

Macedo

To cite this version:
Paulo Melo, Paulo Rupino da Cunha, Catarina Ferreira da Silva, André Macedo. Automatic run-
time versioning for BPEL processes. Service Oriented Computing and Applications, 2017, 11 (3),
pp.315-327. �10.1007/s11761-017-0211-3�. �hal-01581111�

https://hal.science/hal-01581111v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Automatic Run-time Versioning for BPEL Processes

Paulo Melo · Paulo Rupino da Cunha · Catarina Ferreira da Silva ·
André Macedo

the date of receipt and acceptance should be inserted later

Abstract We describe a middleware solution for auto-
matic run-time process versioning in Business Process
Execution Language (BPEL) and then analyse its im-
pact in terms of scalability and performance. Business
processes change in response to business needs, but the
deployment of new versions to a BPEL engine must en-
sure that running instances are not disrupted and can
conclude following their original workflows. Our solu-
tion is implemented as a standalone component that
manages versioning transparently to the process editor,
the orchestration engine, the web services used by the
process, and the end-user. We have tested it for almost
one year in the production environment of a telecom-
munications company, without significant overhead in
terms of process invocation time.

Keywords Business Process Versioning, Business
Process Execution Language (BPEL), BPEL ver-
sioning, Service-Oriented Architecture (SOA), Web
Services, Middleware

1 Introduction

An increasing number of enterprises have been embrac-
ing service-oriented architectures (SOA) and implement-

P. Melo
INESC Coimbra - Instituto de Engenharia de Sistemas e Com-
putadores de Coimbra, R. Sílvio Lima, Pólo II, 3030-290 -
Coimbra Portugal and Center for Business and Economics
Research (CeBER), University of Coimbra, Portugal, E-mail:
pmelo@fe.uc.pt

P. Cunha · A. Macedo
CISUC, Department of Informatics Engineering, University of
Coimbra, Portugal

C. Ferreira da Silva
Université Lyon 1, LIRIS, CNRS, UMR5205, F-69621, France

ing their business processes as orchestrations of web
services using BPEL (Business Process Execution Lan-
guage).

One of the main advantages of this approach is agility.
In theory, any changes to the workflows, dictated by
new business needs, can easily be made by process own-
ers and then quickly deployed to the execution engine
to immediately change system behaviour. However, this
is only true in cases where no instances of the mod-
ified business process are still running in the engine.
Otherwise, the deployment of the new version would
leave the running instances in inconsistent states, hav-
ing partially run the old workflow and seeing it sud-
denly replaced by a new one. Aborting the running in-
stances before deploying the new version is not a solu-
tion, since that would lead to the cancelation of ongoing
business process (e.g. consider the installation and ac-
tivation of a triple-play service at the customer home,
with only some of the required steps completed at a
given moment). Waiting for existing instances to con-
clude is often also unfeasible. Several business processes
are long-running, meaning that they can take weeks,
months, or even years to complete [6, page 23]. Be-
sides, new ones are constantly being started – stopping
that would mean stopping the business. Finally, run-
ning instances must be allowed to conclude following
their original business logic, to ensure that contractual
or regulatory issues that applied when the process was
started are not violated.

The above constraints mean that an effective SOA
implementation needs mechanisms to enable multiple
versions of the same process to coexist and run in the
engine simultaneously, ensuring that each one follows
its original workflow.

Complex as the problem is, several additional chal-
lenges emerge when considering the thousands of person-

This is the authors' version before publication. Final version is available at SOCA Journal, September 2017, Volume 11,
Issue 3, pp 315–327, https://link.springer.com/article/10.1007%2Fs11761-017-0211-3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

http://www.editorialmanager.com/soca/download.aspx?id=28252&guid=362a55ee-3d59-48d5-ac34-38f06e5f8af0&scheme=1
http://www.editorialmanager.com/soca/download.aspx?id=28252&guid=362a55ee-3d59-48d5-ac34-38f06e5f8af0&scheme=1
http://www.editorialmanager.com/soca/viewRCResults.aspx?pdf=1&docID=785&rev=1&fileID=28252&msid={BB27536E-42C4-4BCB-A98E-D28F11BC2D2B}

2 Paulo Melo et al.

months invested in existing enterprise systems and the
stringent controls exerted in production environments.
These preclude solutions that require extensive rewrit-
ing of code, involve risky changes, degrade performance,
or lock-in the enterprise to products that may be dis-
continued or become inadequate for the workload.

So far, the process versioning problem has been solved
by ignoring the latter concern. Several BPEL engines,
such as IBM WebSphere Process Server [19] and Oracle
BPEL Process Manager [22] (now part of Oracle SOA
Suite [23]), implement the required workflow version-
ing, but in a closed, proprietary manner, not portable
across different engines, should the need to replace them
arises.

To overcome this situation, Juric et al. have pro-
posed BPEL extensions for versioning, to be used at
development, deployment, and run-time [14]. Naturally,
this solution requires an engine that supports those ex-
tensions and that all existing BPEL processes will be
modified to use the suggested syntax. Additional re-
lated works are presented in Section 2.

The novelty in our solution is that we propose to
handle versioning using only run-time mechanisms, im-
plemented in a middleware component. To match the
challenges of the scenario described above, we defined
the following design principles:
– High transparency, meaning that the process owner,

BPEL editor, BPEL engine, and invoked web ser-
vices don’t need to be aware of our component. The
process owner, in particular, can continue to man-
age his/her own design-time versions of the process
source files, without being concerned with the addi-
tional automatic versioning that will take place at
run-time to account for running instances in new
deployments;

– Low invasiveness, avoiding the need to introduce
changes to the code of dozens or hundreds of exist-
ing of web services and BPEL processes, thus also
reducing the risk of introducing new problems in
production environments;

– Low overhead, ensuring that the versioning mecha-
nisms do not cause excessive performance penalties;

– High independence, avoiding lock-in to specific BPEL
engines or non-standard BPEL syntax extensions;

– High extensibility, enabling the expansion of the
middleware component to new uses, such as load
balancing, testing and diagnostics, fault injection,
or other operations than can benefit from interme-
diating the exchanges between the BPEL engine and
the web services.
In Section 2, we discuss previous work on versioning

in SOA environments, after which, in Section 3, we de-
scribe the architecture and algorithms for our solution.

Section 4 is dedicated to the performance analysis of the
proposed solution, based on measurements of almost
one year of operation in the production environment of
a telecommunications company. Finally, in Section 5,
we present conclusions, limitations and future work.

2 Versioning Services and Versioning
Long-Running BPEL Processes

Inappropriate support for versioning in SOA has been
identified as an important problem [13, 16]. A lot of
work has been done on versioning of web services, but
much less ground has been covered on the versioning
of the BPEL workflows that orchestrate those web ser-
vices.

2.1 Web Service Versioning

When dealing with versioning of web services due to
their evolution, two approaches can be proposed [1]:
corrective, changing the producer or the consumer of
the service so it continues to interoperate with the new
service; and preventive, avoiding changes caused by the
evolution on the service that breaks interoperability.
Both approaches, however, require some amount of con-
trol over either side of the interoperating equation. Ser-
vice versioning can be achieved explicitly by changing
invocations in source code or by using suitably config-
ured UDDI registries, but remains one of the most dif-
ficult issues faced by developers of distributed systems
[7]. Versioning has also been considered in more specific
contexts, including those of service provenance [12, 17]
or automatic service matching [5]. In these areas, ser-
vice versioning may be seen as either something to be
natively supported by the environment [17] or achieved
using UDDI [12]. In service matching approaches, where
more than managing the instanced services directly, the
intent is to apply them to new uses, versioning is con-
sidered something better handled using the service data
description [5], but these approaches do not usually
handle processes already running.

The existence of versioning may be mostly trans-
parent to the service user, or it may be exposed in the
interface of the services. To support several concurrent
versions of the same services, different approaches have
been proposed, including creating new XML names-
paces or explicit version identifiers [1]. In [10] the differ-
ence between implementation versioning and interface
versioning was explored, and an infrastructure was pro-
posed that allowed routing of versioned requests to the
most recent compatible service (that is, the most recent

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Run-time Versioning for BPEL Processes 3

one with the same interface version). The proposed im-
plementation, however, was dependent of WebSphere,
and did not mention support for asynchronous web ser-
vices invocation.

A mechanism for transparent version handling of
web-services may be the use of proxies to map the re-
quests to the different service versions, while maintain-
ing a fixed service address. Support for proxying web-
services can be provided by standardized HTTP prox-
ies, like Squid [25], or by specialized tools geared to-
wards web-services, like the Web Service Gateway sup-
port present in WebSphere [21] or the Mule Framework
[18].

Fang and colleagues [8] propose an automatic web
service versioning support using UDDI and a service
interface proxy, but this solution requires the clients to
be fitted with specialized proxies to access the service.

In the context of cloud services, TOSCA (Topol-
ogy and Orchestration Specification for Cloud Appli-
cations [20]), an OASIS standard specification, stipu-
lates a language to specify service templates that can
define the topology of a service and that can utilize
existing process modeling standards to define orches-
tration (via “plans”) that can “invoke the manageabil-
ity behavior of services” [20]. TOSCA describes what
is needed to be preserved across deployments in differ-
ent environments to enable interoperable deployment
of cloud services and their management. Although the
TOSCA standard is useful to enable application lifecy-
cle automation while ensuring interoperability [11, 2], it
requires rewriting workflows and services in standard-
supporting manner. This effort is unfeasible when large
scale operations and past investments are at stake.

SOA versioning, however, requires more than ver-
sioning web services as described above. It requires ver-
sioning of their orchestrations.

2.2 Orchestration versioning

Versioning of orchestrations to support long-running
processes is a complex problem for which no completely
satisfactory solution is in widespread use. The complex-
ity of the evolution of long-running processes may even
require that it itself is considered as long-running [9]
where the process migration/evolution is handled on a
process-by-process basis, migrating/evolving processes
only when they are in a stage where its change will cre-
ate less disruptions. However, such approach requires
inner knowledge on the long-running processes state
and also state migration abilities that may not always
be present.

Although support for versioning BPEL processes is
available internally to some engines, such as IBM Web-

Sphere Process Server [19] and Oracle BPEL Process
Manager [22, 23], this approach has some drawbacks. It
may be coupled with requirements on the deployment
methods used and, being proprietary to each vendor, it
is usually not portable across different engines, even if
both support versioning. The following alternative ap-
proaches have been proposed to endow BPEL processes
with versioning:

– Juric and colleagues [14] specify BPEL processes
versioning as an integral part of development, de-
ployment, and run-time, by proposing an explicit
WS-BPEL extension for versioning. They suggest
the use of a version handler to assist in routing
requests to appropriate versions of a process and
deal with pre-processing and post-processing trans-
formations. They also introduce an extension at-
tribute bpelx:vid to specify the required version of
the partner link, then enabling the invocation of spe-
cific partner link versions. This approach restricts
the choice of BPEL engine to those supporting the
proposed extensions. To the best of our knowledge,
vendors have not implemented these extensions in
the years since the paper was published. Should
compatible engines exist, legacy BPEL processes would
still need to be modified to use the proposed syntax.

– In the context of service choreographies, Baresi et
al. [3] distinguish between independent requests, whi-
ch can use different versions of the same service
safely, and dependent requests, which must always
exploit the same version. These authors propose ex-
tensions to a version consistency algorithm applied
to BPEL. They take as input a BPEL process and
create a directed acyclic graph which is then labeled
to further enable a static analysis of the services’
control-flows and determine which are dependent
and which are not. Authors deployed their BPEL
provisioning and execution environment as an ex-
tension of Dynamo, which is an extension of the
open-source Active-BPEL engine. In a previous work
by the authors, DyBPEL [4] directly addressed or-
chestration evolution, although not transparently,
and did not provide transparent/automatic version
management. These authors have also compared their
work against quiescence [15], and tranquility [24],
that is, against the “classical” approaches for the
runtime evolution of component-based distributed
systems. However, these approaches can not directly
solve the problem of versioning of long-running or-
chestrations, because these cannot be stopped for
the purpose of doing static analysis or be modified
at run-time.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Paulo Melo et al.

The silver lining when dealing with BPEL orches-
tration evolution is that the interfaces exposed by the
BPEL engine may be considered as immutable, so the
main challenge of supporting several process versions
would be to use the right process version when an or-
chestration is running, and route the messages to that
version by applying a proxying mechanism. Moreover, if
the versioning protocol used is kept simple, namely by
preventing the reuse of a version that has been replaced
– so that the identification of the “current” version and
of the “old” versions can be performed automatically –
much of the complexity of versioning can be reduced.

In this article we propose a simple framework to
handle the process orchestration versioning problem,
where neither the producer nor the consumer of the
service needs to be modified. This is achieved by us-
ing middleware components that handle versioning and
proxy the dialog between service provider and consumer.
The overall system hides the complexity of versioning
from both sides and allows uninterrupted use of the
existing software/code base, while supporting an arbi-
trary number of versions.

3 Design of the Versioning Middleware

Typical work routines should not be disturbed for the
high transparency design principle to be met. The user
must be allowed to retain full control over his/her own
design-time versions of the business processes and de-
ploy them in the same manner. However, since the de-
ployment of a new version of a given process cannot
disrupt the instances currently running in the BPEL en-
gine (abort them or leave them in inconsistent states),
an additional run-time versioning must occur.

To achieve this, our middleware component inter-
cepts the deployment of a BPEL process from the edi-
tor and creates a version with a different name than the
one already residing in the engine, thus avoiding over-
writing the process model that the running instances
are using. The same business process can, thus, origi-
nate various run-time versions in the engine, as shown
in Figure 1. All but the most current, however, are only
kept until the associated running instances terminate.
New invocations of the process always use the latest
version deployed by the user.

On the left in Figure 1 we see how the various design-
time versions of the ActivateDSL process, managed by
the user according to business needs, evolve through
time. On the right, we see how various run-time ver-
sions, managed by our middleware, are kept in the BPEL
engine, to ensure that instances of previous process
models are not disrupted. Without this run-time ver-
sioning, deploying a new user version would replace the

one residing in the engine, thus aborting running in-
stances or leaving them in inconsistent states.

The UML sequence diagram in Figure 2 details the
algorithm underlying the creation of the run-time ver-
sions. As shown there, the deployment of the original
BPEL process (e.g. ActivateDSL) from the editor to
the engine, is intercepted by the Deployer component
of our versioning middleware, which, after consulting a
repository where we store information about existing
run-time versions, determines the next one and adds
a sequential Id to the process name before letting the
transaction proceed. The answer returned by the engine
to the Deployer is then passed back to the editor. Nei-
ther the BPEL editor nor the BPEL engine are aware of
the intermediation made by our Deployer, further con-
tributing to the high transparency and low invasiveness
design principles stated in the introduction. As a final
step, the Deployer gets the WSDL used in the invoca-
tion of the newly deployed process from the engine and
stores it in our versioning repository. It also notifies the
Gateway, who caches all this information in RAM, all
for improved performance.

Having managed to keep multiple run-time versions
of the same user process in the engine, then raises the
challenge of ensuring that new invocations of a BPEL
process and callbacks from previously invoked asyn-
chronous web services are routed to the appropriate
instances. The algorithm for the simplest case – a new
invocation of a process by an external service – is shown
in the UML sequence diagram of Figure 3.

New invocations of a process should always use its
most up-to-date version (the last one deployed). To this
end, upon intercepting an invocation of a process (e.g.
ActivateDSL), the Gateway determines its most cur-
rent run-time version (e.g. ActivateDSL_Id), invokes
that version, receives its reply, and passes it on to the
original external caller.

There is, however, another far more complex sce-
nario: when an external service has been asynchronously
called by an instance of a given run-time version of a
process and, sometime later, calls back with its reply.
In this case, the Gateway must ensure that the call-
back is routed to the specific version and instance that
made the original call and not, erroneously, to the most
recent one. We achieve this by handling BPEL’s corre-
lation set – a collection of properties that enable the
unambiguous identification of an instance. Correlation
sets are already used by BPEL engines in asynchronous
exchanges, to ensure that the callbacks are directed to
the correct caller instance. However, since we created
multiple run-time versions for the same user process, we
must also intermediate this exchange to ensure that the
correct instance of the correct run-time version is iden-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Run-time Versioning for BPEL Processes 5

Activate
DSL

Activate
DSL

Activate
DSL

Design-time versions of ActivateDSL
(managed by the user)

Run-time versions of ActivateDSL
(managed by the middleware)

Activate
DSL_1

Activate
DSL_3

Activate
DSL_4

Activate
DSL

Deploy ActivateDSL

Activate
DSL

Activate
DSL_2

tim
e

Deploy ActivateDSL

Deploy ActivateDSL

Deploy ActivateDSL

new
version

new
version

Oldest version: running until all its
instances terminate

Older version: running until all its
instances terminate

Current version: used for new
instances

Old version: inactive, all instances
terminated, this version will be
automatically purged by the
engine

new
version

new
version

Fig. 1 Mapping of design-time process versions to run-time versions in the BPEL engine

tified. The algorithm to handle callbacks originated by
asynchronous calls to external services is shown in the
UML sequence diagram of Figure 4. As seen there, when
the asynchronous callback (1.1) occurs in response to
the invocation of the external service (1), our Gateway
intercepts it. Then, it asks the BPEL engine for all cor-
relation sets for all active instances, finds the run-time
instance whose correlation set matches the correlation
set of the callback, and routes the callback to that in-
stance. The reply from the process is passed back to the
external service.

In both scenarios – new invocation and asynchronous
callbacks – neither the external service nor the invoked
process residing in the BPEL engine are aware of the
intermediation made by our Gateway, to ensure the
high transparency and low invasiveness design princi-
ples. Note how the external service always uses the orig-
inal process name “ActivateDSL” – thus avoiding the
need for modifications to support versioning – leaving
it to the Gateway to translate as needed to an “Ac-
tivateDSL_Id”, corresponding to the correct run-time
version.

Besides minimizing risky and massive changes to the
assets, solutions meant for use in a production environ-
ment must not introduce unduly overhead – our third
design principle. This issue is particularly relevant for
our Gateway component, since it intermediates all traf-
fic between external services and processes running in
the BPEL engine. Aiming for low overhead, the follow-
ing architectural decisions were made:

– The WSDLs of the various processes deployed to the
engine are stored in a repository of versioning data,
for quicker response when requested by a caller. This
saves the time it would take for the Gateway to call
the BPEL engine to get this information. As seen in
Figure 2, these WSDLs are stored in the repository
by the Deployer immediately after it finishes the
deployment.

– A cache of these WSDLs and remaining versioning
information is kept in RAM by the Gateway. Since
this component only performs “reads”, to find out
to which version and instance of a process to for-
ward a message to, a cache speeds up computation
significantly. The only “writes” are done by the De-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Paulo Melo et al.

Fig. 2 Deploying a new version to the BPEL engine

Fig. 3 (New) Invocation of a process by external service

ployer, when it sends a new process to the engine,
at which time it also notifies the Gateway to update
its cache. The versioning repository thus acts just as
a persistence layer, to ensure that the whole system
can survive reboots.

– The Gateway periodically checks the BPEL engine
API to verify whether older versions of a given pro-
cesses still have running instances. If none are found,
the Gateway will always redirect the invocations to
the newest version of the process (saving the call to
the API) until a new process is deployed. This op-

timization, in conjunction with the use of the cache
described above, effectively reduces the overhead to
almost zero in these cases.

Another relevant aspect of low invasiveness in this
architecture is that is does not require modifications
to the source code of the BPEL engine, as other solu-
tions do [3]. This is very important, as it enables the
adoption of new engine updates as they are released,
avoiding the cost and trouble of adapting their source
code every time. High independence is also promoted,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Run-time Versioning for BPEL Processes 7

Fig. 4 Assynchronous Invocation of a process using correlation identifiers

since no particular BPEL engine or non-standard BPEL
extensions are required. It is highly extensible, since all
traffic between external services and processes running
on the engine is intercepted and can be manipulated.

In summary, our solution intercepts deployments of
business processes to a BPEL engine and creates run-
time versions as needed, to maintain the integrity of
running instances relying on previous versions of the
process model. It then tracks and manages all invoca-
tions from external services to the BPEL processes to
ensure that:
(a) new ones are routed the most current version;
(b) callbacks resulting from assynchronous invocations

made by previous versions are routed to the original
caller.

Consequently, the user can deploy improved business
processes as needed, resting assured that any existing
instances that are still running will be allowed to com-
plete following their original workflows. This is of key
importance, since several business processes are long-
running.

Performance and scalability issues are described in
detail in the next section.

4 Field Measurements And Discussion

To measure the overhead created by our versioning mid-
dleware we performed some laboratory tests (results
shown in Table 1) to evaluate baseline efects on sys-
tem memory and runtime delays. Those lab tests, ran
with various combinations of versions per service and
instances per version, shown moderate impact of under
15% increase in memory usage and under 10% increase
in process runtime in the worst cases.

Since the previous results were obtained in lab set-
tings, to further validate the approach, data was col-
lected on actual system usage on the production envi-
ronment of a telecommunications company, for about
200 days distributed throughout almost one year. Dur-
ing this period, the invocation of nearly 2 million pro-
cesses was recorded. From this data, the following con-
clusions can be extracted regarding the overhead intro-
duced by our solution.

Most processes experienced very low overhead (less
than 20ms in over 98% of invocations) as shown on Ta-
ble 2. In fact, some kinds of processes never experienced
overheads of over 250ms. These processes (called origi-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Paulo Melo et al.

Table 1 Laboratory Test Results

Test# 1 2 3 4
Fe

at
ur
es

Number of versions deployed per service 1 5 5 5
Number of instances per deployed version 1 1 2 2
Number of (main) processes 1000 1000 1000 3000
Total Memory without versioning (MB) 100.448 110.799 115.552 119.325
Process runtime without versioning (s) 0.397 0.409 0.436 0.457

M
em

or
y

In
cr
ea
se Core Memory 7.0% 11.3% 8.0% 9.0%

Peak Memory 7.9% 13.9% 11.7% 12.2%
Virtual Memory 6.6% 12.0% 12.1% 8.8%

R
un

ti
m
e

In
cr
ea
se Process runtime 2.2% 7.3% 7.6% 7.0%

Number of instances created 0.0% −1.5% −1.6% −1.3%
Number of instances per second −2.2% −9.0% −9.3% −8.3%

nally “Bus2OM”, “PendingManager”, “ReSender”, “Start-
Process” and “XMLManager”) are named the “Low Ov-
erhead” processes. They were frequently invoked (over
1.9 million invocations in total). Some processes, how-
ever, (namely “AutomaticActivity”, “ManualActivity” a-
nd “Orchestrator”) have shown higher average and max-
imum overheads, although they were less frequent (the
logs show about 37200 invocations in total). These pro-
cesses are therefore called the “High Overhead” ones.
It can also be inferred, from the number of versions of
those processes present in the system, that they are the
longest-running ones, where the additional overhead on
invocation will be probably less relevant in the overall
process life cycle.

Even for high overhead processes, data shows that
almost 90% of invocations presented an overhead of less
than 1 second and over 97% of invocations were pro-
cessed by the versioning middleware in under 2 seconds.
This is illustrated in Figure 5, where the data was quan-
tized [26] using bins of 1 second. However some invo-
cations took a lot longer, including a couple of outliers
requiring over one minute to process.

A detailed analysis for processes which took more
than two seconds (just high overhead processes were
found), shows that while the number of high overhead
processes in each bin decreases with time, clusters can
be found at around 5 seconds and (smaller ones) at 15
and 30 seconds, marked by dashed lines in Figure 5.
These clusters may reflect the time required for access-
ing slower resources. A possibility is that they reflect
time required for establishing the original access to the
database or the overhead brought by the exhaustion
of the database connection pool, both of which would
require a time an order of magnitude higher than the
simple access to disk, which, in turn, can be an order
of magnitude higher than access to memory.

The one big difference between high overhead and
low overhead processes, in our telecom case, appeared
to be the number of different versions present in the

versioning manager at the same time1, as seen in Ta-
ble 3. It illustrates, for each process where a certain
number of different versions were present in the same
day, the average overhead, the average of the maximum
overhead and the number of days on which that num-
ber of versions occurred. The higher overhead processes
are usually those for which more than one version is
present. This was expected, since answering calls for
processes for which just one version is active should be
very fast due to caching. However, there doesn’t seem
to be a general rule relating average (or even maximum)
overhead with the number of processes present in the
system (for some processes, the average overhead even
seems to decrease with more versions), which may be a
sign that higher numbers of versions impose no undue
overhead on the versioning system.

To discern whether a lower number of instances in
particular days could be responsible for the variance on
average overhead according to the number of versions
active in the same day, this information is presented
on Table 4. It shows, for each high overhead process
version with a determined number of versions of that
process present in the same day, the number of days in
which that situation occurred, the total number of pro-
cess instances ran, and, for those, the average overhead
and average number of instances per day. This data
does not seem to support the hypothesis of the number
of instances on days with a larger number of versions
present being the cause of the variation on the average
overhead noticed in Table 3.

To further investigate the relationship between the
processes and the overhead recorded, the data was coded
into a series and correlated using the Stata™ software.

1 As the number of concurrent versions of a process present
on the versioning manager for each invocation was unavailable, it
is assumed to be the number of different versions of the process
launched on the same day. While this metric may be incorrect in
the case of very long or very short running processes, in this case
it was considered a plausible approximation.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Run-time Versioning for BPEL Processes 9

Table 2 Process Overhead (Invocations, Average and Maximum – all times in milliseconds)

Process Invocations Average Overhead Max Overhead

High Overhead
AutomaticActivity 1915 423.015 31665
ManualActivity 21239 677.513 50385
Orchestrator 13958 382.862 75735

Low Overhead

BUS2OM 13696 15.002 30
PendingManager 960739 15.001 210

ReSender 599911 15.008 90
StartProcess 361355 15.005 30
XMLManager 53 15.000 15

Total 1972866 25.135 75735

1

10

100

1000

10000

0 20 40 60

Duration (s) in bins of 1 second

N
u

m
b

e
r

o
f

P
ro

c
e

s
s
e

s

Process AutomaticActivity ManualActivity Orchestrator

Overhead distribution (High Overhead Processes)

Fig. 5 Overhead Distribution

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Paulo Melo et al.

Table 3 Overhead versus number of versions per day

Different Versions Per Day
1 2 3 Total

H
ig
h
O
ve
rh
ea
d

AutomaticActivity
Average Overhead 340.2 626.3 342.4
AvgMax Overhead 2896.1 626.3 2896.1
Number of Days 132 1 133.0

ManualActivity
Average Overhead 624.6 587.3 513.0 609.6
AvgMax Overhead 2338.4 1487.0 827.0 2338.4
Number of Days 96 43 5 144.0

Orchestrator
Average Overhead 343.1 356.5 234.8 345.9
AvgMax Overhead 1752.8 2858.1 289.4 2858.1
Number of Days 97 46 2 145.0

L
ow

O
ve
rh
ea
d

BUS2OM
Average Overhead 15.0 15.0
AvgMax Overhead 15.1 15.1
Number of Days 144 144.0

PendingManager
Average Overhead 15.0 15.0
AvgMax Overhead 15.0 15.0
Number of Days 199 199.0

ReSender
Average Overhead 15.0 15.0 15.0
AvgMax Overhead 15.0 15.0 15.0
Number of Days 100 1 101.0

StartProcess
Average Overhead 15.0 15.0 15.0
AvgMax Overhead 15.0 15.0 15.0
Number of Days 168 1 169.0

XMLManager
Average Overhead 15.0 15.0
AvgMax Overhead 15.0 15.0
Number of Days 15 15.0

Totals
AverageTime 155.1 459.9 433.5 183.7
MaxTime 2896.1 2858.1 827.0 2896.1

NumberOfDays 951 92 7 1050.0

Performing an analysis on the correlation2 between av-
erage overhead for the days where both processes shown
invocations, it can be shown that the high overhead pro-
cesses average overheads are correlated among them-
selves to a high degree, but no such correlation can be
found among the low overhead processes or between
members of the two groups, as seen on Table 5. The
maximum overhead per day also displays the same cor-
relation pattern, as shown in Table 6.

No statistically significant correlation can be found
among the number of different versions of each process
started per day (except, obviously, the correlation with
themselves), as seen on Table 7. This was expected,
since the different processes were not necessarily being
developed/deployed in sync.

We have also constructed binary variables (“Binary
Avg Ov” and “Binary Nr. Versions”) which, for each pro-
cess, codified whether a particular day had higher than
average overhead (Table 8) or had a lower than aver-
age number of versions present (Table 9). Again, cor-
relation exists among the “usual suspects”, that is the

2 All correlation tables are shown presenting only the results
where a significance level of at least 0.05 (after applying the
Dunn-Šidák correction) is found. A dot is shown where not
enough valid data was available to ascertain a significant cor-
relation.

high overhead processes, as depicted on Table 8. A weak
(−0.3754), even if statistically significant, negative cor-
relation between the low overhead processes “StartPro-
cess” and “PendingManager” is noted, but this may be
just a statistical artifact of the coding used, since isn’t
present in any other correlation.

From the previous correlations it can be suggested
that either the high overhead processes are influencing
each other or are being influenced in the same way by
some environmental factor (e.g. high network latency or
high CPU usage on the host computer). It should be no-
ticed that the low overhead processes seem undisturbed
by it, which may point to difficulties on the access to
resources that aren’t required by their versioning.

For all the processes, data shows that the average
overhead is strongly correlated with the maximum over-
head (and sometimes also with the minimum overhead)
but not correlated, with statistical significance, with the
number of versions of the processes started each day.
Table 10 shows the results for the process “Automatic
Activity”, but the results were common with small vari-
ations among all the processes, both high and low over-
head. This seems to imply that, once there is more than
one version to be considered, the actual number of ver-
sions of a process in versioning has no measurable re-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Run-time Versioning for BPEL Processes 11

Table 4 Average Overhead versus Version number for High Overhead processes according to number of concurrent versions present
in the system

Process Name V
er
si
on

V
er
si
on

s
p
er

d
ay

D
ay
s

In
st
an

ce
s

A
ve
ra
ge

O
ve
rh
ea
d

A
ve
ra
ge

In
st
an

ce
s
p
er

d
ay

AutomaticActivity

0.1 2 1 2 796.50 2
0.2 1 14 135 347.82 10
0.3 1 23 298 531.16 13
0.3 2 1 26 597.96 26
0.4 1 62 977 488.51 16
0.5 1 33 477 172.62 14

ManualActivity

0.1 2 19 67 765.37 4
0.1 3 2 2 820.50 1
0.2 1 5 177 501.57 35
0.2 2 14 849 364.90 61
0.2 3 2 10 909.10 5
0.3 2 8 12 1510.25 2
0.3 3 5 87 674.64 17
0.4 1 11 1222 1008.53 111
0.4 2 21 1247 1011.76 59
0.4 3 4 283 769.13 71
0.6 1 52 9030 738.32 174
0.6 2 18 2543 522.95 141
0.6 3 2 245 108.40 123
0.7 1 28 3301 405.79 118
0.7 2 6 2164 679.08 361

Orchestrator

0.1 2 17 195 304.40 11
0.1 3 2 6 304.83 3
0.2 1 95 9917 297.36 104
0.2 2 46 1878 920.98 41
0.2 3 2 52 240.35 26
0.3 1 2 157 205.99 79
0.3 2 29 1593 212.58 55
0.3 3 2 160 192.93 80

Table 5 Average Overhead time-series correlation

A
ut
om

at
ic
A
ct
iv
it
y

M
an

ua
lA
ct
iv
it
y

O
rc
he
st
ra
to
r

B
U
S2

O
M

P
en
di
ng

M
an

ag
er

R
eS
en
de
r

St
ar
tP

ro
ce
ss

X
M
L
M
an

ag
er

AutomaticActivity 1
ManualActivity 0.5562 1

Orchestrator 0.7639 0.5472 1
BUS2OM 1

PendingManager 1
ReSender 1

StartProcess 1
XMLManager

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Paulo Melo et al.

Table 6 Maximum Overhead time-series correlation

A
ut
om

at
ic
A
ct
iv
it
y

M
an

ua
lA
ct
iv
it
y

O
rc
he
st
ra
to
r

B
U
S2

O
M

P
en
di
ng

M
an

ag
er

R
eS
en
de
r

St
ar
tP

ro
ce
ss

X
M
L
M
an

ag
er

AutomaticActivity 1
ManualActivity 0.7623 1

Orchestrator 0.6005 0.6797 1
BUS2OM 1

PendingManager 1
ReSender 1

StartProcess 1
XMLManager

Table 7 Number of versions per day time-series correlation

A
ut
om

at
ic
A
ct
iv
it
y

M
an

ua
lA
ct
iv
it
y

O
rc
he
st
ra
to
r

B
U
S2

O
M

P
en
di
ng

M
an

ag
er

R
eS
en
de
r

St
ar
tP

ro
ce
ss

X
M
L
M
an

ag
er

AutomaticActivity 1
ManualActivity 1

Orchestrator 1
BUS2OM

PendingManager
ReSender . . . 1

StartProcess . . .
XMLManager

Table 8 Correlation among the days with higher than average overhead

A
ut
om

at
ic
A
ct
iv
it
y

M
an

ua
lA
ct
iv
it
y

O
rc
he

st
ra
to
r

B
U
S2

O
M

P
en
di
ng

M
an

ag
er

R
eS
en
de
r

St
ar
tP

ro
ce
ss

X
M
L
M
an

ag
er

AutomaticActivity 1
ManualActivity 0.5384 1

Orchestrator 0.5730 0.3085 1
BUS2OM 1

PendingManager 1
ReSender 1

StartProcess -0.3745 1
XMLManager

lation with the versioning overhead, which leads us to
expect good scalability for the versioning solution.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Automatic Run-time Versioning for BPEL Processes 13

Table 9 Correlation among the days with not less than average number of versions

A
ut
om

at
ic
A
ct
iv
it
y

M
an

ua
lA
ct
iv
it
y

O
rc
he
st
ra
to
r

B
U
S2

O
M

P
en
di
ng

M
an

ag
er

R
eS
en
de
r

St
ar
tP

ro
ce
ss

X
M
L
M
an

ag
er

AutomaticActivity 1
ManualActivity 1

Orchestrator 1
BUS2OM

PendingManager
ReSender . . . 1

StartProcess . . . 1
XMLManager

Table 10 Correlation among the different measures for “Automatic Activity”

A
ve
ra
ge

O
v

N
r.

V
er
si
on

s

M
ax

im
um

O
v

M
in
im

um
O
v

B
in
ar
y
A
vg

O
v

B
in
ar
y
N
r.

V
er
si
on

s

Average Ov 1
Nr. Versions 1

Maximum Ov 0.8629 1
Minimum Ov 0.4346 1

Binary Avg Ov 0.6153 0.2953 0.3803 1
Binary Nr. Versions 1 1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Paulo Melo et al.

5 Conclusions and Future work

We presented and discussed the design of a standalone,
vendor agnostic middleware, capable of versioning BPEL
processes, and then assessed the overhead it introduces
under production environment conditions in a telecom-
munications company. The feasibility of the proposed
solution was tested with data recorded for about 2 mil-
lion process invocations in 200 days distributed across
a period of almost one year.

The presented approach to versioning is especially
relevant for environments where new instances of pro-
cesses are constantly being created and those processes
are long-running and can take weeks, months, or even
years to complete [6, page 23]. Such systems can not be
paused, running instances must be allowed to complete
following their original workflows, but improvements to
the business processes must still be able to be deployed
and used for new cases.

Our middleware handles the versioning exclusively
via run-time mechanisms, and was architected to be:

– Highly transparent, so that the process owner, the
BPEL editor, BPEL engine and orchestrated web
services don’t need to be aware of its existence. Any
high-level versioning done by the user is also unaf-
fected;

– Non-invasive, so that legacy code of dozens or hun-
dreds of web services and BPEL processes don’t
need to be changed, thus reducing the risk for com-
plex production environments serving millions of cus-
tomers;

– Low overhead, so that the versioning mechanisms do
not become unfeasible in real world environments.
Our tests have shown that the impact on perfor-
mance is negligible, with most processes experienc-
ing a very low overhead, of less than 20ms in over
98% of invocations. Results also show that the over-
head does not seem to increase with the number of
processes being versioned, thus ensuring good scal-
ability;

– Highly independent, so that the solution does not
require a specific brand of BPEL engine or any non-
standard extensions to BPEL that might lock-in the
company. As designed, the versioning middleware
has a limitation in that it requires that whatever
BPEL engine is used, it provides a mechanism to
inquire about which deployed processes are waiting
for external invocations;

– Highly extensible, so that new functionalities can
be added. In fact, for future work, we are consider-
ing experiments in which the middleware would be
modified to act as a load balancer for multiple BPEL
engines for high performance scenarios. Other possi-

bilities of expansion include leveraging the interme-
diation role of the middleware to perform diagnos-
tics and testing in SOA architectures or deliberately
injecting faults to assess SOA robustness.

Alternative avenues to pursue in future work in-
clude examining the applicability of the approach for
non-BPEL services that exhibit the same characteris-
tics (including long runtimes and group identification),
and to explore the merits of this approach versus other
versioning mechanisms for those services.

Acknowledgements The authors acknowledge the valuable com-
ments and suggestions by the editor and anonymous reviewers.

References

1. V. Andrikopoulos, S. Benbernou, and M. P. Pa-
pazoglou. On the Evolution of Services. IEEE
Transactions on Software Engineering, 38(3):609–
628, May 2012.

2. Aria. About ARIA TOSCA. http://ariatosca.
org/about, Jan. 2017.

3. L. Baresi, S. Guinea, and V. P. L. Manna. Con-
sistent runtime evolution of service-based business
processes. In 2014 IEEE/IFIP Conference on Soft-
ware Architecture, pages 77–86. Institute of Electri-
cal and Electronics Engineers (IEEE), Apr. 2014.

4. L. Baresi, S. Guinea, and L. Pasquale. Service-
oriented dynamic software product lines. Com-
puter, 45(10):42–48, Oct. 2012.

5. K. Becker, J. Pruyne, S. Singhal, A. Lopes, and
D. Milojičić. Automatic determination of compati-
bility in evolving services. International Journal of
Web Services Research, 8(1):21–40, Jan. 2011.

6. M. Brahm, A. N. Fletcher, and H. Pargmann.
Workflow Management with SAP® WebFlow®.
Springer, 2003.

7. K. Brown and M. Ellis. Best prac-
tices for Web services versioning. http:
//www.ibm.com/developerworks/webservices/
library/ws-version/, Jan. 2004.

8. R. Fang, Y. Chen, L. Fong, L. Lam, D. Frank,
C. Vignola, and N. Du. A Version-aware Approach
for Web Service Client Application, pages 401–409.
IEEE, May 2007.

9. D. Frank, L. Fong, and L. Lam. A continuous
long running batch orchestration model for work-
flow instance migration. In 2010 IEEE Interna-
tional Conference on Services Computing, pages
226–233. Institute of Electrical and Electronics En-
gineers (IEEE), July 2010.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

 http://ariatosca.org/about
 http://ariatosca.org/about
http://www.ibm.com/developerworks/webservices/library/ws-version/
http://www.ibm.com/developerworks/webservices/library/ws-version/
http://www.ibm.com/developerworks/webservices/library/ws-version/

Automatic Run-time Versioning for BPEL Processes 15

10. D. Frank, L. Lam, L. Fong, R. Fang, and C. Vig-
nola. An Approach to Hosting Versioned Web Ser-
vices, pages 76–82. IEEE, 2007.

11. S. Harrer, J. Lenhard, G. Wirtz, and T. v. Lessen.
Towards uniform BPEL engine management in the
cloud. In Proceedings of the CloudCycle14 Work-
shop, Stuttgart, Germany, September 22nd 2014,
pages 259–270. Gesellschaft für Informatik, 2014.

12. D. H. A. Ibrahim. The Concept of Web Service
Versioning in Provenance, pages 469–474. IEEE,
Aug. 2009.

13. M. B. Juric and A. Šaša. Version manage-
ment of BPEL processes in SOA. In SERVICES,
2010, IEEE 2010 6th World Congress on Services,
pages 146–147, Los Alamitos, CA, USA, July 2010.
Institute of Electrical and Electronics Engineers
(IEEE).

14. M. B. Juric, A. Šaša, and I. Rozman. WS-BPEL
Extensions for Versioning. Information and Soft-
ware Technology, 51(8):1261–1274, Aug. 2009.

15. J. Kramer and J. Magee. The evolving
philosophers problem: dynamic change manage-
ment. IEEE Transactions on Software Engineering,
16(11):1293–1306, Nov. 1990.

16. P. Louridas. Orchestrating Web Services with
BPEL. IEEE Software, 25(2):85–87, 2008.

17. A. Michlmayr, F. Rosenberg, P. Leitner, and
S. Dustdar. Selective Service Provenance in the
VRESCo Runtime. International Journal of Web
Services Research, 7(2):65–86, 2010.

18. MuleSoft. Mule user guide: Prox-
ying web services. https://docs.
mulesoft.com/mule-user-guide/v/3.8/
proxying-web-services, 2016.

19. J. Neth, M. Smolny, and C. Zentner. Ver-
sioning business processes and human tasks
in WebSphere Process Server. http://www.
ibm.com/developerworks/websphere/library/
techarticles/0808_smolny/0808_smolny.html,
Aug. 2008.

20. OASIS Topology and Orchestration Specification
for Cloud Applications (TOSCA) TC. Topology
and orchestration specification for cloud appli-
cations version 1.0. OASIS Standard, OASIS,
http://docs.oasis-open.org/tosca/TOSCA/v1.
0/os/TOSCA-v1.0-os.pdf, Nov. 2013.

21. B. O’Hanlon. Create a simple HTTP
Web Services Gateway Service with Web-
Sphere Application Server V6. http:
//www.ibm.com/developerworks/websphere/
library/techarticles/0502_ohanlon/0502_
ohanlon.html, July 2005.

22. Oracle. Oracle BPEL Process Manager Developer’s
Guide 10g (10.1.3.1.0) Part Number B28981-03.
Technical report, Oracle Corporation, 2007.

23. Oracle Corporation. Oracle fusion middleware de-
veloping SOA applications with Oracle SOA Suite,
12c (12.2.1.2.0). Technical report, Oracle Cor-
poration, http://docs.oracle.com/middleware/
12212/soasuite/docs.htm, Nov. 2016.

24. Y. Vandewoude, P. Ebraert, Y. Berbers, and
T. D’Hondt. Tranquility: A low disruptive alter-
native to quiescence for ensuring safe dynamic up-
dates. IEEE Transactions on Software Engineering,
33(12):856–868, Dec. 2007.

25. D. Wessels. Squid the Definitive Guide. O’Reilly
Media, Inc, USA, 2004.

26. B. Widrow, I. Kollar, and M.-C. Liu. Statisti-
cal theory of quantization. IEEE Transactions on
Instrumentation and Measurement, 45(2):353–361,
Apr. 1996.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://docs.mulesoft.com/mule-user-guide/v/3.8/proxying-web-services
https://docs.mulesoft.com/mule-user-guide/v/3.8/proxying-web-services
https://docs.mulesoft.com/mule-user-guide/v/3.8/proxying-web-services
http://www.ibm.com/developerworks/websphere/library/techarticles/0808_smolny/0808_smolny.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0808_smolny/0808_smolny.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0808_smolny/0808_smolny.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf
http://www.ibm.com/developerworks/websphere/library/techarticles/0502_ohanlon/0502_ohanlon.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0502_ohanlon/0502_ohanlon.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0502_ohanlon/0502_ohanlon.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0502_ohanlon/0502_ohanlon.html
http://docs.oracle.com/middleware/12212/soasuite/docs.htm
http://docs.oracle.com/middleware/12212/soasuite/docs.htm

