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Abstract: This study presents the results of object-based classifications assessing the potential of bi-

temporal Pléiades images for mapping broadleaf and coniferous tree species potentially used by the 

ring-necked parakeet Psittacula krameri for nesting in the urban area of Marseille, France. The first 

classification was performed based solely on a summer Pléiades image (acquired on 28 July 2015) 

and the second classification based on bi-temporal Pléiades images (a spring image acquired on 24 

March 2016 and the summer image). An ensemble of spectral and textural features was extracted 

from both images and two machine-learning classifiers were used, Random Forest (RF) and Support 

Vector Machine (SVM). Regardless of the classifiers, model results suggest that classification based 

on bi-temporal Pléiades images produces more satisfying results, with an overall accuracy 11.5–

13.9% higher than classification using the single-date image. Textural and spectral features extracted 

from the blue and the NIR bands were consistently ranked among the most important features. 

Regardless of the classification scheme, RF slightly outperforms SVM. RF classification using bi-

temporal Pléiades images allows identifying 98.5% of the tree species used by the ring-necked 

parakeet for nesting, highlighting the promising value of remote sensing techniques to assess the 

ecological requirements of fauna in urban areas. 

Keywords: urban trees; Pléiades; random forest; support vector machine; object-based classification; 

Psittacula krameri 

 

1. Introduction 

Biological invasions are considered as one of the main cause of biodiversity loss, and invasive 

species can cause ecological and socio-economic impacts in their introduced range [1,2]. Urban areas 

face high-intensity risk given that several animal species kept as attractions in urban parks and zoos 

or as pets accidentally escaped from captivity or have been deliberately released in the wild. Most of 

them failed to survive and maintain a sustainable population [3,4], probably because of the low 

number of introduced individuals and/or an unsuitable climate. Those who are able to survive and 

spread may become invasive, disrupt ecosystem functioning, and negatively affect native organisms. 

Examples of introduced animals that have successfully established self-sustaining populations 

in their introduced range include the ring-necked parakeet Psittacula krameri. This green parakeet is 

native to India and sub-Saharan Africa [5] and, due to its popularity as a pet bird, has been widely 

introduced in Europe through the exotic pet trade. The number of “rewilded” individuals is 

estimated to more than 85,000 in 2015, with increasing populations established in cities across ten 

European countries [6]. In its introduced range, this parakeet may cause several impacts on native 
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biodiversity and anthropic activities. Due to its aggressive behavior, the presence of the ring-necked 

parakeet prevents the access of native birds to food resources [7–9]. Breeding earlier than most of the 

native cavity-nesting species, the ring-necked parakeet may reduce the availability of this crucial 

resource to native birds such as the nuthatch Sitta europaea [10]. Indeed, tree cavities are considered 

as a limiting factor for cavity-nesting birds [11], especially in urban environments where large old 

trees may be more scarce than in forested areas. The ring-necked parakeet is considered a major crop 

pest in its native range and, in areas where it has been introduced, causes damage to agricultural 

areas [12]. The exponential demographic growth has raised concerns by urban planners regarding 

the potential negative impacts of the ring-necked parakeet and a better knowledge of the ecological 

requirements and the potential future distribution of this species is thus needed. 

Species occurrences have become increasingly available from online databases covering a range 

of spatial and temporal scales. These existing databases provide new opportunities to study the 

relationship between successful introduced species and their environment and are widely used to 

predict their potential future distribution [13]. However, the information contained in these databases 

is often limited to the location and sometimes to the activity of species (e.g., nesting, feeding). In the 

case of the ring-necked parakeet which may compete with native fauna for tree cavities, useful 

information to acquire is its potential nesting preferences regarding the tree species in which 

parakeets are nesting. Traditional methods involve field investigation and random sampling of 

breeding bird populations to record a subset of tree species used, which is time and labor consuming 

and may not be representative of birds nesting preferences. An alternative method is to use available 

tree occurrences datasets, which may be incomplete, especially at the local scale and in private areas 

such as private gardens and residential areas. 

Remote sensing, especially using Very High Resolution (VHR) satellite imagery, provides a 

time-effective and cost-efficient way to highlight new information from tree species occurrence 

databases by allowing one to identify tree species used by birds for nesting. Tree species mapping 

can be challenging in urban areas compared to more natural sites. Urban vegetation is characterized 

by a high diversity of trees, including exotic species with sometimes few individuals which lead to a 

small number of reference samples, and by some highly spatially dispersed tree individuals. Spectral 

characteristics of urban trees are affected by the spatial proximity of non-tree urban objects, such as 

buildings, which cast shadows and cause the complete or partial loss of trees spectral information 

[14]. Trees from the same broadleaf species may also have a different phenology due to the Urban 

Heat Island effect and may exhibit variability of phenological stages through the intra-urban gradient 

[15]. The closeness of spectral signatures among tree species can also make them difficult to 

discriminate. Thus, in urban areas, and in a more general way, single-date imagery may not suffice 

for urban tree species classification. Li et al. [16] explored the identification of five urban tree species 

based on object-based classification using single-date and bi-temporal WorldView-2 and WorldView-

3 images. The overall accuracy increased to more than 11% when using bi-temporal images. Tigges 

et al. [17] reached the same conclusion and found an overall accuracy of 85.5% when using multi-

temporal images for the classification of eight tree genera in an urban forest. To our knowledge, the 

potential of bi-temporal Pléiades imagery to discriminate urban tree species has never been assessed. 

Indeed, given the financial cost of this imagery, the additional contribution to classification 

performance of bi-temporal images needs to be tested. Pixel-based approaches were traditionally 

used to differentiate tree species, based on the difference in spectral values of individual pixels. 

However, when using VHR imagery, individual pixels may be classified differently from directly 

adjacent pixels (i.e., “salt-and-pepper effect”), resulting in high spectral variability within a class [18–

20]. Object-based approaches use image objects rather than pixels as the smallest classification units 

and thus can overcome this issue. In addition, object-based methods offer the possibility to use 

features such as contrast, shape and correlation relationships, and improvement of classification 

accuracies compared to pixel-based approaches have been shown in many studies [21,22]. 

In this study, we aimed to (i) assess the potential of bi-temporal VHR Pléiades images for tree 

species classification in urban areas with an object-based method, and (ii) provide an exhaustive list 

of tree species used by the ring-necked parakeet to nest in the study area. As part of the case study, 
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we were also interested to compare the classification results of two machine-learning algorithms, 

Support Vector Machine (SVM) and Random Forest (RF) and to identify which Pléiades features 

contribute most to the classification accuracy. 

2. Materials and Methods 

2.1. Study Area 

This study was carried out in the downtown and suburban part of Marseille, France. Located in 

the southeast of France, Marseille is the second most populous city in the country with an estimated 

human population of 855,000. The climate is Mediterranean, characterized by warm and dry 

summers, and rainy period in winter [23]. The city is surrounded by calcareous massifs at the north, 

east, and south. Despite a high density of built-up areas, the city displays a large amount of green 

spaces shaped by the history of the city [24] and a dense network of waterways. The study area 

corresponds to the spatial overlap of the Pléiades images used to perform the tree species 

classification with a total of 97 km2 within the city of Marseille (Figure 1). Among the 62,799 

individual trees of the public space inventoried by the city of Marseille in the study area, the species 

of 31,504 trees are unknown (i.e., more than 50%) and the other 31,295 belong to 112 different species. 

 

Figure 1. Location of the study area within the city of Marseille (right) in France (upper left) and zoom 

over the study area (lower left). 

2.2. Datasets 

2.2.1. Pléiades Images 

The Pléiades constellation of two VHR satellites, Pléiades 1A and Pléiades 1B, was launched in 

2011 under the supervision of the Centre National d’Etudes Spatiales (CNES) and Airbus Defence & 

Space. Cloud-free Pléiades images acquired on 28 July 2015 and 24 March 2016 were used in this 

study. The acquisition dates of images were selected based on both data availability and the 

vegetation phenology period in Mediterranean region. The Pléiades images have four multi-spectral 

bands with a spatial resolution of 2 m and one panchromatic band at 0.5 m (Table 1). Both Pléiades 

images were acquired pan-sharpened at 0.5 m spatial resolution. Atmospheric corrections were 

applied using the Optical Calibration module implemented in the Orfeo ToolBox [25]. This step 
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allows one to convert pixel values from digital numbers to physically interpretable and comparable 

spectral reflectance values, and requires one to set several parameters. The Optical Calibration 

module internally computes Top-of-Atmosphere reflectivity in the first step and Top-of-Canopy 

reflectance in the second step. The acquisition parameters, solar illumination and sensor gains, were 

obtained from Pléiades products metadata. After visual checking of the results of iterative tests, the 

continental aerosol model and the default parameter of the windows radius for adjacency effects 

correction were used. When using multi-temporal images, location displacement of trees may be 

caused by the differences in image acquisition time and the observation angle of the satellite. The 

early spring Pléiades image (from March) and the high summer Pléiades image (from July) were co-

registered such that the co-registration error, i.e., Root Mean Square Error, was <0.5 pixel. 

Table 1. Details of Pléiades imagery used for the urban tree species classification. 

Title 1 
Pléiades 1  

28 July 2015 

Pléiades 2  

24 March 2016 

PAN-MS resolution (m) 0.5–2 0.5–2 

Panchromatic 470–830 nm 470–830 nm 

Blue (B) 430–550 nm 430–550 nm 

Green (G) 500–620 nm 500–620 nm 

Red (R) 590–710 nm 590–710 nm 

Near infra-red (NIR) 740–940 nm 740–940 nm 

Solar azimuth 144 156 

Solar elevation 62 46 

2.2.2. Reference Data 

Field surveys were conducted from June to August 2016 and June 2017 during the leaf-on period. 

The study area was divided into a regular grid of 1 km2 square cells, then ten cells were randomly 

sampled. Within each of the ten cells, we registered broadleaf species composition by geo-referencing 

the localization and recording the species of individual trees. Coniferous trees were geo-referencing 

without details about the species of individuals. The four target tree species were chosen based on 

their dominance in the broadleaf vegetation community in the study area and their previously 

documented use by nesting ring-necked parakeets. Table 2 provides details on the final dataset. 

Table 2. Reference samples from June to August 2016 and June 2017. 

Classes Number of Polygons Number of Pixels 

Platanus sp. 101 4520 

Tilia sp. 644 3095 

Celtis sp. 1032 5282 

Quercus sp. 233 1544 

Coniferous trees 479 7452 

Other broadleaf species 281 9548 

Figures 2 and 3 illustrate the spectral variability of the reflectance values for the six classes within 

the delineated reference polygons, respectively, of the spring and summer Pléiades images. The main 

difference between the coniferous and the broadleaf species are their reflectance in the near infrared 

band (NIR) of the summer image (Figure 3), the coniferous species having a lower reflectance value. 

Among the broadleaf trees group, some species significantly differ from the other. In the spring image 

(Figure 2), Tilia sp. consistently differs from the other broadleaf trees, with higher values in the four 

bands, whereas the separability of this species in the four bands of the summer image is less clear. 

Several species showed spectral overlaps, for example Platanus sp. and Celtis sp. in the red and green 

bands of the summer image. 
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Figure 2. Mean spectral values within each of the spring Pléiades image spectral bands of the six 

classes over the study area. 

 

Figure 3. Mean spectral values within each of the summer Pléiades image spectral bands of the six 

classes over the study area. 

2.3. Methodology 

Figure 4 presents the flowchart of the classification procedure using an object-based method and 

two machine learning algorithms. The procedure consists of four steps: (1) data pre-processing 

(detailed in Section 2.2.1), (2) image segmentation, (3) feature extraction, and (4) object-based 

classification using SVM and RF. In this study, only nadir-visible trees were considered as the spectral 

information of trees obscured by shadows (i.e., from buildings) is difficult to obtain. 
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Figure 4. Workflow of the urban tree species classification procedure using the Pléiades imagery. 

2.3.1. Segmentation 

Segmentation is an important primary step in object-based classification which consists of 

dividing an image into homogeneous and non-intersecting regions. In this study, we used the mean 

shift algorithm, a non-parametric feature space analysis and clustering technique introduced by 

Fukunaga and Hostetler [26] and that has been widely applied for image segmentation [27,28]. We 

applied the Large Scale Mean Shift (LSMS) segmentation algorithm implemented in the open-source 

software Orfeo ToolBox and which requires assigning three parameters, the spatial radius of the 

neighborhood, the range radius, and the minimum region size. The optimum segmentation 

parameters depend on the scale and on the nature of the features to be detected. Segmentation 

performances were evaluated using Hoover metric (H) [29], which compares segmentation outcomes 

with ground truth regions based on an overlap matrix. 

H = 1 −
𝐶𝐷

𝑁𝑔𝑡
 , (1) 

where CD represents correct detections and N the total number of segments in the Ground Truth (gt). 

A segment could be classified into five categories: correct detection, over-segmentation, under-

segmentation, missed, and noise. Following Jiang et al. [30], we set the H threshold to 0.8 to define a 

segment correctly detected. For both Pléiades images, the final parameters were (1) spatial radius = 

10, (2) range radius = 50, and (3) minimum region size = 10 (Figure 5). 
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Figure 5. Segmentation results over (A) the spring Pléiades image and (B) the summer Pléiades image. 

Right images show a higher level of details for which the extent is displayed by the red squares. 

2.3.2. Extraction of Spectral and Textural Features 

Feature extraction may improve the classification results by expanding the image information. 

Combining multispectral and textural features may improve classification accuracy [31] and 

considering pixels about their immediate neighborhood rather than pixels in isolation should yield 

improved results, as demonstrated by Agüera et al. [32], Puissant et al. [33], and Chiu and Couloigner 

[34]. For both Pléiades images, a total of 91 features were extracted and computed at object level from 

the four spectral bands. Several studies have shown that Principal Component Analysis (PCA) may 

improve the classification results in urban areas [35]. PCA was performed using the four spectral 

bands and the first principal component of each image, which accounts for 63% of the variance in the 

summer Pléiades and 61% of the variance in the spring Pléiades image, was included. Spectral 

features consisted of means and variances of surface reflectance of each of the four spectral bands, 

Normalized Difference Vegetation Index (NDVI), and mean of the first principal component image. 

Textural features represent the measure of the regularity, the smoothness, and the coarseness of an 

image. Texture contained in VHR satellite imagery should contain useful information to extract 

regions of vegetation from an image as demonstrated by Tsai and Chou [36] who applied the Grey 

Level Co-Occurrence Matrix (GLCM) to Quickbird imagery to detect invasive plant species. We used 

the GLCM, one of the most widely used texture measures and first introduced by Haralick et al. [37]. 

The GLCM computes a matrix based on the difference between the grey levels of neighboring pixels 

within an image window of a given size, the size of which depending on the image resolution and 

the features being classified. Following the approach of Chen et al. [38], and Franklin et al. [39], both 

Pléiades was classified based on a range of GLCM window sizes. We used the Feature Extraction 

module implemented in Orfeo ToolBox. Feature measures fall into three categories: contrast based, 

statistically based, and orderliness based. Given that textural features in the same category may be 
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highly correlated [40], multicollinearity was evaluated using the Pearson Correlation Coefficient r, 

which ranges from +1 to −1. Values of r greater than +0.7 and lower than −0.7 indicate, respectively, 

strong positive and strong negative correlations between considered pairwise features and thus 

redundancy in information. Pairwise correlations with an r value greater than 0.7 were considered as 

correlated and one feature selected. Table 3 summarizes the 54 final spectral and textural features 

datasets. Appendix A, Table A1 summarizes the Pearson’s values between features. 

Table 3. Description of features extracted from spring and summer Pléiades images and used for the 

classification. 

Feature Name Description Pléiades Image 

Mean1–4 Mean of spectral bands 1–4 Spring and summer 

Var1–4 Variance of spectral bands 1–4 Spring and summer 

NDVI Normalized Difference Vegetation Index NIR–R/NIR + R Spring and summer 

Entropy (entro1–4) 

Measure of the randomness of the intensity distribution of spectral 

bands 1–4  

−∑i,jg(i,j)log2g(i,j), or 0 if g(i,j) = 0 

Summer 

Correlation (cor1–4) 

Linear dependency of grey level values in the co-occurrence matrix 

of spectral bands 1–4  

∑i,jg(i,j)(i − µx)(j − µy)/σxσy 

Summer 

Cluster Shade (clusha1–

4) 

Measure of the skewness of spectral bands 1–4  

∑i,j((i − µ) + (j − µ))3g(i,j) 
Summer 

Cluster Prominence 

(clupro1–4) 

Measure of the asymmetry of spectral bands 1–4  

∑i,j((i − µ) + (j − µ))4g(i,j) 
Summer 

Haralick Correlation 

(harcor1–3) 

Measure of correlation of spectral bands 1–3  

∑i,j(i,j)g(i,j) − µ2t/σ2t 
Summer 

Dissimilarity (dis1–4) 
Spectral bands 1–4  

∑i,j(i − j)g(i,j)2 
Summer 

Information Measure of 

Correlation 1 (IC1–4) 

Spectral bands 1–4  

Hxy − Hxy1/max(Hx,Hy) 
Summer 

Sum Variance (SVar1–4) 
Spectral band 4  

∑𝑘=2
2𝑁 (k − Hx+y)gi+j(k) 

Summer 

PCA1 Mean of the first component from Principal Component Analysis  Spring and summer 

With: g(i,j) a normalized element of the GLCM matrix; µx; µy and σx; σy the means and standard 

deviations expressed as: µx = ∑ 𝑖𝑔(𝑖, 𝑗),𝑖,𝑗  µy = ∑ 𝑗𝑔(𝑖, 𝑗),𝑖,𝑗  σx = √∑ (𝑖 − 𝜇x)2g𝑖,𝑗 (𝑖, 𝑗),  σy = 

√∑ (𝑖 − 𝜇y)2g𝑖,𝑗 (𝑖, 𝑗). 

2.3.3. Classification and Tree Cover Mask 

In the field of remote sensing, two major classifiers have been widely used due to their excellent 

classification results and the speed of processing: Random Forest (RF) and Support Vector Machine 

(SVM) [41,42]. The RF classifier yields reliable classifications using predictions derived from an 

ensemble of classification and regression trees (CARTs). The trees are created by drawing a subset of 

training samples through replacement which means that the same sample can be selected several 

times, while others may not be selected at all. RF produces an estimate of the generalization error 

using the Out-Of-Bag (OOB) samples. Relative feature importance is automatically calculated as 

Mean Decrease Accuracy (MDA) through random permutation. We used default parameters, which 

provide good classification results in tree species classification [43], and set the number of trees to be 

grown to 500 and the number of features used in each split was set equal to the square root of the 

total number of input features. The Support Vector Machine (SVM) classifier is a supervised non-

parametric statistical learning method [44] which makes no assumption about the underlying data 

distribution (for a review, see Mountrakis et al. [41]). The SVM algorithm separates a given set of 

labeled training data with a hyperplane which finds the maximum distance. We used a Gaussian 

Radial Basis Function (RBF) kernel which has shown good performances in object-based image 

analysis [45,46]. Optimal cost and gamma values were determined by the grid search function in the 

R package e1071. We used the package randomForest [47] in the open-source software R 3.1.3 to 

perform RF models, and the SVM was implemented using the package e1071 [48]. A cross-validation 

technique was used to assess the performances of models. The reference sample is randomly split 
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into k subsets of equal size, k-1 subsets are then used as training data, and the remaining subset is 

used as validation data. Each k subset is used once as the validation data, and the k-fold cross-

validation is repeated k times. This technique allows one to use the entire reference sample for both 

training and validating the models. We used the common 10-fold cross validation for both classifiers 

and for both single-date and bi-temporal classification [49]. Three accuracy measures, the overall 

accuracy (OA), kappa value (k), user’s accuracy (UA), and producer’s accuracy (PA), were used to 

assess the accuracy of models. PA corresponds to the error of omission (pixels that belong to a class 

but fail to be classified into this class), UA measures the error of commission (pixels that belong to a 

class but are labeled as belonging to another), and OA summarized the total classification accuracy. 

A model’s accuracy is considered as poor for a Kappa coefficient value below 0.20, moderate between 

0.40 and 0.60, and beyond 0.80 means almost perfect [50]. McNemar’s test was used to evaluate the 

statistical significance of the observed differences in the overall and class-specific accuracies of single-

date and bi-temporal classifications using the same reference sample [51]. This non-parametric test 

evaluates the differences between paired proportions and the difference between the two 

classifications is significant when the p-value is less than 0.05. 

Extraction of tree- and non-tree objects was made using a two-step process. In the first step, we 

mask buildings and water objects using the thematic layers of BDTopo®, acquired in December 2014 

and provided by the National Institute of Geographic and Forestry Information (IGN), and 

agricultural and herbaceous areas using thematic layers acquired in June 2015 and provided by the 

intercommunal structure Aix-Marseille-Provence Metropolis. This step allows one to avoid potential 

spectral overlap between vegetation and, for example, green roofs. In the second step, we used an 

NDVI threshold to extract tree objects. Histogram analysis of the NDVI band from the summer image 

was used to estimate NDVI threshold as 0.6. All the objects with mean NDVI values lower than this 

threshold are thus removed. It should be noted that the purpose of using an NDVI threshold in this 

study was only to differentiate trees and background, and not to determine the phenology of species. 

2.3.4. Ring-Necked Parakeet Breeding Occurrences 

Breeding site locations of ring-necked parakeets in the study area were compiled from the 

database of the regional antenna of the French Bird Protection League, a national network which 

compiles observations made by volunteers (Collectif, in http://www.faune‐paca.org, subject to a 

convention and extracted on December 2016). The dataset was composed by 1830 parakeet breeding 

occurrences for the period 2009–2016. 

3. Results 

3.1. Classification Results 

Table 4 lists the accuracy measures including the average overall accuracy (OA) and kappa 

values from single-date and bi-temporal images at the study area. The OA ranges from 64.1% to 79.2% 

and Kappa values from 0.53 to 0.72. Using either the SVM or RF algorithm, tree species classification 

based on bi-temporal Pléiades images produces higher accuracies than those based on the single-date 

image. When using bi-temporal images, the OA and the kappa values are respectively 11.5–13.9% 

and 0.12–0.17 higher compared to classification using single-date image. 

Table 4. Accuracy measures for the urban tree species classification using SVM and RF with single-

date and bi-temporal Pléiades images. SVM: Support Vector Machine; RF: Random Forest; OA: 

Overall Accuracy. 

 
SVM RF 

OA (%) Kappa OA (%) Kappa 

Single-date (using Spring Pléiades image) 64.1 0.53 65.3 0.55 

Bi-temporal Pléiades images 75.6 0.65 79.2 0.72 

 

http://www.faune/
http://paca.org/
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3.2. Relative Importance of Features 

The MDA (Table 5) and the F-score (Table 6) highlight the feature importance in the single-date 

and the bi-temporal classification, respectively, in the RF and the SVM models. Textural measure of 

correlation in the blue band (Summer_IC3, Table 5) and in the green band (Summer_Cor2, Table 6) 

were the most important features in the single-date classification, followed by spectral features in the 

blue and the NIR bands (Summer_Mean3 and Summer_Mean4, Table 5) for the RF model and only 

in the blue band (Summer_Mean3, Table 6) for the SVM model. When using bi-temporal images, the 

textural measure of correlation in the summer image red band (Summer_IC1, Table 5) followed by 

spectral information in the spring image NIR band (Spring_Mean4) were the most important features 

in the RF model. In the SVM model, measures of entropy in the summer green band (Summer_Entro2, 

Table 6) and correlation in the summer red band (Summer_Cor1) were the two most important 

features.  

Table 5. Mean Decrease Accuracy values of the ten most important features in the single-date 

classification and the bi-temporal classification using RF algorithm. 

Mean Decrease Accuracy 

Features Single-Date Features Bi-Temporal 

Summer_IC3 25.1 Summer_IC1 24.9 

Summer_Mean3 24.3 Spring_Mean4 22.8 

Summer_Mean4 23.4 Summer_IC3 18.9 

Summer_IC1 21.9 Spring_Mean3 18.5 

Summer_Cor4 20.4 Summer_IC2 18.4 

Summer_Cor1 19.8 Summer_Cor4 18.1 

Summer_Entro2 19.7 Summer_Cor1 17.9 

Summer_Dis4 18.7 Summer_ PCA1 17.8 

Summer_SVar4 18.6 Spring_Var4 17.8 

Summer_Clupro4 18.4 Spring_SVar4 17.5 

Table 6. F-score values of the ten most important features in the single-date classification and the bi-

temporal classification using SVM algorithm. 

F-Score (%) 

Features Single-Date Features Bi-Temporal 

Summer_Cor2 79.1 Summer_Entro2 77.9 

Summer_Mean3 53.4 Summer_Cor1 50.4 

Summer_Entro2 48.5 Summer_Dis3 42.9 

Summer_IC3 42.4 Summer_IC4 39.4 

Summer_Cor3 42.3 Summer_Dis2 38.9 

Summer_Cor1 37.4 Summer_IC3 35.7 

Summer_Dis2 36.1 Summer_Cor2 35.4 

Summer_Mean1 32.4 Summer_Entro4 34.8 

Summer_NDVI 32.1 Spring_Var4 31.4 

Summer_Var4 28.9 Spring_Mean3 31.2 

3.3. Tree Species Classification 

The confusion matrices in Table 7 summarize the results for the tree species classification based 

on 10-fold cross-validation using RF in single-date and bi-temporal classifications. The producer’s 

accuracies ranged from 27.9% (Quercus sp.) to 87.1% (Tilia sp.) in the single-date classification and 

ranged from 33.4% (Quercus sp.) to 100% (coniferous species) in the bi-temporal classification. The 

user’s accuracies ranged from 44.6% (other broadleaf species) to 100% (coniferous species and 

Quercus sp.) in the single-date classification and ranged from 54.9% (Platanus sp.) to 100% (coniferous 

species and Quercus sp.) in the bi-temporal classification. With the exception of Quercus sp., bi-

temporal images significantly improved (p < 0.05) the discrimination between the different species of 

broadleaf trees with increases of the producer’s accuracies of all species. The most problematic class 



Remote Sens. 2017, 9, 916  11 of 20 

 

was Quercus sp., achieving only PA around 28% in the single-date classification and 33% in the bi-

temporal classification with no significant difference found according to the McNemar test. When 

using bi-temporal Pléiades images, the coniferous and broadleaf tree species were perfectly separated 

(100% coniferous trees correctly classified). The preeminence of bi-temporal classification is 

supported by the result of McNemar’s test with significant difference found when using RF algorithm 

(p < 0.05).  

Table 7. Confusion matrices and statistical measures for the tree species classification with single-

date and bi-temporal Pléiades images using Random Forest algorithm. UA: User’s accuracy, PA: 

Producer’s accuracy.  

Single-Date Classification 
 Reference Data       

Classified as Platanus sp. Tilia sp. Celtis sp. Quercus sp. 
Coniferous 

Species 

Other Broadleaf 

Species 
Σ 

UA  

(%) 

Platanus sp. 82 21 5 0 0 37 145 56.5 

Tilia sp. 15 561 404 127 0 132 1239 45.3 

Celtis sp. 4 38 598 40 0 4 684 87.4 

Quercus sp. 0 0 0 65 0 0 65 100 

Coniferous species 0 0 0 0 395 0 395 100 

Other broadleaf species 0 24 25 1 84 108 242 44.6 

Σ 101 644 1032 233 479 281 2770  

PA(%) 81.2 87.1 57.9 27.9 82.5 38.4  65.3 

Kappa        0.55 

Bi-Temporal Classification 

 Reference Data       

Classified as Platanus sp. Tilia sp. Celtis sp. Quercus sp. 
Coniferous 

Species 

Other Broadleaf 

Species 
Σ 

UA  

(%) 

Platanus sp. 83 7 35 0 0 26 151 54.9 

Tilia sp. 18 606 164 120 0 125 1033 58.7 

Celtis sp. 0 15 819 32 0 0 866 94.6 

Quercus sp. 0 0 0 78 0 0 78 100 

Coniferous species 0 0 0 0 479 0 479 100 

Other broadleaf species 0 16 14 3 0 130 163 79.7 

Σ 101 644 1032 233 479 281 2770  

PA (%) 82.2 94.1 79.4 33.5 100 46.3  79.2 

Kappa        0.72 

McNemar’s test 

significance 
NS *** *** NS *** **  *** 

NS: p > 0.05. * p < 0.05. ** p < 0.01. *** p < 0.001. 

We classified the study area with the object-based RF models using single-date Pléiades image 

and bi-temporal Pléiades images. Figure 6 displays two levels of detail for both the single-date (Figure 

6A) and the bi-temporal classification (Figure 6B). The classification of Celtis sp. using bi-temporal 

images corresponded well to the field survey observations, with a large dominance of this species in 

the road-street alignments. The improvement of differentiation between Tilia sp. and Celtis sp. is 

showed in higher detail between the single-date classification (upper right) and the bi-temporal 

classification (lower right). 
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Figure 6. Classification maps based on object-based RF model using (A) single-date Pléiades image 

and (B) bi-temporal Pléiades images. 

3.4. Relative Use of Tree Species by Nesting Ring-Necked Parakeets 

Table 6 summarized the tree species classified using RF in bi-temporal Pléiades images and used 

as nest sites by the ring-necked parakeet in the study area in Marseille, France. RF classification allows 

one to identify 98.5% of the tree species used by the ring-necked parakeet for nesting. The most used 

tree species is Platanus sp. in which 95% of the parakeets’ nests are found. A very low proportion of 

parakeet nests is also found in Quercus sp. and Tilia sp. 

4. Discussion 

4.1. Contribution of Bi-Temporal Pléiades Images on Urban Tree Species Classification 

In this study, we evaluated the potential of bi-temporal Pléiades images for tree species 

classification in a Mediterranean city of France, Marseille. To our knowledge, this is the first time that 
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a study has assessed the additional contribution of using more than one Pléiades image in tree species 

classification. We applied an object-based approach with two machine learning algorithms, SVM and 

RF, using either solely summer Pléiades image or using both spring and summer Pléiades images. 

Bi-temporal classification achieved overall accuracies 11.5–13.9% higher compared to single-date 

image classification with significant differences in overall and class-specific accuracies found when 

using RF algorithm. Producer’s and User’s accuracy were also more balanced. In comparison with 

previous studies, we only used images representing two seasons, spring and summer. Tigges et al. 

[17] recommend the use of three seasons, spring, summer, and autumn, to discriminate tree species 

with the highest accuracy in urban areas. Li et al. [16] combined two WorldView images, acquired in 

late summer and high autumn, for identifying tree species in Beijing, China. They achieved good 

classification results with an overall accuracy of 92.4% using bi-temporal images. Our results confirm 

these findings by combining images acquired in early spring and high summer and highlight the 

additional contribution of Pléiades bi-temporal images in the discrimination between coniferous and 

broadleaf species, and between the different species of broadleaf trees. The higher accuracy of the bi-

temporal models may be attributed to the use of the spring image during the process, representing 

the differences in the phenological patterns among tree species and thus helped to improve their 

separability. Indeed, the development of leaves from early spring to summer leads to an increase of 

the content of chlorophyll in the leaves’ cells. As shown by the difference between spectral reflectance 

values in Figures 2 and 3, this phenological process results in a decrease of reflectance in the blue and 

red bands and an increase in the NIR band. In our study, a clear distinction between coniferous and 

broadleaf species was made using bi-temporal images. As shown in Figure 3, coniferous species 

traditionally exhibit lower reflectance values in the NIR spectrum in comparison with broadleaf 

species, due to their particular structure of leaves with less chlorophyll contained in their cells [52]. 

The feature importance analysis (Tables 5 and 6) confirms the high contribution of the spring NIR 

band in the bi-temporal models. Using both spring and summer images particularly improves the 

separability between Tilia sp. and Celtis sp. As shown in Figure 2A, Tilia sp. displays significant 

differences of the reflectance values in the four spectral bands of the spring images in comparison 

with the other broadleaf trees. This may be due to its specific phenological pattern, especially in the 

Mediterranean region, with the presence of early leaves on Tilia sp. at the beginning of the spring 

season, while leaves are not yet developed on the other broadleaf species. The most problematic class 

was Quercus sp., with producer’s accuracies only equal to 27.9% in the single-date classification and 

33.5% in the bi-temporal classification. This may be explained by the low number of reference 

polygons for this class, the lowest among all classes, and thus the difficulty in characterizing the 

spectral variability of individuals trees according to their different phenological stages or ages along 

the urban gradient. Regarding the relative contribution of features extracted from both Pléiades 

images, textural and spectral information contributed differently according to the classification 

scheme. When using the single-date image, textural features in the green and the blue bands and 

spectral information in the blue and the NIR bands were the most important features. When using 

bi-temporal images, textural features in the four bands of the summer image and spectral information 

in the NIR and blue bands of the spring image were among the most important features. The 

importance of the blue band has previously been highlighted by several studies using Pléiades 

imagery [53] and its importance in classifying coniferous species due to their low photosynthetic 

activity in the blue light [54]. Unexpectedly, the NDVI band of the spring image was not among the 

most important features, regardless of the classifiers used. As pointed out by Sheeren et al. [55], who 

found similar results in temperate forests in southwest France, NDVI is, by definition, correlated to 

the red and NIR bands and that more information is found in these bands. Achieving an overall 

accuracy of 79.2%, our bi-temporal RF model supports that the combination of textural and spectral 

features lead to satisfactory results as shown by previous studies [39,56]. In this study, we only used 

textural features extracted from the summer image. As computing power can be a major limitation 

in the classification of tree species in large areas such as a city, the good accuracy of our model 

suggests that these features may be sufficient. However, further comparative research should 
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investigate the additional contribution of textural information extracted from other seasons with 

different ages of leaves. 

4.2. Random Forest and Support Vector Machine Algorithms 

We tested two classification algorithms for classifying the image objects, Random Forest and 

Support Vector Machine, to ensure that the improvement of bi-seasonal images in urban tree species 

classification is independent of the classification approaches used. Most studies that used these 

classifiers in tree species classification found that they achieve good performances with high 

accuracies [16]. Studies that have compared SVM and RF in various classification applications found 

very different results. For example, Pal [57] found that these two algorithms perform equally well for 

land cover classification using Landsat data while Li et al. [16] compared SVM and RF for tree species 

classification and found that SVM systematically outperforms RF. In this study, we found that RF 

slightly outperforms SVM regardless of the classification scheme, and we used RF results to identify 

tree species used by the ring-necked parakeet. 

4.3. Spatial Distribution of Tree Species and Breeding Ring-Necked Parakeets across the City of Marseille 

Figure 6 shows the spatial distribution of the different tree species mapped in this study. 

Scattered distribution of tree species may increase the potential of misclassification given that tree 

crowns may overlap between adjacent species. In our study, the most well-classified tree species was 

Celtis sp., which is increasingly used in Marseille as road street trees. Its uniform distribution thus 

reduces the effect of different species crown overlap. The ring-necked parakeet is a cavity-nesting 

bird widely introduced in European cities. In its introduced range, this parakeet already showed its 

preference for the genus Platanus in many cities. Platanus sp. trees host more than the half of the 

broods in the Upper Rhine Valley [58] and 66% in Heidelberg city, Germany [59], 78% in the Ile-de-

France region, France [60], and 62% in Sevilla, Spain [61]. Tree species classification performed in this 

study allowed identification of 98.5% of all tree species used by nesting ring-necked parakeets (Table 8). 

To our knowledge, this is the first time that remote sensing has been used to study potential nesting 

preferences of bird species. The tree species used as nesting sites by ring-necked parakeets in 

Marseille matches the literature, our results showed that the majority of the nests are found in 

Platanus sp. trees. The extensive use of Platanus tree cavities by the ring-necked parakeet has mainly 

been attributed to the highest number of cavities found in this tree species and to the dominance of 

Platanus sp. trees in urban tree communities. Our methodology does not allow us to assess the 

proportion of individual Platanus sp. trees in the study area, even if we found that it is not the most 

abundant species in terms of coverage. In the city of Marseille, Platanus sp. trees have been extensively 

planted as road/street trees and for ornamental aims. However, it is affected by a fungus, Ceratocystis 

platani, responsible for the lethal canker stain disease which will require urban planners to cut the 

dying individuals and replace them with others such as Celtis australis. This species turn-over may 

have a high impact on biodiversity because of the progressive decrease of cavity availability due to 

the newly-planted young trees. Cavity availability is a major element of competition and shapes the 

species composition within the cavity-nesters community inside cities. The presence of old and large 

trees is critical for the subsistence of animal species such as owls, bats, and other cavity-nesters. 

Databases of areas with suitable trees are thus crucially needed to study their spatial distribution and 

may be a useful tool to biodiversity-friendly urban planning. A supplementary step after the 

classification of tree species may allow one to obtain information on the age of individual trees and 

used as a proxy for cavity availability. Methods using textural features, as proposed by Franklin et 

al. [62], represents a promising area to achieve this task. 
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Table 8. Tree species used as nest sites by ring-necked parakeets Psittacula krameri in Marseille, France. 

 Number of Ring-Necked Parakeets Nests Proportion (%) 

Platanus sp. 1738 95 

Tilia sp. 27 1.5 

Celtis sp. 0 0 

Quercus sp. 37 2 

Coniferous trees 0 0 

Other broadleaf trees 18 1 

Other 10 0.50 

Total 1830 100 

5. Conclusions 

In this study, our aim was to map the different tree species in a Mediterranean city of France to 

identify the tree species used by an introduced bird species, the ring-necked parakeet, as nest sites. 

Pléiades images were used and object-based classifications were performed using either a single-date 

image (acquired in summer) or bi-temporal images (acquired in spring and summer) with two 

classifiers, Random Forest and Support Vector Machine. The main conclusions derived from our 

study were: 

(1) Our results showed for the first time that bi-temporal Pléiades images improve the 

discrimination between coniferous and broadleaf tree species, and the discrimination between 

the different broadleaf tree species. 

(2) Our findings also suggest that the combination of textural and spectral information is important 

for discriminating tree species, and that textural features extracted during in-leaf seasons may 

be sufficient to achieve good classification accuracy. 

(3) Object-based classification represents a powerful tool to study the ecological requirements of 

fauna, especially in urban areas. Remote sensing techniques using open-source software such as 

Orfeo ToolBox may be particularly useful for invasive species management but also for the 

conservation of native fauna by highlighting ecological preferences regarding their breeding and 

feeding areas. 

The Platanus sp. distribution map generated in this study will be used as an environmental 

predictor for the study of ring-necked parakeet population dynamics through Species Distribution 

Models (SDMs). One of the major issues of SDMs is to obtain environmental layers which are 

temporally coherent with the occurrence data of the target species. In our opinion, remote sensing is 

one of the most powerful and time/cost-friendly techniques which will enable the generation of 

spatio-temporally consistent species distribution models (SDMs) called by He et al. [63] the next-

generation of SDM (NG-SDMs). In our opinion, researchers in the field of ecology and geography may 

gain great advantages by combining their knowledge and expertise to produce interdisciplinary research. 
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Appendix A 

Table A1. Pearson’s correlation matrices for the features extracted from summer Pléiades image. 

Summer Pléiades Image 

Band 1 

 Energy Entropy Correlation Inverse Difference Moment Inertia Cluster Shade Cluster Prominence Haralick Correlation 

Energy 1.00 −0.96 0.12 0.88 −0.57 −0.04 −0.38 −0.51 

Entropy  1.00 0.22 −0.95 0.72 0.06 0.52 0.68 

Correlation   1.00 0.40 −0.41 0.05 −0.12 −0.04 

Inverse Difference Moment    1.00 −0.83 0.00 −0.53 −0.67 

Inertia     1.00 −0.05 0.71 0.66 

Cluster Shade      1.00 −0.07 −0.30 

Cluster Prominence       1.00 0.55 

Haralick Correlation        1.00 

Band 2 

 Energy Entropy Correlation Inverse Difference Moment Inertia Cluster Shade Cluster Prominence Haralick Correlation 

Energy 1.00 −0.96 0.12 0.88 −0.57 −0.04 −0.38 −0.51 

Entropy  1.00 −0.23 −0.95 0.72 0.02 0.51 0.66 

Correlation   1.00 0.40 −0.41 0.04 −0.28 −0.28 

Inverse Difference Moment    1.00 −0.83 0.00 −0.53 −0.67 

Inertia     1.00 −0.05 0.71 0.66 

Cluster Shade      1.00 −0.08 −0.31 

Cluster Prominence       1.00 0.59 
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Table A1. Cont. 

Summer Pléiades Image  

Band 3 

 Energy Entropy Correlation Inverse Difference Moment Inertia Cluster Shade Cluster Prominence Haralick Correlation 

Energy 1.00 −0.97 −0.07 0.89 −0.61 −0.07 −0.40 −0.53 

Entropy  1.00 −0.04 −0.96 0.73 0.05 0.52 0.66 

Correlation   1.00 0.22 −0.30 0.04 −0.20 −0.17 

Inverse Difference Moment    1.00 −0.84 −0.04 −0.55 −0.67 

Inertia     1.00 −0.04 0.71 0.67 

Cluster Shade      1.00 −0.09 −0.30 

Cluster Prominence       1.00 0.58 

Band 4 

 Energy Entropy Correlation Inverse Difference Moment Inertia Cluster Shade Cluster Prominence Haralick Correlation 

Energy 1.00 −0.99 −0.46 0.96 −0.77 0.05 −0.57 −0.78 

Entropy  1.00 0.41 −0.98 0.82 −0.05 0.62 0.80 

Correlation   1.00 −0.30 0.13 −0.02 0.14 0.29 

Inverse Difference Moment    1.00 −0.90 0.05 −0.64 −0.80 

Inertia     1.00 −0.09 0.73 0.68 

Cluster Shade      1.00 −0.09 −0.27 

Cluster Prominence       1.00 0.55 
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