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ABSTRACT. Two pressure-correction Finite Volume algorithms are evaluated on compressible

flows with shock wave patterns. Both algorithms are compared with a classical hyperbolic

scheme based on the approximate solution of a Riemann problem on each cell interface. Schemes

are briefly described. Test cases involve standard Riemann problems with or without shocks, in

both homogeneous and inhomogeneous cases. The L1 norm of the error is presented in each

case. As expected, it is shown that conservative schemes enable to compute meaningful com-

pressible solutions, whenever rarefaction waves, contact discontinuities and even shock waves

occur. Rates of convergence are very similar to those observed for upwinding schemes.

KEYWORDS: Compressible flow, pressure-correction algorithm, Godunov scheme, Finite Volume

conservative scheme, positivity, total enthalpy conservation

1. Introduction

The main objective of this work is to check whether pressure-correction algorithms
enable to retrieve meaningful solutions of compressible Euler equations, even when
unsteady shock waves occur. Actually, in order to compute Euler equations with
shock waves, hyperbolic schemes are usually considered and have already proved
to provide very good approximate solutions on any mesh size ([GOD 96]): the huge
amount of literature is of course not recalled here. On the countrary, few papers ad-
dress the suitability of pressure-correction algorithms for such a purpose. Here, two
pressure-correction algorithms are presented (see [ARC 07] for details, in particu-
lar space discretizations) and compared on test-cases for which an exact solution is
available. The L1-norm of the error is displayed, which enables to compare with the
literature ([GAL 02-1]). Eventually, these algorithms and an approximate Godunov
scheme are used to compute a test-case with a strong local and constant heat source
term, for which no exact solution exists. The effect of the mesh refinement is studied.



The system to solve is recalled below. We note: c2 = ∂ρP |s and β = ∂sP |ρ
where P , ρ and s stand for pressure, density and entropy. With standard notations for
the momentum q = ρu, the velocity u, the total enthalpy H = E + P/ρ and the total
energy E = ε(P, ρ) + u2/2, we consider the 1D Euler equations with a perfect gas
EOS (P = (γ − 1)ρε(P, ρ) = ρ r T ) and a heat source term Φ independant of time:







∂tρ + ∂x(ρ u) = 0
∂t(ρ u) + ∂x(ρ u2) + ∂xP = 0
∂t(ρ H) + ∂x(ρ u H) = ∂tP + Φ

[1]

2. NLK algorithm: a pressure-correction algorithm with sub-iterations

This pressure-correction algorithm sequentially solves the equations of momen-
tum, mass and enthalpy, with sub-iterations to ensure conservativity in time. The al-
gorithm also conserves the total enthalpy along a streamline, in a steady flow when no
dissipation/source term is present. At each time step, a global iterative process couples
the velocity and the enthalpy-pressure steps: one iterates for m = 1 to m = ntg > 0 (a
given integer) over the steps [[1.]] and [[2.]] defined below, starting from Qn+1

m=1 = qn

(for n = 0, u0, P 0 and H0 are given, we take q0 = ρ0 u0 and ρ0 from the EOS).
[[1.]] velocity step: a predicted velocity u∗

m is computed from:

ρn u∗

m − un

∆ t
− u∗

m ∂xQn+1
m + ∂x(qn u∗

m) = −∂xPn [2]

[[2.]] enthalpy-pressure step: a sub-iterative process couples enthalpy and pres-
sure: one iterates for k = 1 to k = nthm > 0 (a given integer) over the steps [[2.1.]]

to [[2.3.]] defined below, starting from (u, H, P, q)
n+1

m,k=1
= (u∗

m,Hn, Pn, ρn u∗

m):

[[2.1.]] enthalpy step: Hn+1

m,k+1
(total enthalpy) and an updated density ρn+1

m,k+1/2

are computed from:

ρn
Hn+1

m,k+1
− Hn

∆ t
− Hn+1

m,k+1
∂xqn+1

m,k + ∂x(qn+1

m,k Hn+1

m,k+1
) =

Pn+1

m,k − Pn

∆ t
+ Φ

ρn+1

m,k+1/2
=

γ Pn+1

m,k

(γ − 1)(Hn+1

m,k+1
− 1

2
un+1

m,k un+1

m,k )
[3]

[[2.2.]] stopping test and updates: detailed below
[[2.3.]] pressure step: an updated pressure Pn+1

m,k+1
is computed and is used to

update the mass flux qn+1

m,k+1
, the velocity un+1

m,k+1
and the density ρn+1

m,k+1
:

Pn+1

m,k+1
− Pn+1

m,k

(c2)n∆ t
− ∂x∆ t∂x(Pn+1

m,k+1
− Pn+1

m,k ) = −
ρn+1

m,k+1/2
− ρn

∆ t
− ∂xqn+1

m,k

[4]


















un+1

m,k+1
− un+1

m,k

∆ t
= −

∂x(Pn+1

m,k+1
− Pn+1

m,k )

ρn+1

m,k+1/2

qn+1

m,k+1
− qn+1

m,k

∆ t
= −∂x(Pn+1

m,k+1
− Pn+1

m,k )

[5]



ρn+1

m,k+1
=

γ Pn+1

m,k+1

(γ − 1)(Hn+1

m,k+1
− 1

2
un+1

m,k+1
un+1

m,k+1
)

[6]

The pressure correction equation [4] is derived from the discrete mass equation:
ρn+1

m,k+1
−ρn

∆ t + ∂xqn+1

m,k+1
= 0. To do so, the mass flux qn+1

m,k+1
is replaced by its expres-

sion according to [5]: qn+1

m,k −∆ t∂x(Pn+1

m,k+1
−Pn+1

m,k ). Moreover, the density variation

is split into two parts: ρn+1

m,k+1
− ρn+1

m,k+1/2
and ρn+1

m,k+1/2
− ρn; the first part vanishes

when the iterative process converges and it is modelled as: (Pn+1

m,k+1
− Pn+1

m,k )/(c2)n.

The stopping test and subsequent updates are detailed hereafter. The iterations are
not necessarily executed up to k = nthm and m = ntg. To end a given m-cycle, a
convergence test (C1) is carried out at the end of the enthalpy step, at each k-iteration
(except at the first one): the current m-cycle is interrupted (and the last pressure step
of the cycle is skipped) if (C1) is true, that is if k = nthm or if the discrete mass
equation (rhs of [4]) is satisfied. To end a given time step, a convergence test (C2)
is carried out at the end of each m-cycle: the current time step is interrupted if (C2)
is true, that is if m = ntg or if the discrete divergence of the mass flux Qn+1

l did not
vary between the last two cycles l = m − 1 and l = m. With these stopping tests:

• at the end of the last m-cycle1, we update the variables for the next time-step:

(u, P, q)
n+1

= (u, P, q)
n+1

mmax,kmax
, Hn+1 = Hn+1

mmax,kmax+1
, ρn+1 = ρn+1

mmax,kmax+1/2

[7]
• at the end of all other m-cycles2, only Q is updated for the next m-cycle:

Qn+1
m+1 = qn+1

m,kmax
[8]

The discretization in space relies on a cell-centred Finite Volume technique. A first
order upwind discretization3 is used for the terms of the form ∂x(q φ) with φ standing
for u or H . All other gradients are centred.

Conservativity in time4 needs ρn u∗

mmax
−un

∆ t −u∗

mmax
∂xQn+1

mmax
= ρn+1 un+1

−ρn un

∆ t

and ρn Hn+1

mmax,kmax+1
−Hn

∆ t −Hn+1

mmax,kmax+1
∂xqn+1

mmax,kmax
= ρn+1 Hn+1

−ρn Hn

∆ t . These
relations hold if the enthalpy-pressure and the global iterative cycles are converged.
Indeed, convergence yields:

• u∗

mmax
= un+1 and Hn+1

mmax,kmax+1
= Hn+1

• ρn+1

mmax,kmax+1/2
= ρn+1 so that: ρn+1

−ρn

∆ t + ∂xqn+1

mmax,kmax
= 0

• ∂xqn+1

mmax,kmax
= ∂xqn+1

mmax−1,kmax
, so that, with: Qn+1

mmax
= qn+1

mmax−1,kmax
,

we have: ρn+1
−ρn

∆ t + ∂xQn+1
mmax

= 0

1. (C1) and (C2) are true, m = mmax 6 ntg and k = kmax 6 nthm
2. (C1) is true, (C2) is false, m < ntg and k = kmax 6 nthm

3. On a regular mesh with cells numbered i and interfaces i + 1

2
, we have:

R x
i+ 1

2
x

i− 1
2

q φ dx = q
i+ 1

2
(α

i+ 1
2
φi +(1−α

i+ 1
2
)φi+1)− q

i−
1
2
(α

i−
1
2
φi−1 +(1−α

i−
1
2
)φi) with

α
k+ 1

2
= 1 for q

k+ 1
2

> 0 and α
k+ 1

2
= 0 otherwise.

4. Conservativity in space is ensured by construction with the Finite Volume scheme used.



3. SLK algorithm: a conservative pressure-correction algorithm

This pressure-correction algorithm sequentially solves the equations of mass, mo-
mentum and energy without sub-iteration [MAT 03]. By construction, this scheme
is conservative in space and time. Provided a condition on the time step value, the
scheme ensures the discrete positivity of the density and of scalar variables when no
source term is present. The algorithm also preserves the total enthalpy along a stream-
line, in a steady flow when no dissipation/source term is present. At each time step
the sequential procedure is the following:

[[1.]] compute the density ρn+1 and the mass flux qn+1
ac from:

ρn+1 − ρn

∆ t
+ ∂x (qn − ∆ t βn ∂x sn) − ∂x (∆ t (c2)n ∂x ρn+1)) = 0 [9]

qn+1
ac = qn − ∆ t

(

(c2)n ∂x ρn+1 + βn ∂x sn
)

[10]

[[2.]] sequentially compute the velocity un+1 and the total energy En+1 from:

ρn un+1 − un

∆ t
− un+1 ∂xqn+1

ac + ∂x(qn+1
ac un+1) = −∂xPn [11]

ρn En+1 − En

∆ t
− En+1 ∂xqn+1

ac + ∂x

(

qn+1
ac

(

En+1 +
Pn

ρn+1

))

= Φ
[12]

[[3.]] update the pressure from: Pn+1 = (γ − 1) ρn+1
(

En+1 − 1

2
un+1 un+1

)

As for NLK, the discretization in space relies on a cell-centred Finite Volume
technique. A first order upwind discretization is used for terms of the form ∂x(q φ),
with φ standing for u or E + P/ρ. All other gradients are centred.

Conservativity in space is ensured by construction (Finite Volume scheme). Con-

servativity in time is ensured if ρn un+1
−un

∆ t − un+1 ∂xqn+1
ac = ρn+1 un+1

−ρn un

∆ t (and
a similar relation for E instead of u). This relation is ensured by the discrete form of

the mass equation (from [9] and [10]): −∂xqn+1
ac = ρn+1

−ρn

∆ t .

4. VFRoe-ncv: a conservative approximate Godunov scheme

To provide a reference solution for the present computations with a heat source
term, many Godunov type schemes may be selected (see [GOD 59] [GOD 96]). Here,
the VFRoe-ncv scheme has been adopted: a detailed description can be found in [BUF 00]
and comparisons with various Riemann solvers in [GAL 02-1] and [GAL 02-2].

5. Numerical results

We present analytical test-cases and one test-case with a constant heat source term.
Convergence studies are carried out keeping ∆ t/∆ x constant for all meshes.



First, the L1-norm of the error obtained with the pressure-correction schemes is
studied on the basis of test-cases for which an exact solution is available: double
rarefaction wave, contact discontinuity, double shock wave, Sod shock tube and a
test-case including a heat source term5. Indeed, the four first ones enable to study
the elementary wave configurations which are encountered, in a combined or complex
way, in industrial studies, and in particular in nuclear thermalhydraulic scenarii. The
last test-case is important for industrial problems with a strong heat source term, such
as, for instance, some safety studies on large electrical power transformers. The ana-
lytical solution of the test case including a heat source term is available in [ARC 07].

Both pressure-correction algorithms converge towards the correct solutions, even
when shocks are involved. Moreover, the classical convergence rates expected for so-
called "first-order" schemes are retrieved (see figure 1 for SLK, figure 2 for NLK and
[GAL 02-1] for the same test-cases computed with VFRoe-ncv). If NLK is operated
with too little sub-iterations (conservativity in time can not be ensured), convergence
properties may be lost: see figure 3 for the double shock wave and the Sod shock tube
test-cases. This is well known for non-conservative schemes applied to systems of
conservation laws (for instance [HOU 94], [GAL 02-2]). For these simulations, the
coarser and finer meshes contain respectively 80 and 10 240 regular cells.
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Figure 1. SLK - L1-errors for the test-cases without heat source term.

Moreover, a 1D test-case with a constant heat source term has been considered
(see [DOU 03] for the industrial context): it is defined by the initial conditions ρ = 1,

5. Only the results obtained without heat source term are reported here; see [SMO 83] for the
analytical solutions.
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Figure 2. NLK with ntg = 20 and nthm = 20 - L1-errors for the test-cases without

heat source term.

10
-4

10
-3

10
-2

10
-1

Mesh size

10
-4

10
-3

10
-2

10
-1

Contact discontinuity
Sod shock tube

L1 error - Density

10
-4

10
-3

10
-2

10
-1

Mesh size

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Double expansion
Double shock

L1 error - Velocity

10
-4

10
-3

10
-2

10
-1

Mesh size

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

y = a x (First order slope)

L1 error - Pressure

10
-4

10
-3

10
-2

10
-1

Mesh size

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

L1 error - Total energy

Figure 3. NLK with ntg = 1 and nthm = 2 - L1-errors for the test-cases without

heat source term.



u = 0, and P = 105. The constant heat source term Φ is zero everywhere except
in the centre of the domain (Φ = 1010 in a zone extending over a length of 0.1).
It is observed that when the mesh is refined, the solutions obtained with SLK and
NLK converge towards the VFRoe-ncv reference solution6. If NLK is operated with
an insufficiently large number of sub-iterations to ensure conservativity, the solution
does not converge as the mesh is refined (figure 4). For these simulations, the coarser
and finer meshes contain respectively 80 and 6 480 regular cells.
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Figure 4. L1-difference between NLK and VFRoe-ncv (curves NLK) and between SLK

and VFRoe-ncv (curves SLK) for the test-case with a constant heat source term; the

results with NLK were obtained with two sets of parameters: (ntg = 1; nthm = 2)

and (ntg = 20; nthm = 20). The dashed lines represent the slopes of 0.5 and 1.

6. Conclusion

The ability to solve compressible flows with pressure correction algorithms has
been investigated. Two algorithms have been studied: one of them ensures conser-
vativity using a sub-iterative process, while the second one is conservative by con-
struction. For the former, it has been demonstrated numerically that if the maximum
number of sub-iterations was not large enough, the right shock solutions could not be
captured. On the other hand, as long as conservativity is ensured, it has been numer-
ically verified that both pressure-correction algorithms can solve compressible flows
and capture the right shock solutions.

6. VFRoe-ncv reference solution has been obtained on a mesh containing 174 960 regular cells.



7. References

[ARC 07] ARCHAMBEAU F., HÉRARD J.-M., LAVIÉVILLE J., «Comparative study of pres-
sure correction and hyperbolic algorithms on unsteady compressible cases», EDF internal

report H-I81-2007-01134-EN, 2007.

[ARC 04] ARCHAMBEAU F., MÉCHITOUA N., SAKIZ M., «Code_Saturne: A finite volume
code for the computation of turbulent incompressible flows - Industrial applications», Int.

Journal on Finite Volumes, vol 1, no 1, 2004, p. 1-62, http://averoes.math.univ-paris13.fr/

[BUF 00] BUFFARD T., GALLOUËT T., HÉRARD J.-M., «A sequel to a rough Godunov
scheme: application to real gases», Computers and Fluids, vol 29, no 7, 2000, p. 813-847.

[DOU 03] DOUCE A., DELALONDRE C., BIAUSSER H., GUILLOT J.-B., «Numerical mod-
elling of an anodic metal bath heated with an Argon transferred arc», The International Iron

and Steel Institute of Japan, vol 43, no 8, 2003, p. 1128-1135.

[GAL 02-1] GALLOUËT T., HÉRARD J.-M., SEGUIN N., «Some recent finite volume
schemes to compute Euler equations using real gas EOS», International Journal for Nu-

merical Methods in Fluids, vol 39, no 12, 2002, p. 1073-1138.

[GAL 02-2] GALLOUËT T., HÉRARD J.-M., SEGUIN N., «A hybrid scheme to compute con-
tact discontinuities in one dimensional Euler systems», Math. Model. and Numerical Anal-

ysis, vol 36, 2002, p. 1133-1159.

[GOD 96] GODLEWSKI E., RAVIART P.-A., Numerical approximation of hyperbolic systems

of conservation laws, New-York, Springer-Verlag, 1996.

[GOD 59] GODUNOV S.K., «Finite difference method for numerical computation of discon-
tinuous solutions of the equations of fluid dynamics», Mat. Sb., vol 47, 1959, p. 271-300.

[GUE 07] GUELFI A., BESTION D., BOUCKER M., BOUDIER P., FILLION P.,
GRANDOTTO M., HÉRARD J.-M., HERVIEU É., PÉTURAUD P., «NEPTUNE - A new
software platform for advanced nuclear thermal hydraulics», Nuclear Science and Engi-

neering, vol 156, 2007, p. 281-324.

[HOU 94] HOU X., LE FLOCH P.G., «Why non conservative schemes converge to wrong
solutions: error analysis», Mathematics of Computation, vol 62, 1994, p. 497-530.

[MAT 03] MATHON P., ARCHAMBEAU F., HÉRARD J.-M., «Implantation d’un algorithme
compressible dans Code_Saturne», EDF internal report HI83-03/016, 2003.

[SMO 83] SMOLLER J., Shock waves and reaction-diffusion equations, New-York, Springer-
Verlag, 1983.

Acknowledgments

Part of the work presented here has been achieved in the framework of the NEP-
TUNE project [GUE 07], with financial support from CEA (Commissariat à l’Énergie
Atomique), EDF (Électricité de France), IRSN (Institut de Radioprotection et de
Sûreté Nucléaire) and AREVA-NP. The authors are grateful to the NEPTUNE_CFD
[GUE 07] and Code_Saturne [ARC 04] teams for their support with the algorithms
of these codes. The authors thank C. Delalondre for the description of the physical
electric arc problem and the initial 3D simulations that motivated the present study.
The authors also thank M. Ouraou for his participation into these 3D simulations.


