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ABSTRACT.We introduce here some possible way to deal with the unsteady interfacial coupling
of two distinct two-phase flow codes. The left code relies on the standard two-fluid approach,
and the right code provides approximations of solutions of the Homogeneous Relaxation Model
(HRM). The basic idea of the coupling method is to introduce a father model, which corresponds
to the two-fluid two-pressure approach, and to define convective fluxes through the interface,
once a prolongation of initial conditions on both sides of the coupling interface has been per-
formed. A sketch of the algorithm is provided. More details are given in the paper [HER 06]. A
few numerical results show a rather good behaviour of the coupling approach.
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1. Introduction

Different two-phase flow models are used by the nuclear community, in order to
investigate various situations in the cooling circuit of nuclear power plants. Among
these, we should at least mention the standard six-equation two-fluid model (noted
STFM afterwards) and the four-equation homogeneous relaxation model (noted HRM
in the following). The latter HRM is mainly used for nuclear reactor core applica-
tions, but also for standard computations of flow patterns in steam generators, with
THYC, FLICA or GENEPI software. The former STFM is actually the keystone of
the CATHARE code for instance, which stands for the reference code for French nu-
clear authorities, especially for simulations of the whole coolant circuit (see [GUE 07]
for a more detailed presentation of the whole framework). Some situations may re-
quire the interfacial coupling of these codes, either for steady or unsteady numerical
experiments. This has motivated the development of new methods and algorithms to
cope with these coupled cases. The present work aims at providing a sketch of the
whole coupling strategy which has been proposed for such a purpose.



Some recent work on the interfacial coupling of hyperbolic systems of conser-
vation laws has emerged quite recently. Some references ([AMB 08a], etc.) can be
found for instance on the website [AMB 03], which basically focus on the interfa-
cial state coupling (see [GOD 96] among others), or alternatively on the flux coupling
techniques. Roughly speaking, the former favours the continuity of the conserva-
tive variable, whereas the latter aims at ensuring the intrinsic conservation laws. The
reader is for instance referred to [GOD 08], which provides an extensive description
of recent work on that topic. The method that is proposed in this paper relies on the
use of a coupling model, from which both models on each side of the coupling inter-
face may be at least formally recovered. We first briefly present both models to be
coupled through the interface in section 2. Then we show which coupling model is
used in the present situation, and we provide a sketch of the coupling algorithm in the
one-dimensional framework. Since all models involved here are invariant under frame
rotation, the extension to the 2D or 3D case is achieved in a straightforward manner
by using a projection along the normal to the coupling interface. A few numerical
results are eventually presented in a 2D framework. More useful details on the whole
approach can be found in [HER 06]. The reference [HER 07a] also provides some
recent ongoing work on the interfacial coupling of existing codes. Since the method
should apply for pre-existing codes, we do not detail the algorithms that are used in
sole codes, and focus on the treatment of boundary conditions through the coupling
interface in sections 3 and 4.

2. Models to be coupled

2.1. The left standard two-fluid model: STFM

The derivation of the standard two-fluid approach may be found in [ISH 75] for
instance. The governing equations of the STFM are the following:
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where the state variable is:W t
STFM = (m1,m2,m1U1,m2U2, α1E1, α2E2). Here,

the void fractionsαk ∈ [0, 1] comply withα1 + α2 = 1. Moreover,Uk, ρk, mk =
αkρk respectively stand for the velocity, density and partial mass within phasek.
Index1 refers to the vapour phase, while the water phase is labeled by index2. The
equilibrium pressureP is the same for both phases. A closure law for the interfacial
momentum transfer termIk, which takes drag effects into account, must be given. We
thus introduce the classical contribution:

Ik = (−1)k
m1m2

τU (m1 +m2)
(U1 − U2) [2]



whereτU is the velocity relaxation time, which can be deduced from classical formu-
las of drag coefficients. A closure law relatesP ∗I to WSTFM , we consider here the
rough closure:P ∗I = P , but other forms such asP ∗I = P+β(W )(m1+m2)(U2−U1)2

might be considered. The interface velocityV ∗I is usually taken as the velocity of the
dilute phase (which corresponds to the vapour phase in nuclear applications). The to-
tal energy within phasek equalsEk = ρkU

2
k/2 + ρkek(P, ρk). An equation of state

(EOS) is of course needed, which prescribes the internal energyek(P, ρk) within each
phase. Hence the system is complete. We recall that the STFM is not hyperbolic,
unlessU1 = U2, when using the closureP ∗I = P .

2.2. The right homogeneous relaxation model: HRM

The HRM is probably the most widespread model in nuclear two-phase thermohy-
draulics. The derivation of the model is straightforward when starting from the two-
fluid approach ([ISH 75]). If we assume a vanishing relative velocityUr = U2−U1 =
0, the governing equations of the main variableW t

HRM = (ρ, ρC, ρU,E) that de-
scribes the mixture are the following:

∂ρ

∂t
+
∂ρU

∂x
= 0 ;

∂ρC

∂t
+
∂ρUC

∂x
= 0 ;

∂ρU

∂t
+
∂ρU2

∂x
+
∂P

∂x
= 0 ;

∂E

∂t
+
∂U(E + P )

∂x
= 0 .

[3]

Of course, all interfacial transfer terms have vanished when summed up. Once more,
we use classical notations, andρ stands for the density of the mixture (in other words
ρ = m1 +m2 = α1ρ1 + α2ρ2), whileU,P,C respectively stand for the velocity of
the mixture, the mean pressure and the vapour concentration (that isU = (m1U1 +
m2U2)/(m1 +m2), P = α1P1 +α2P2 andC = m1/(m1 +m2) ). The total energy
of the mixture isE = ρU2/2 + ρe(ρ, P,C), where the closure law fore(ρ, P,C) is
given by the right code. Other closure laws for the relative velocityUr can be found in
the literature. If we consider the closure law provided in [GUI 07] for instance, it must
be emphasized that the latter does not modify the convective form of the homogeneous
model [3]. System [3] is hyperbolic if:
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A classic entropy inequality holds here for the HRM.

3. The coupling model

The coupling model (or father model) enables us to retrieve the left STFM model
by enforcing a pressure equilibrium, while it also leads to the right HRM model by



imposing a pressure-velocity-temperature equilibrium. The state variable of the cou-
pling model is:W t = (α1,m1,m2,m1U1,m2U2, α1E1, α2E2). The void fractions
αk ∈ [0, 1] still comply with α1 + α2 = 1. Moreover,Uk, Pk, ρk, mk = αkρk
respectively stand for the velocity, pressure, density and partial mass within phasek.
With some abuse of notation, we still noteEk = ρkU

2
k/2 + ρkek(Pk, ρk) the total

energy of phasek. We will thus focus herein on the following two-fluid model (see
[BAE 86, KAP 97] for instance):
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A closure law for the source termsφk must be added, and these should comply with:
φ1+φ2 = 0. We will prescribe:φk = (−1)kα1α2(P2−P1)/(τPΠ0), whereτP stands
for the pressure relaxation time, whileΠ0 refers to some pressure constant given by
user. In practice, nuclear applications in pressurised water reactors obviously lead
to the choice(VI , PI) = (U1, P2), where the index1 refers to the dilute (vapour)
phase, while the index2 refers to the water phase. With this definition of(VI , PI), the
father model [4] is hyperbolic; moreover, shock solutions are uniquely defined though
the system contains some non-conservative contributions, and a meaningful entropy
inequality governs the motion of smooth solutions (see [COQ 02, GAL 04]). In the
following, we will noteZ = (α1, ρ1, U1, P1, ρ2, U2, P2). The entropy inequality
which governs regular solutions of the seven-equation model is the exact counterpart
of the entropy inequality associated with the standard two-fluid model. If we define

the specific entropysk(Pk, ρk) within each phase, which compels with:c2k
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entropyη = m1s1 + m2s2, and the entropy fluxfη = m1U1s1 + m2U2s2; thus,
regular solutions of both STFM and coupling model obey the inequality:
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4. Main ideas of the coupling algorithm

Boundary conditions are imposed on each side of the coupling interface that sepa-
rates the STFM and the HRM finite volume codes, by solving the 1D Riemann prob-
lem associated with the LHS of [4] together with initial conditionsZL, ZR as defined
below. Eventually, the interface stateZ∗ = ZRiemann(ZL, ZR, (x − xint)/∆t = 0)
is accounted for by both codes as a boundary condition through a flux prescription.



1) Defining initial conditions on both sides of the coupling interface
- Starting from the STFM-cell value on the left side of the interface:
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- Starting from the HRM-cell value on the right side of the interface:
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If EOS are chosen as stiffened gas EOS within each phase:(γk − 1)ρkek = Pk +
γkP∞,k, an explicit formula may be obtained. In that case, a direct elimination leads
to a non-linear equation wrtP+, which admits a unique solution (see [HER 06]) in
agreement with0 ≤ P+ + P∞,φ. Hence, we obtain physically relevant values:
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.

[6]

The specific heat with constant volume has been notedCV,k within phasek.

2) Solving the Riemann problem at the coupling interface
The Riemann problem at the coupling interface associated with [4],ZL andZR is
solved using either the Rusanov scheme or an approximate Godunov scheme such
as the one described in [GAL 04]. Once the intermediate stateZ∗ defined above is
known, we may calculate the flux on the right side of the interface (HRM side) by
summing up both flux components associated with the total mass and momentum,
that is:

F+
ρ = (α1ρ1U1 + α2ρ2U2)∗
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and the counterpart corresponding to the total energy flux:

F+
E = (α1U1(E1 + P1) + α2U2(E2 + P2))∗.

The mass flow rate for the vapour isF+
ρC = (α1ρ1U1)∗. The implementation is

straightforward on the left (STFM) side of the coupling interface, since we only need
to skip the first component corresponding to the void fraction in [4].

5. Numerical results

In this first academic test case, the one-dimensional computational domain con-
tains500 regular cells and the CFL number isCFL = 0.5. The coupling interface be-
tween the STFM domain (left side) and the HRM domain (right side) is located atx =
0. A Rusanov scheme has been used here to calculate convective fluxes through the
coupling interface. The initial condition is such that:P (x < x0, t = 0) = 150× 105,
P (x > x0, t = 0) = 155 × 105, wherex0 = −0.15. The flow is at rest at the begin-
ning of the computation (U1(x, t = 0) = U2(x, t = 0) = 0), and the void fraction
is uniform (α1(x, t = 0) = 0.995). The pressure disequilibrium inside the STFM re-
gion generates a rarefaction wave which moves towards the right side. The grey-green
line in Figure 1 indicates the result obtained with the coupled simulation, whereas
the black-red line corresponds to the sole calculation using the STFM model on both
sides of the coupling interfacex = 0. We have plotted here the state variable of the
HRM model (liquid mass fractionC, densityρ, velocityU , and pressureP ) in order
to obtain a relevant comparison. Obviously, we can notice a difference in the mass
fraction profile, which is essentially due to the fact that no drift velocity is accounted
for in the right HRM domain. Many other experiments can be found in [HER 06].

The second industrial test case corresponds to a rough representation of a transient
flow in the core of the reactor, after a sudden increase of the released power through
the fuel assembly. The central part of the core is governed by the HRM model, while
the flow in the coolant circuit in the three inlet and outlet pipes is represented by the
STFM model. The three coupling interfaces have been located inside the pipes, in
order to minimize transverse perturbations (see [HER 07b]). Though the interfacial
coupling procedure appears to be stable, the global analysis is difficult, and suffers
from the absence of any reference solution. More details can be found in [HER 07a].
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Figure 1. Simulation of waves passing through the coupling interface (atx = 0). The
left (resp. right) code corresponds to the two-fluid (resp. HRM) model. The green line
corresponds to the coupled simulation, the red one to the sole STFM computation.
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