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ABSTRACT. We present in this paper a two-fluid hyperbolic model in order to compute gas-
particle flows that are highly loaded with particles. The two-phase flow model is an extension
of the classical Baer-Nunziatto model. All closure laws for drag effects, mass and energy trans-
fer terms are in agreement with the entropy inequality. The pressure relaxation terms slightly
differ from their counterpart in the dilute case. A fractional step method which complies with
the entropy inequality enables to perform computations of both the equilibrium model and the
relaxed model, while accounting for the granular pressure. Special emphasis is given here
on the pressure relaxation step, which guarantees that the volume fraction remains within its
bounds. A few numerical results are presented on coarse and fine meshes. Other results are
available in [CGH 07, Nus 07].
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1. Introduction

We propose herein a two-phase flow model relying on the two-fluid approach for
the prediction of gas-particle flows highly loaded with particles. The convective part
of the model is hyperbolic with natural assumptions on the physical states. Thus the
initial-value problem mimicking unsteady flows seems to be meaningful. Further-
more, the structure of waves is such that jump conditions through any travelling dis-
continuity are uniquely defined, though the system contains non-conservative terms.
Actually, the relaxation process leads to distinct pressures within each phase, in order
to account for the granular pressure R = p2 − p1. When b2 = 0, the model is the
well-known Baer-Nunziatto model ([BaN 86]).

We will present the model first, and recall its basic properties. Afterwards, we
will give the main ingredients that are used to compute pressure relaxation effects.
We will consider both cases where the pressure relaxation time τP is null or not.
We nonetheless recall that the space of hyperbolic states is drastically reduced when
τP = 0. Therefore, we may expect that computations in the latter case will blow up
when the mesh size tends to 0.

2. The two-phase flow model

The solid (respectively the gas) phase subscript is 2 (resp. 1). Within each phase
k = 1, 2, we note ρk, uk, ek, Pk the partial density ρk, the phase velocity uk, the
internal energy ek and the mean pressure Pk. Ek = ρkek + ρku

2
k/2 denotes the

total energy within phase k. The equation of state provides ek as a given function
of (Pk, ρk). Void fractions αk comply with: α1 + α2 = 1. We also introduce Z =
(α2, ρk, uk, Pk) in R7. The governing set of equations for Z is:

α2,t + vIα2,x = ε2P,

mk,t + (mkuk)x = εkM,

(mkuk)t + (mku
2
k + αkpk)x − pIαk,x = εk(Q0 + vIM),

(mkEk)t + ((mkEk + αkpk)uk)x + pIαk,t = εk(S0 + vIQ0 + (v2
i /2 + µ2)M),

(1)
where εk = (−1)k+1. We will use here: pI = p1 and vI = u2, which is quite natural
in the present situation (see [BaN 86], and [CGH 02] for other choices). Closure laws
for source terms M,Q0, P, S0 will be detailed below. For that purpose, we need to
introduce entropies sk for each phase, that agree with the constraint formally written
as:

Tkdsk = dek−
pk
ρ2
k

dρk+bkdαk = Tk

(
∂sk
∂ek

)
dek+Tk

(
∂sk
∂ρk

)
dρk+Tk

(
∂sk
∂αk

)
dαk

(2)
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We also define the chemical potential µk by :

µk = ek +
pk
ρk
− Tksk (3)

Closure laws for source terms M,Q0, S0, P will comply with:

M = m1m2(µ2 − µ1 + (u1 − u2)2/2)/(τM (m1µ1 +m2µ2))

Q0 = m1m2(u2 − u1)/(τU (m1 +m2))

S0 = m1m2(T2 − T1)/(τT (m1 +m2))

P = α1α2(p1 − (p2 +m2b2))/(τP ((p1 + p2 +m2b2)))

(4)

assuming of course positive time scales τP , τU , τM , τT . Q0, S0 correspond to classic
closure laws in the two-phase flow literature ; the interfacial mass transfer term M
slightly differs from its counterpart for homogeneous flows, where the corrective term
(u1 − u2)2/2 is -implicitely- null. The Baer-Nunziatto model corresponds to b2 = 0.
In our case, b2 is a given function of the unknowns P2, ρ2, α2, and b1 = 0.

3. Main properties

3.1. Hyperbolicity

We focus on the LHS of the governing equations (1). Introducing the unknown

Y = (α1, ρ1, u1, s1, ρ2, u2, s2)T . (5)

the system (1) may be rewritten

Yt +B(Y )Yx = 0, (6)

with

B(Y ) =



u2
ρ1(u1−u2)

α1
u1 ρ1

c21
ρ1

u1
p1,s1
ρ1

u1

u2 ρ2

p1−p2
m2

c22
ρ2

u2
p2,s2
ρ2

u2


(7)

where, for k = 1, 2, ck is a given function of Pk, ρk, thanks to the EOS. Indeed, con-
sidering Pk as a given function of sk, ρk, we have: ck = ∂pk(ρk,sk)

∂ρk
.

Property : System (6) is hyperbolic (all eigenvalues of B(Y ) are real). Its eigen-
values are : λ1,2 = u2, λ3 = u1, λ4,5 = u1 ± c1, λ6,7 = u2 ± c2. It is not resonant
unless when |u1 − u2| = ck. In the latter case, the set of right eigenvectors no longer
spans the whole space R7.
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3.2. Jump conditions

Property: The 1, 2, 3 fields are Linearly Degenerated. Other fields are Genuinely
Non Linear, unless resonance occurs. Moreover, discontinuous solutions of system (1)
are uniquely defined in single waves.

Actually, non conservative terms pIαk,x and pIαk,t are null in GNL fields. The
reader is refered to [CGH 02, GHS 04, CGH 07] for more details.

3.3. Entropy inequality

Property: Smooth solutions of system (1) satisfy the following equation:

(
∑

mksk)t + (
∑

mkuksk)x =
P

T2
(p1 − (p2 +m2b2)) +

M

T1

(
(u1 − u2)2

2
+ µ2 − µ1

)
+
Q0

T1
(u2 − u1) +

S0

T1T2
(T2 − T1) ≥ 0.

(8)

The sign of the RHS of (8) is highly connected with the form of closure laws (4).

4. An entropy-consistent fractional step approach

4.1. Overall algorithm

The numerical method enables to simulate both the original seven-equation model
(1), and its relaxed form wrt pressure (that is using the algebric law: p2+m2b2−p1 =
0, instead of the first equation of (1)), which is here the standard Gough model
[Gou 79]. To achieve this, we use a three-step splitting algorithm, which can sum-
merized as:

– Step (I): First evolve the homogeneous seven-equation model (LHS of (1)), while
getting rid of source terms ;

– Step (II): While freezing partial masses and momentum within each phase,

- (IIa) compute the pressure equilibrium that takes the granular stress into ac-
count (p2 +m2b2 − p1 = 0), and update void fractions at the same time,

- or:
- (IIb) compute both pressures P1 and P2 and the void fraction α2 by account-

ing for pressure relaxation terms when τP 6= 0,
– Step (III): Compute other source terms including drag effects, interfacial mass

and energy transfer terms Q0,M, S0.

The evolution step (I) is solved using Rusanov scheme or any approximate Godunov
scheme (including VFRoe-ncv scheme, see [GHS 04] for instance). Many algorithms
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may be proposed to compute step (III), and we refer to [HeH 06] for instance for more
details. We detail below the computation of step (II). Step (IIa) will be retained when
computing the Gough model, step (IIb) otherwise.

4.2. Pressure relaxation step II

The pressure relaxation step requires solving the following set of PDE:

αk,t = (−1)k+1P,

mk,t = Qk,t = 0,

(mkek)t + p1αk,t = 0.

(9)

– Instantaneous pressure relaxation (IIa)
The volume fraction is updated in such a way that we recover the relation p2+m2b2 =
p1 at the end of the time step. Using superscript 0 for physical values in a given
cell at the end of the evolution step, and taking into account the fact that both the
partial masses and the velocities are frozen in the step, we need to compute (α1, p1, p2)
solution of:

mk = m0
k, Qk = Q0

k,

p2 +m2b2 − p1 = 0,

m1e1 +m2e2 = m0
1e

0
1 +m0

2e
0
2,

(m1e1 −m0
1e

0
1) + p1(α1 − α0

1) = 0.

(10)

In order to go further on, we will focus on the stiffened gas EOS recalled below:

(γk − 1)ρkek = pk + γkπk (11)

where πk > 0 and γk > 1 are given constants for k = 1, 2. We choose π2 > π1,
which is in agreement with our framework . We also assume that b2 = −ργ2−1

2 θ(α2)
(see [CGH 07]). Hence, we need to find (α1, p1, p2) in each cell solution of:

p2 − α2ρ
γ2
2 θ(α2)− p1 = 0,

α2
p2 + π2

γ2 − 1
− α0

2

p0
2 + π2

γ2 − 1
+ (p1 + π2)(α2 − α0

2) = 0,

α1
p1 + π1

γ1 − 1
− α0

1

p0
1 + π1

γ1 − 1
+ (p1 + π1)(α1 − α0

1) = 0.

(12)

– Pressure relaxation (IIb)
A convenient way to compute this step is described in detail in [GHS 04]. Other
methods are of course possible (see for instance [Gui 07]).

Property : Assume that a stiffened gas law holds for each phase. The existence and
uniqueness of the volume fraction in [0, 1] is guaranteed by step (IIa) when discretized
following (10). A similar result holds for step (IIb) when using the method described
in [GHS 04]. In the latter case, more general EOS may be used.
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5. Numerical application

We consider here a simple 1D test case without granular stress (taken from [CEG 97])
in order to demonstrate the non-hyperbolic behavior of the model when the relaxation
time tends to zero. It is a simple Riemann problem in the interval [−1/2, 1/2]. The
two phases are perfect gases with γ1 = 1.0924 and γ2 = 1.0182. We plot the solution
at time t = 0.0008. The CFL number is fixed to 0.9. The initial data are

(L) (R)
ρ1 76.45430093 57.34072568
u1 0 0
p1 200× 105 150× 105

ρ2 836.1239718 358.8982226
u2 0 0
p2 200× 105 150× 105

α1 0.25 0.25

(13)

When using a coarse mesh with 50 cells (typical in an industrial context), the solution
seems to be smooth. The volume fraction α1, the velocities and pressures are plotted
on Figure 1. Then , we perform the same computation with 1000, 10000 and 100000
cells and plot the void fraction on Figure 2.

We observe that spurious instabilities arise, due to the non-hyperbolic behavior
of the equilibrium model. Thus a modeling with a non-vanishing relaxation time
is highly recommended. The introduction of the granular stress generally enlarges
the stability domain. More numerical experiments with granular stress and industrial
applications are detailed in [Nus 07] and [CGH 07].

6. Conclusion

The introduction of granular pressure effects in the relaxed (that is τP = 0) Baer
Nunziatto model enables to extend the hyperbolicity domain. Nonetheless, it does not
guarantee that, for any initial conditions lying in the hyperbolic domain, the solution
will remain in the hyperbolic domain when time increases. In practice, this model
(corresponding to step (IIa)) enables to compute real cases at least on coarse meshes.
However, refining the mesh usually leads to large oscillations even in standard cases
(see preprint [CGH 07]).

On the other hand, the full seven-equation model corresponding to step (IIb) does
not suffer from this drawback, and thus should be prefered. Moreover, many numer-
ical experiments seem to confirm that the comparison of models (IIa) and (IIb) on
industrial meshes provides very similar results.
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Figure 2. Riemann problem, 1000 to 100,000 cells computations, void fraction.

(a) 1000 cells (b) 10,000 cells

(c) 100,000 cells


