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Decoupled–Dynamics Distributed Control
for Strings of Nonlinear Autonomous Agents

Şerban Sabău], Irinel–Constantin Morărescu?, Lucian Buşoniu‡

and Ali Jadbabaie†

Abstract— We introduce a novel distributed control architec-
ture for a class of nonlinear dynamical agents moving in the
“string” formation, while guaranteeing trajectory tracking and
collision avoidance. Each autonomous agent uses information
and relative measurements only with respect to its predecessor
in the string. The performance of the scheme is entirely
scalable with respect to the number of agents in formation.
The scalability is a consequence of the “decoupling” of a certain
bounded approximation of the closed–loop equations, entailing
that individual, local analyses of the closed–loops stability at
each agent will in turn guarantee the aggregated stability
of the entire formation. An efficient, practical method for
compensating communications induced delays is also presented.

I. INTRODUCTION

The distributed control of autonomous agents moving in
the “string” (or “line”) formation, also know as platooning
is a fifty years old problem, going back to the work [1] of
Levine & Athans on intelligent highway systems. Since no
existing control solution was deemed satisfactory from an
applications standpoint, consistent research efforts are still
being invested for developing practical platooning control
schemes. The difficulty of the problem stems from the
notorious lack of scalability of networks of dynamical agents,
which causes the performance of existing control schemes
to depend not only on the number of vehicles in formation
but on the vehicle’s position in formation, as well [7].
Platooning may also be seen as a particular instance of
flocking for multi-agent systems. The flocking problem has
been intensively studied in the last decade for agents with
linear [3], [4], [15], [12] or nonlinear [2], [16] dynamics.
Generally speaking, two important features characterize the
flocking behavior of autonomous agents: cohesion of the
formation and collision avoidance. In multi-agent systems
they are implemented as connectivity/topology preservation
[18], [17], [14], [13] and collision avoidance [3], [4], [2],
respectively.

Just as for platooning applications (and more generally,
in distance based formation control) the regulated measures

]Şerban Sabău is with the Electrical and Computer Engineering Dept.,
Stevens Institute of Technology, Hoboken, New Jersey, U.S.A. email:
ssabau@stevens.edu

? I.-C. Morărescu is with Université de Lorraine, CRAN,
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are the relative (interspacing) distances between consecutive
agents, for several other meaningful applications in networks
of dynamical agents, the regulated signals in trajectory track-
ing or synchronization problems represent relative measure-
ments such as relative velocities (with respect to neighboring
agents), local clocks offsets or phase differences between
(neighboring) coupled oscillators. In this paper, we present
preliminary results on a class of novel distributed control
policies where the relative measurements (with respect to the
neighboring agents) are used by the local sub–controllers in
conjunction with the knowledge of the control actions of the
sub-controllers at the neighboring agents. It turns out that
the performance of the resulted distributed control schemes
considerably outperforms the distributed architectures based
solely on relative measurements.

The problem considered in this paper can be rephrased
as a multi-agent flocking problem with collision avoidance.
The literature on this topic is very rich and considers both
directed or undirected, fixed or time-varying interconnection
graphs. The objective of the control scheme is to achieve the
synchronization of the trajectories of all agents in the forma-
tion with the trajectory of the leader agent. Such trajectory
tracking must be achieved while ensuring zero (steady–state)
errors of the regulated measures (in our case the relative
speed between two consecutive agents) and while avoiding
collisions, i.e. performing the needed longitudinal steering
(brake/throttle) maneuvers that guarantee the avoidance of
collision with the preceding vehicle.

A. Contributions of this Paper

The approach taken here is based on the use of Artificial
Potential Functions [3], [2].When compared to the state-of-
the-art, our results represent a consistent extension of existing
methods [3], [2], from at least three perspectives. Firstly, it
guarantees stability, velocity matching (trajectory tracking)
and collision avoidance even for directed topologies, as
illustrated by the distributed control scheme reported here.
Secondly, it achieves complete scalability with respect to the
number of agents in formation [2] and also with respect to
the connectivity of the inter-agents communications graph.
Finally, a practical adaptation of the distributed controller is
able to completely compensate the wireless communications
induced time delays.

By comparison, the main result in [2] imposes that all the
minor matrices of the weighted Laplacian matrix associated
with the interconnection graph are positive definite and lower
bounded by a certain constant. This basically requires the



maximization of the eigenvalues of the weighted Laplacian
matrix, which can be interpreted as the maximization of the
number of interconnections in the underlined graph (see [10])
together with the maximization of its diagonal elements (see
Geršgorin disk theorem [11]). It is worth noting that the first
requirement involves the transmission of the exact state of
the leader to many agents in the formation, while the second
requirement represents high local control gains.

The most interesting feature of our proposed scheme is
the fact that it achieves complete scalability with respect to
the number of vehicles in the string. Such scalability features
come as a consequence of the complete “decoupling” of a
certain bounded approximation of the closed–loop equations,
such that by performing solely individual, local analyses of
the stability at each agent, will in turn guarantee the stability
of the aggregated formation.

B. Paper Organization
The paper is organized as follows: in Section II we

introduce the general framework and we formulate the
platooning control problem. Section III provides a prelimi-
nary description of the novel distributed control architecture
introduced in this work along with a first glimpse at the
closed-loop dynamics “decoupling” featured by the control
scheme. Section IV contains the main result as it delineates
the guarantees for stability, velocity matching and collision
avoidance. Finally, Section V outlines a practical delays
compensation mechanism while Section VI provides an
illustrative numerical example, worked out on a simplified
dynamical model for road vehicles.

II. GENERAL FRAMEWORK AND PROBLEM STATEMENT

A. Preliminaries
Definition 2.1: The σ–norm of a vector x is defined as

‖x‖σ
def
=

1

σ

[√
1 + ‖x‖22 − 1

]
(1)

with σ is a positive constant. This is a class K∞ function of
‖x‖22 and is differentiable everywhere.

Definition 2.2: A set Ω is said to be forward invariant
with respect to an equation, if any solution x(t) of the
equation satisfies: x(0) ∈ Ω =⇒ x(t) ∈ Ω, ∀t > 0.

Definition 2.3: Artificial Potential Function (APF). The
function Vk,k−1(·) is a differentiable, nonnegative, radially
unbounded function of ‖z‖σ satisfying the following prop-
erties:

(i) Vk,k−1(‖z‖σ)→∞ as (‖z‖σ)→ 0,
(ii) Vk,k−1(‖z‖σ) has a unique minimum, which is at-

tained at ‖z‖σ = δk, with δk being a positive constant.

B. The Problem: Trajectory Tracking of the String Formation
We consider a homogeneous group of n agents (e.g.

autonomous road vehicles) moving along the same (positive)
direction of a roadway, with the origin at the starting point
of the leader. The dynamical model for the agents, relating
the control signal uk(t) of the k–th vehicle to its position
yk(t) on the roadway, is given by

ẏk(t) = vk(t), v̇k(t) = f(vk(t)) + uk(t) ; (2a)

yk(0) = −
k∑
j=0

`j , vk(0) = 0. (2b)

where vk(t) is the instantaneous speed of the k–th agent,
uk(t) is its command signal and `k is the initial interspacing
distance between the k–th agent and its predecessor in the
string. Throughout the sequel we will use the notation

yk = Gk ? uk (3)

to denote (especially for the graphical representations) the
input–output operator Gk of the dynamical system from (2a),
with the initial conditions (2b).

Assumption 2.4: The index “0” is reserved for the leader
vehicle, the first vehicle in the string, for which we assume
that there is no controller on board and consequently the
command signal u0(t) will represent a reference signal for
the entire formation.

In the rest of the paper we often forget the time argument
of the involved variables. It is worth noting that when the
argument is missing it has to be thought as t. Let us further
define

zk
def
= yk−1−yk, zvk

def
= vk−1−vk for 1 ≤ k ≤ n, (4)

to be the interspacing and relative velocity error signals
respectively (with respect to the predecessor in the string).
By differentiating the first equation in (4) it follows that
żk(t) = zvk(t), therefore implying that constant interspacing
errors (in steady state) are equivalent with zero relative
velocity errors and also allowing to write the following time
evolution for the relative velocity error of the k–th vehicle

żvk = f(vk−1)− f(vk) + uk−1 − uk. (5)

III. A NOVEL DISTRIBUTED CONTROL ARCHITECTURE

The inherent difficulty in platooning control is rooted
in the nested nature of the interdependencies between the
regulated signals. Specifically, the regulated errors (e.g. in-
terspacing errors or relative velocity errors) at the k–th agent
depend on the regulated errors of its predecessor (the (k−1)–
th agent) and so on, such that by a recursive argument –
going through all the predecessors of the k–th agent – they
ultimately depend on the trajectory of the leader vehicle,
which represents the reference for the entire formation.

We introduce a novel control architecture featuring a
certain beneficial “decoupling” properties of the closed–loop
dynamics that avoid the pitfalls of the aforementioned nested
interdependencies. The distributed control policies rely only
on information locally available to each vehicle. For the
scope of this paper, we consider non–linear controllers built
on the so-called Artificial Potential Functions (APF), in
particular we will look at control laws of the type

uk = uk−1+βk(vk−1−vk)−∇ykVk,k−1(‖yk−1−yk‖σ) (6)

with k ≥ 1, where each of the Vk,k−1(·) functions is
an Artificial Potential Function [2, Definition 7] with βk
being a proportional gain to be designed for supplemental



performance requirements. With the notation from (4), the
control policy (6) for the k–th vehicle becomes

uk = uk−1 + βkz
v
k −∇ykVk,k−1(‖zk‖σ) (7)

and it can further be written as the sum of the following two
components: firstly, the control signal uk−1 of the preceding
vehicle, which is received onboard the k–th vehicle via
wireless communications (e.g. digital radio). Secondly, the
local component, which we denote with

u`k
def
= βkz

v
k −∇ykVk,k−1(‖zk‖σ) (8)

and which is based on the measurements (4) which are
locally available to the k–th vehicle, as they can be acquired
via onboard LIDAR sensors. Thus, the k–th control law
reads:

uk = uk−1 + u`k.

The control policy (6) entails a highly beneficial “decou-
pling” feature of the closed–loop dynamics at each agent, as
we simply illustrate next. Firstly, note that by plugging (6)
into (5) we obtain the following closed–loop error equations
at the k–th agent:

żvk = f(vk−1)− f(vk)− βkzvk +∇ykVk,k−1(‖zk‖σ). (9)

The following result will be instrumental in the sequel.
Consider the following Lyapunov candidate functions:

Lk
(
zk(t), zvk(t)

) def
=

1

2

(
Vk,k−1(‖zk(t)‖σ)+

+zvk
>(t)zvk(t)

)
, with 1 ≤ k ≤ n.

(10)

Lemma 3.1: The differential of the Lyapunov candidate
function Lk(·, ·) introduced in (10) along the trajectories of
(2) and (6) is given by

d

dt
Lk(zk(t), zvk(t)) = zvk

>(t)
(
f
(
vk−1(t)

)
− f

(
vk(t)

))
−βkzvk>(t)zvk(t) , (11)

and does not depend on the choice of the APFs Vk,k−1(·).

IV. DECOUPLING CONTROL DESIGN

As we will show in this section, in the proposed method
the control actions of each agent are based exclusively on
receiving information from its predecessor. While the control
gains are strictly related to the reactivity of the system (i.e.
faster systems needs higher controller gains) our scheme does
not require making the leader’s information (instantaneous
speed or acceleration) available to other agents in the string
(the virtual leaders from [2]). Our directed communications
scheme, necessitates a minimal information exchange and
sensing radius for all agents (each agent performs mea-
surements and receives information only with respect to its
predecessor).

The following result is the main result of this Section,
as it delineates a “decoupling” property of the closed–loop
dynamics, achieved by the (6) type control policy along
with velocity matching and collision avoidance. Due to space
limitations we do not provide proofs in this paper.

Theorem 4.1: If the function f(·) from (2a) satisfies the
global Lipshitz–like condition [2, Assumption 1]

(v2−v1)>
(
f(v2)−f(v1)

)
≤ α‖v2−v1‖22, ∀v1, v2 (12)

then for all type (6) control laws with that βk > α the
following hold:
(A) Given the Lyapunov function Lk introduced in (10), local
to the k-th agent, the sub–level sets Ωkc

def
= {(zk, zvk)|Lk ≤

c, withc > 0} of Lk are compact and they represent forward
invariant sets for the local closed–loop dynamics (9) of the
k–th vehicle.
(B) The controller (6) guarantees velocity matching
and collision avoidance. Furthermore, considering c =
2Lk(zk(0), zvk(0)) there exists ηc such that

‖yk − yk−1‖2 > ηc,∀t ≥ 0.

Therefore, a pre–specified safety distance can be imposed by
the initial conditions.

Proposition 4.2: Given Lk(·, ·) as introduced in (10), the
string formation’s steady–state configuration is attained at
the minimum of the following formation-level Lyapunov
function:

L(z(t), zv(t))
def
=

1

2

n∑
k=1

Lk(zk(t), zvk(t)) (13)

which coincides component–wise with the minima of the
Lyapunov functions (10) local to the k-th agent. Furthermore,
the level sets of L given by Ωc

def
= {(z, zv)|L ≤ c, with c >

0} are compact and they represent forward invariant sets for
the closed–loop dynamics of the entire formation, as given in
(2) and (6) with 1 ≤ k ≤ n. Consequently, velocity matching
and vehicles’ collision avoidance are achieved, without the
need for inserting exact leader information in the formation
(the “virtual leaders” from [2]) while maintaining a safe
interspacing distance.

V. DELAY COMPENSATION MECHANISM

The difficulties caused for networked systems by the com-
munications induced delays and time jittering have been a
topic of intensive study for decades. For platooning practical
applications it has been argued in [6] that the (low latency)
time delays induced by the wireless communications, even
if assumed time-invariant and homogeneous1, irremediably
alter the performance of the control scheme. The cause
of this this phenomenon is the well understood fact that
the delays propagate through the closed-loops towards the
back of the platoon and furthermore they accumulate in a
manner depending on the number of vehicles in formation,
ultimately leading to string instability [6]. For the case of
linear dynamical agents, the very recent results from [5]
provide a functional scheme for compensating the effect of
the communications delays by employing GPS time based
synchronization mechanisms. However, the aforementioned

1For digital radio wireless systems such as WiFi, Bluetooth or Zigbee,
the corresponding time-delays have low latencies but they are time-varying,
taking values around a nominal delay of about 20 ms.



method [5, Section VI] of essentially “incorporating” the
synchronization delay in the model of the plant cannot be
adapted to nonlinear dynamical models. In this section we
introduce a practical method for adapting the distributed
controller of Section IV to be able to compensate the
communications delays, while essentially preserving all the
performance features from the delay free case.

A. An Adaptation of Time-Headways for Velocity Matching

Classical results in platooning control [19], [20], [21]
proved that a considerable improvement of performance can
be obtained by adequately modifying the regulated interspac-
ing distance (for each vehicle k) zk = yk−1 − yk such as to
include a factor −hẏk(t) proportional with the speed of the
current vehicle. The resulted interspacing policies (dubbed
time headways) become zk = yk−1(t)− yk(t)− hẏk(t) and
provide a spacing in time rather than distance (between two
consecutive vehicles). Up until the recent distributed scheme
introduced in [5] - for linear dynamical agents and linear
controllers, string stability could only be achieved via the
use of time headways policies [7]. Furthermore, relatively
large values of the time headway h > 0 were necessary in
order to guarantee both string stability and the improvement
of disturbances attenuation at mid and high frequency2.
The generally adopted value for highway platooning (which
became standardized at some point) is h = 1 second. The
main drawback of such large time headways is that they
drastically impair the tightness of the formation, reducing the
traffic throughput and any potential fuel savings achievable
by the air drag reduction.

We introduce next a novel method for delays compen-
sation that combines the GPS time based synchronization
mechanism from [5, Section VI] with an adaptation of the
time headways to the velocity matching objective of our
distributed controller from Section IV. Firstly, let us revamp
as follows the definitions (4) of the interspacing distances
zk and of the regulated relative speeds zvk respectively at the
k-th vehicle:

z̃k(t)
def
= yk−1(t− θ)− yk(t− θ)− θẏk(t− θ), (14)

z̃vk(t)
def
= vk−1(t− θ)− vk(t− θ)− θv̇k(t− θ), 1 ≤ k ≤ n,

where the positive constant θ > 0 will be taken to be
equal with the communications delay and will be considered
to be the same for all vehicles in formation3. It can be
seen that the signals defined in (14) are merely θ delayed
version of (4), with an additional θ time headway added to
the expression of the interspacing errors z̃k. The fact that
in (14) at the current moment in time t, we regulate the
measurements taken at moment (t−θ) is a limitation imposed
by the communications delay (which are relatively very
small, though) and it entails some loss in performance which
was to be expected. The inclusion of the θ time headway

2It’s worth mentioning that the control scheme proposed in [5] achieves
without time headways the same disturbances attenuation at low and mid
frequency as the attenuation achievable with the use of time headways.

3See also Remark 5.1 in the following paragraph

results in a slightly more conservative policy, since it induces
slightly larger4 interspacing distances as the speed increases.
The same conservative effect (of the θ time headway) occurs
with respect to the regulated relative speeds z̃vk(t) during the
transient regime when the acceleration v̇k is sizable.

Remark 5.1: For all practical applications related to pla-
tooning, the value of θ will be taken to be equal to a
worst case scenario value of the latency of the wireless
communication systems, which is about 2×10−2 seconds for
digital radio systems such as WiFi, Bluetooth or Zigbee. Fur-
thermore, the GPS time based synchronization mechanism
described in [5, Section VI] used in conjunction with time
stamping protocols at the transmission of the predecessor’s
control signal uk−1 is able to emulate and implement time
invariant and heterogeneous communications time delays
through the entire formation.

B. Analysis

Next, note that by performing a Taylor series expansion it
follows that

yk(t) = yk(t− θ) + θẏk(t− θ) +O(θ2),

vk(t) = vk(t− θ) + θv̇k(t− θ) +O(θ2),
(15)

therefore an O(θ2) approximation of the measurements from
(14) is given by

zk(t)
def
= yk−1(t− θ)− yk(t),

zvk(t)
def
= vk−1(t− θ)− vk(t) for 1 ≤ k ≤ n.

(16)

We assume the following initial conditions

yk(t) = −
k∑
j=0

`j , vk(t) = 0, ∀t ∈ (−θ, 0].

Remark 5.2: Writing the Taylor series expansion with an
integral rest, we obtain the following equivalent expression
for (16)

zk(t) = yk−1(t− θ)− yk(t− θ)−
∫ t

t−θ
ẏk(τ)dτ,

zvk(t) = vk−1(t− θ)− vk(t− θ)−
∫ t

t−θ
v̇k(τ)dτ

(17)

and so it becomes apparent that the signals introduced in
(16) can be measured on board the k-th vehicle via (17),
using only onboard ranging sensors5 and high accuracy
longitudinal speedometers in conjunction with a mere in-
tegrator. Specifically, the first term in (17) consists of the
θ-delayed measurement of the interspacing distance minus
the integration of the absolute speed (measurable on board)
over a θ-length interval. The second term in (17) consists
of the θ-delayed measurement of the relative speed6 minus
the (vk(t) − vk(t − θ)) term, comprised of absolute speeds

4The effect is directly proportional with the value of θ which is very
small in practice.

5Preferably very low latency LIDAR sensors, which are already affordable
and widely available commercially

6The relative speed with respect to the preceding vehicle, which is also
measurable onboard.



measurable onboard. Finally, the entire history on the interval
[(t − θ), t] of the ranging sensors (17) must be stored in
a memory buffer, in order to be used by the distributed
controller we will introduce next.

Given the values of θ that appear in practice (see Re-
mark 5.1) and given the worst case scenario of breaking
decelerations |ÿk(t)| that could occur during highway traffic,
it follows from (15) that the signals from (16) are such
an accurate approximation of (14), that the order of the
approximation falls way below the tolerated measurement
errors of the most performant ranging sensors. That is to say
that choosing between two controllers that regulate either the
(14) signals or the (16) signals respectively, has considerably
less influence on the resulted scheme than the measurement
noise of an highly accurate LIDAR. Consequently, we can
choose to regulate (16). Considering the definition of zk and
zvk as in (16), we will prove that the distributed control
policies given next are able to entirely compensate the
communication induced delays:{

uk(t) =uk−1(t− θ) + βkz
v
k(t) +∇ykVk,k−1(‖zk(t)‖σ)

uk(t) =0, ∀t ∈ (−θ, 0]
(18)

Remark 5.3: Note that for the real time implementation
of type (18) control policies onboard the k-th vehicle,
two pieces of information are needed: (i) the command
signal of the predecessor, received on board a with θ -
delay, via wireless communications and (ii), the (16) sen-
sor measurements zk, z

v
k which are on board measurable

(according to the considerations of Remark 5.2). A GPS
time-base synchronization of these two pieces of informa-
tion may be performed as in [5, Section VI] in order to
ensure time invariant, point-wise delays of value exactly θ,
homogenously throughout the entire formation.

With this controller at hand we obtain the following
closed–loop error equations at the k–th agent:

żvk(t) = f(vk−1(t− θ))− f(vk(t))

− βkzvk(t) +∇ykVk,k−1(‖zk(t)‖σ).
(19)

We will use the Lyapunov function defined in (10) keeping
in mind that the definitions of zk(t), zvk(t) are in accordance
to (16). Consequently, the time delays adaptation for the main
result of Section IV reads:

Theorem 5.4: If the function f(·) from (2a) satisfies the
global Lipshitz–like condition (12) then for all type (18)
control laws with that βk > α the following hold:
(A) The differential of the Lyapunov candidate function
Lk(·, ·) introduced in (10) along the trajectories of (2) and
(18) is given by

d
dtLk(zk(t), zvk(t)) = zvk

>(t)
(
f
(
vk−1(t− θ)

)
− f

(
vk(t)

))
−βkzvk>(t)zvk(t) ,

(20)
and does not depend on the choice of the APFs Vk,k−1(·).
(B) Given the Lyapunov function Lk introduced in (10), local
to the k-th agent, the sub–level sets Ωkc

def
= {(zk, zvk)|Lk ≤

c, withc > 0} of Lk are compact and they represent forward

invariant sets for the local closed–loop dynamics (19) of the
k–th vehicle.
(C) The controller (18) guarantees velocity matching and a
lower bound on the absolute values of the interspacing dis-
tance zk(t). Furthermore, considering c = 2Lk(zk(0), zvk(0))
there exists ηc such that

‖zk(t)‖2 > ηc,∀t ≥ 0.

Therefore, a pre–specified safety distance can be imposed by
the initial conditions.

Remark 5.5: The scheme proposed above is able to regu-
late vk−1(t− θ)− vk(t) in the presence of communications
delays. Therefore, as far as the leader’s velocity profile
is slowly varying relatively to the order of magnitude of
the communications delays, the scheme does regulate an
accurate approximation of vk−1(t) − vk(t). Nevertheless,
oscillations of the leader’s velocity at a frequency that is of
the same order of magnitude with the θ time delay cannot be
efficiently compensated and the accordion effect will appear.
These assumptions are very well satisfied in the platooning
setting, but they may not be valid for other applications. The
conclusion is in line with the well known fact that for the
validity of the control scheme it is always necessary that the
time delays that propagate through the controller are smaller
than those propagating through the given plant.

VI. A NUMERICAL EXAMPLE

In this section we illustrate the distributed controller
introduced earlier for the case dynamical agents (2), where
the function f(·) taken to be a quadratic form f(v) =
−γg− `v2, in accordance with the dynamical model of road
vehicles from [22, (1)/pp. 1]. Here, γ = 0.011 is the tyre
rolling resistance coefficient, g = 9.81m/s2 the gravitational
acceleration, and ` = 0.463 kg/m the air drag constant. The
dynamics (2) become

ẏk = vk (21a)

v̇k = −γg − `v2k +
η

R
wk (21b)

with η = 1.8 being the gear ratio and R = 0.5 being
the wheel radius. The command signal ωk is the engine’s
torque, and its linear transformation η

Rωk corresponds to
the input uk in (2). Note that f(·) in (21) satisfies the
global Lipschitz–like condition [2, Assumption 1] (v2 −
v1)>

(
f(v2) − f(v1)

)
≤ α‖v2 − v1‖22, for any two vectors

v1, v2 in the domain of f(·).
The control law is designed using APFs (Definition 2.3)

of the following form [2, Fig. 1/ pp.197]

Vk,k−1(‖zk‖σ) =
η

R

[
ln(‖zk‖σ)2 +

100

‖zk‖2σ

]
(22)

and an empirically tuned gain β = 25 ηR . The reference signal
for the entire formation will be the control control of the
leader vehicle, namely u0(t).

We look at a speed profile of the leader consisting of two
smoothed rectangular pulses. The vehicles start at relatively
small separations, of about 2 m. The plots for the delay free



case, using the baseline controller from Section IV are shown
in Figure 1. The controller will cause an initial increase in
the interspacing distances, at the expense of delaying velocity
matching. Once a sufficient interspacing distance has been
achieved (in this case, around 5 m, related to the minimum
of the APFs), the velocities are brought together.
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Fig. 1. Trajectories of vehicles - the delay free case

If we consider a time delay of θ = 0.02 s (which is the
common nominal value for wireless communications) and
we apply the delay compensation mechanism from Section V,
then Figure 2 below exhibits practically the same wave forms
as Figure 1, hence the effects of the delays are entirely
compensated by the controller.
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Fig. 2. Trajectories of vehicles with a typical θ = 0.02 s. time delay

Finally, to illustrate the point made by Remark 5.5, we
look at the situation when the leader’s velocity profile is
a fast-varying sine while considering a large time delay
θ = 0.5 s, comparable to the period of the sine reference.
The examination of Figure 3 below, shows that velocity
agreement cannot be achieved, and there is an “accordion”
effect in the positions (undamped oscillations). However,
even in this challenging situation the controller manages to
avoid collisions.
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