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ABSTRACT.The paper examines the suitability of some finite-volume schemes in order to com-
pute two-fluid models in a porous medium. The hyperbolic two-fluid model is governed by an
entropy inequality, and admits unique jump conditions. Closure laws for drag effects and heat
exchange are in agreement with standard single pressure two-fluid models. Emphasis is put
on the behaviour of finite volume schemes when the computational domain contains a sharp
porosity variation. Only two among the three schemes examined herein are shown to preserve a
basic porous solution, whatever the mesh size is. Other properties including the preservation of
the maximum principle for the void fractions are discussed, and the true behaviour of schemes
in a test case representative of the propagation of a rarefaction wave in a pipe with sudden
contraction is presented. The behaviour of the third scheme is indeed much better.
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1. Introduction

Many design and safety studies for pressurised water reactors, steam generators
and condensers require the use of the porosity concept in control volumes. So-called
component codes in France, such as FLICA (CEA) or THYC (EDF) or system codes
such as CATHARE (CEA) rely on this approach. Nonetheless, rather than choosing
the homogeneous approach, which corresponds to the basic assumption in the for-
mer two codes, it seems promising to consider the water and vapour phases as two
different entities. In particular, the latter approach seems reasonable for highly un-
steady studies. In that case, there is a need for a two-fluid approach in order to dis-
tinguish both phases, such as the one described in [HER 07b] that extends the models
[BAE 86, KAP 97, GAL 04]. Beyond this, the growing capacities of computers enable
huge computations now, and thus we may benefit from the development of coupling
techniques, enabling us to perform simulations in the whole coolant circuit. Some



preliminary works have been achieved quite recently (see [AMB 03] for instance) in
that direction, but there is still a need for new techniques in the interfacial coupling
of free and porous medium (see [HER 06]). The present work describes some first
attempts in that framework. The reader is referred to [HER 07b] for further details on
the model.

We first introduce the void fractionαk ∈ [0, 1] in agreement withα1 + α2 = 1,
the porosityε ∈ [0, 1], and (fork = 1, 2) the mean velocityUk, the mean pressurePk,
the mean densityρk, the internal energyek(Pk, ρk) in phasek. The state variable is:

W t
ε = (εmk, εmkUk, εαkEk) [1]

in R6, while notingmk = αkρk the partial mass in phasek, andEk = ρkUkUk/2 +
ρkek(Pk, ρk) the total energy of phasek. The equation of state (EOS) is provided
through the functionek(Pk, ρk), which may be arbitrary. We will thus focus here on
the following two-fluid model:
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[2]

Obviously, we must specify closure laws for the source terms(φ2, Ik), which agree
with: I1 + I2 = 0. We assume here that the latter closures are in agreement with the
global entropy inequality, choosingφ2 = α1α2(P2−P1)/τP andIk = (−1)km1m2(U1−
U2)/τU/(m1 + m2) (see [COQ 02, GAL 04, HER 07a, HER 07b]). Moreover, the
couple(VI , PI) is assumed to be one among the two couples(Uk, P3−k), with k ∈
1, 2. Hence, we are ensured that: (i) system [2] is hyperbolic; (ii) unique jump condi-
tions hold within each single field; (iii) smooth solutions are governed by a physically
relevant entropy inequality. Therefore, since the non-conservative products are only
active in a linearly degenerate field, we know that the converged approximation (w.r.t.
the mesh size) obtained when computing a Riemann problem associated with [2] will
not depend on the scheme, as may happen for other choices ofVI (see [GUI 07] for
instance).

Since we aim at developing schemes and methods which allow the interfacial cou-
pling of codes based on formulation [2], and its counterpart whereε = 1, on the
whole computational domain, we will focus in this paper on the definition and the
ability of some finite volume schemes ([EYM 00]) to cope with coupled situations
including a sudden change in the porosity distribution. The first scheme corresponds



to the classical Rusanov scheme, the second scheme being a slight modification of the
latter. The third scheme is quite different. It relies on former propositions by Green-
berg and Leroux (see [GRE 96]) revisited by Kroner and Thanh (see [KRO 06], and
[BOU 04] too). The latter scheme does not require solving an exact Riemann problem
around each cell interface (see [GOD 59]), and thus is much simpler than the original
well-balanced scheme.

2. Two basic exact solutions

We define two basic solutions of system [2], whatever the EOS is.

– Basic solutionS1:
SolutionS1 corresponds to the following generalized unsteady contact solution: ε(x) = ε0

P1(x, t) = P2(x, t) = P0

U1(x, t) = U2(x, t) = U0

[3]

while bothρk andα2 comply with the governing equation
∂f

∂t
+ U0

∂f

∂x
= 0.

– Basic solutionS2:
Distributionε(x) is arbitrary. SolutionS2 corresponds to the steady solution:{

P1(x, t) = P2(x, t) = P0

U1(x, t) = U2(x, t) = 0 [4]

while bothmk(x, t) = mk(x, 0) andα2(x, t) = α2(x, 0).

3. Three distinct finite volume schemes

We introduce standard notations for finite volume schemes. Within each finite
volume of sizehi = xi+1/2 − xi−1/2, the mean value ofW at timetn in cell i is:

Wn
i = (

∫
[xi−1/2,xi+1/2]

W (x, tn)dx)/hi [5]

The time step∆tn will comply with a standard CFL condition. Moreover, we define:
ai+1/2 = (ai + ai+1)/2, whatevera is. We define the fluxfε in R6:

fε(Wε, α2, ε)t = (εmkUk, εmkU2
k , εαkUk(Ek + Pk)) [6]

The computation of the whole set [2] is achieved with a fractional step method which
is in agreement with the overall entropy inequality. The homogeneous problem asso-
ciated with the left-hand side of [2] is computed first. Source terms are then accounted
for using an implicit scheme, which is exactly the one described in [GAL 04]. We thus
only describe the first evolution step here.



3.1. Classical Rusanov schemeLF

The cell scheme which is used to compute the evolution step simply reads:

hi((α2)n+1
i − (α2)n
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where the numerical flux is defined by:
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[9]
The scalarrn

i+1/2 represents the maximal value of the spectral radius of the Jacobian
matricesA((Wε)n

l , (α2)n
l , εl) for l = i, i + 1. The contribution connected with the

first-order non-conservative terms(NCTε)n
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3.2. A modified Rusanov schemeMLF

This scheme is similar to the previous one. The update for the void fractions is:

hi((α2)n+1
i − (α2)n

i ) +∆tn(VI)n
i ((α2)n

i+1/2 − (α2)n
i−1/2)

+∆tn(dn
i+1/2,− − dn

i−1/2,+) = 0 [11]

where:
dn

i+1/2,− = − (ε̂)i+1/2

2εi
rn
i+1/2((α2)n

i+1 − (α2)n
i )

dn
i−1/2,+ = − (ε̂)i−1/2

2εi
rn
i−1/2((α2)n

i − (α2)n
i−1)

[12]

The numerical flux in [8] is replaced by:
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where(ε̂)i+1/2 = (ε)i+1/2 or : (ε̂)i+1/2 = (2εiεi+1)/(εi + εi+1).



3.3. A simplified well-balanced schemeSWBLF

The basic idea is the following. First, the update forα2 is still achieved following
[7]. Then, we introduceW ∈ R6 andf(W,α2) ∈ R6:

W t = (mk,mkUk,mkEk)
f(W,α2)t = (mkUk,mkU2

k + αkPk, αkUk(Ek + Pk)) [14]

ε is assumed to be constant within each cell, the cell scheme now reads:
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where the numerical fluxes and the contributionNCT are defined by:
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The valuesWn
i−1/2,+ andWn

i+1/2,− are obtained by solving the non-linear equations:
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whereI0
0 (W,α2, ε) = α2, I0

3k−2(W,α2, ε) = εmkUk, I0
3k−1(W,α2, ε) = sk(Pk, ρk),

I0
3k(W,α2, ε) = ek(Pk, ρk) + Pk/ρk + U2

k/2 for k = 1, 2, wheresk denotes the
specific entropy for phasek (see [HER 07b]). In practice, this requires solving two
uncoupled non-linear scalar equations at each cell interfacei + 1/2, the solution of
which is trivial whenεi = εi+1, or when(Uk)n

i (̇Uk)n
i+1 = 0 .

3.4. Properties

– Property 1: We will now assume that the equation of state takes the form:
ρkek(Pk, ρk) = ak,0ρk + gk(Pk) in each phasek. The three schemesLF , MLF
andSWBLF described above preserve the discrete form of the basic solutionS1,
whatever the mesh size is, since(U1)n

i = (U2)n
i = U0 and(P1)n

i = (P2)n
i = P0

imply that(U1)n+1
i = (U2)n+1

i = U0 and(P1)n+1
i = (P2)n+1

i = P0, if εi = ε0.

– Property 2: We will still assume that the equation of state takes the form:
ρkek(Pk, ρk) = ak,0ρk + gk(Pk) in each phasek. Both schemesMLF and
SWBLF preserve the discrete form of the basic solutionS2 on any mesh, since



(U1)n
i = (U2)n

i = 0 and(P1)n
i = (P2)n

i = P0 imply that(U1)n+1
i = (U2)n+1

i = 0
and also(P1)n+1

i = (P2)n+1
i = P0, with anyεi. The standardLF scheme does not.

– Property 3: The maximum principle for void fractions holds, and positive par-
tial masses are ensured when applying any scheme amongLF , MLF andSWBLF ,
provided that a standard CFL-like condition holds.

Note: We must emphasize that the specific EOS which maintainS1, S2 on any
mesh size include perfect gas EOS and also stiffened gas EOS. The reader is referred
to [GAL 02] which examines similar problems for single-phase flows.

4. Behaviour of schemes in specific test-cases

The first test case corresponds to a rough representation of a loss of coolant ac-
cident, focusing on the propagation of the rarefaction wave that hits the free/porous
interface separating the pipes and the steam generator. The computational domain in-
cludes a free region (ε = 1) on the left side of an interface located atx = 0.35, and
a porous region (steam generator,ε = 0.6) on the right side of the latter interface.
The initial void fraction profile isα2(x < 0.3, 0) = 0.05 andα2(x > 0.3, 0) = 0.95.
Other initial conditions are chosen as follows:P1(x, 0) = P2(x, 0) = PL for x < 0.3,
P1(x, 0) = P2(x, 0) = PR for x > 0.3, andU1(x, 0) = U2(x, 0) = 0, where
PL = 1.105 andPR = 20.105. Figures 1 and 2 show the behaviour of the Riemann
invariantsI0

3 , I0
6 , s1 ands2 when the rarefaction has passed the interface. The mesh

contains1000 regular cells, and the CFL number is1/2. Subscript2 refers to wa-
ter. Results are clearly in favour ofSWBLF . The second test case corresponds to
a classical one-dimensional Riemann problem, where the left and right states of the
porosity areεL = 1, andεR = 0.6 respectively. Figure 3 provides the measure of the
L1 norm of the error when focusing on the SWBLF scheme. The EOS for the vapour
and the liquid are perfect gas EOS (γ1 = 1.1 andγ2 = 1.4). The solution contains
two contact waves associated withλ = 0 andλ = U2, and one shock wave in the
vapour phase corresponding toλ = U2 + c2. Subscript2 now refers to the gas phase,
and(VI , PI) = (U2, P1). The coarser and finer meshes contain102 and2.105 cells.
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