
HAL Id: hal-01580984
https://hal.science/hal-01580984

Submitted on 4 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Planning for optimal control and performance
certification in nonlinear systems with controlled or

uncontrolled switches
Lucian Busoniu, Jamal Daafouz, Marcos Cesar Bragagnolo, Irinel-Constantin

Morarescu

To cite this version:
Lucian Busoniu, Jamal Daafouz, Marcos Cesar Bragagnolo, Irinel-Constantin Morarescu. Planning
for optimal control and performance certification in nonlinear systems with controlled or uncontrolled
switches. Automatica, 2017, 78, pp.297-308. �10.1016/j.automatica.2016.12.027�. �hal-01580984�

https://hal.science/hal-01580984
https://hal.archives-ouvertes.fr

Planning for optimal control andperformance certification in

nonlinear systemswith controlled or uncontrolled switches ⋆

Lucian Busoniu a, Jamal Daafouz b, Marcos Cesar Bragagnolo b,

Irinel-Constantin Morarescu b

aAutomation Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania

bUniversité de Lorraine, CRAN, UMR 7039 and CNRS, CRAN, UMR 7039, 2 av. Forêt de Haye, Vandœuvre-lès-Nancy, France

Abstract

We consider three problems for discrete-time switched systems with autonomous, general nonlinear modes. The first is optimal
control of the switching rule so as to optimize the infinite-horizon discounted cost. The second and third problems occur
when the switching rule is uncontrolled, and we seek either the worst-case cost when the rule is unknown, or respectively the
expected cost when the rule is stochastic. We use optimistic planning (OP) algorithms that can solve general optimal control
with discrete inputs such as switches. We extend the analysis of OP to provide certification (upper and lower) bounds on the
optimal, worst-case, or expected costs, as well as to design switching sequences that achieve these bounds in the deterministic
case. In this case, since a minimum dwell time between switching instants must often be ensured, we introduce a new OP variant
to handle this constraint, and analyze its convergence rate. We provide consistency and closed-loop performance guarantees
for the sequences designed, and illustrate that the approach works well in simulations.

Key words: Switched systems; optimal control; planning; nonlinear systems.

1 Introduction

Switched systems consist of a set of linear or nonlin-
ear dynamics called modes, together with a rule for
switching between these modes [30]. They are employed
to model real-world systems that are subject to known
or unknown abrupt parameter changes such as faults
[15,29], e.g. embedded systems in the automotive in-
dustry, aerospace, and energy management. This impor-
tant class of hybrid systems is therefore heavily stud-
ied, with a main focus on stability and stabilization, see

⋆ Corresponding author L. Busoniu. This work was sup-
ported by a Programme Hubert Curien-Brancusi cooper-
ation grant (CNCS-UEFISCDI contract no. 781/2014 and
Campus France grant no. 32610SE) and by the PICS project
No 6614 ”Artificial-Intelligence-Based Optimization for the
Control of Networked and Hybrid Systems”. Additionally,
the work of L. Busoniu was supported by the Romanian Na-
tional Authority for Scientific Research, CNCS-UEFISCDI
(No. PNII-RU-TE-2012-3-0040). The work of J. Daafouz and
I.-C. Morarescu was partially funded by the National Re-
search Agency (ANR) project “Computation Aware Control
Systems” (No. ANR-13-BS03-004-02).

Email addresses: lucian@busoniu.net (Lucian Busoniu),
jamal.daafouz@univ-lorraine.fr (Jamal Daafouz),
marcos-cesar.bragagnolo@univ-lorraine.fr (Marcos
Cesar Bragagnolo),
constantin.morarescu@univ-lorraine.fr

(Irinel-Constantin Morarescu).

surveys [38,31] and papers [33,6,14,18,28]. Performance
optimization for switched systems has also been investi-
gated, see e.g. the survey [45] and [43,35,2,36,37,12]. Hy-
brid versions of the Pontryagin Maximum Principle or
dynamic programming have been proposed [35,37], with
the drawback of lacking efficient numerical algorithms.
Suboptimal solutions with guaranteed performance in-
clude [41], [19]. The former efficiently represents the ap-
proximate value function using relaxations. The latter
proves that the so-called min-switching strategies are
consistent, i.e. that they improve performance with re-
spect to non-switching strategies. Certification bounds
[20] (lower and upper bounds on performance) are pro-
vided for linear switched systems with a dwell time as-
sumption in [24]. In [12], the problem is treated by intro-
ducing modal occupation measures, which allow relax-
ation to a primal linear programming (LP) formulation.
Overall, however, optimal control remains unsolved for
general switched systems.

Motivated by this, our paper makes the following con-
tributions. We propose an approach inspired from the
field of planning in artificial intelligence, to either design
switching sequences with near-optimal performance
when switching is controllable, or to evaluate the per-
formance when switching acts as a disturbance. We call
the first problem PO, and the second either PW when
the switching rule is unknown, in which case we estimate

Preprint submitted to Automatica 1 August 2016

the worst-case performance; or PS when the switches
evolve stochastically along a known Markov chain,
in which case we evaluate the expected performance.
Throughout, we consider a set of autonomous, general
nonlinear modes, and a performance index consisting
of the discounted infinite-horizon sum of general, non-
quadratic stage costs. Optimistic planning [23,8,32] is
used to search the space of possible switching sequences.
In all cases, our approach guarantees certification, lower
and upper bounds on the (expected) performance.

When it makes sense to do so – namely in PO and PW
– the method also designs a switching sequence that
achieves the certification bounds. Since a minimum dwell
time δ between switching instants must often be ensured,
we introduce a new optimistic planner called OPδ that
handles this constraint, and analyze its convergence rate.
The analysis provides consistency and closed-loop per-
formance guarantees for the sequences designed. Differ-
ent from typical results, consistency shows improvement
with respect to any suboptimal sequences, not only sta-
tionary ones. Finally, we illustrate the practical perfor-
mance of the approach in simulations for several linear
examples and a nonlinear one.

Compared to the optimal control methods reviewed
above, the advantages of our approach include: a char-
acterization of the certification bounds, a procedure
to design a worst-case sequence, a design method with
minimum dwell time, improved consistency results, and
being able to handle very general nonlinear modes.
While a high computational complexity is unavoidable
due to this generality, our analysis is focused precisely
on characterizing the relation between computation and
quality of the bounds.

An important remark is that much of the literature fo-
cuses on stability [38,31], whereas our aim is to provide
near-optimality guarantees. Stability is a separate, dif-
ficult problem for discounted costs [26,11,34]. Neverthe-
less, in some cases our approach can exploit existing sta-
bility conditions: e.g. for some types of linear modes sta-
bility may be guaranteed under a dwell time constraint
using [18], in which case OPδ can enforce this constraint
and thereby ensure stability.

The stochastic switching in PS leads to a Markov jump
system, and there is a large body of literature dealing
with such systems, again with a focus on linear modes
[5,13], see e.g. [39] for optimal control. A recent nonlin-
ear result is given in [44], where the stability properties
of optimal mode inputs are analyzed for Markov jump
systems with nonlinear controlled modes. The practical
implementation in [44] works for unknown mode dynam-
ics, but without error guarantees, whereas all our meth-
ods provide tightly characterized bounds.

In the context of existing planning methods, solving PO
and PW without dwell-time is a straightforward applica-

tion of optimistic planning analysis [23]. In contrast, en-
forcing a minimum dwell-time requires deriving a novel
algorithm and its accompanying analysis. Finally, solv-
ing PS can be seen as a special case of optimistic plan-
ning for stochastic systems [8], but the nature of this spe-
cial case allows us to derive a new, streamlined analysis.
Compared to our preliminary work in [7], here we handle
the new case of stochastic switching, provide consistency
and closed-loop guarantees, and study two extra exam-
ples; in addition to including more technical discussion
at several points in the paper.

Next, Section 2 formalizes the problem and Section 3
gives the necessary background. The approach is de-
scribed in Section 4 for optimal and worst-case problems
PO and PW, and in Section 5 for stochastic switching
PS. Section 6 evaluates the planners in simulation ex-
amples of all these problems. Section 7 concludes.

List of symbols and notations

x,X, σ, S state, state space, mode, set of modes
M number of modes
fσ, p dynamics in mode σ, mode probabilities
d,σd depth, mode sequence of length/depth d
γ, g,G discount factor, stage cost, cost bound

J ;J, J, J̃ cost; optimal, worst-case, expected cost
ρ, v, ṽ reward function, value, expected value
r reward value
n computation budget
T , T ∗,L(T) tree, near-optimal tree, leaves of T
l, b lower, upper bound on determ. value
L,B lower, upper bound on expected value
l∗, b∗, L∗, B∗ best bounds found by algorithms
d∗ largest depth found by algorithms
ε near-optimality or sub-optimality
κ branching factor of near-optimal tree
K complexity of dwell-time problem
β complexity of stochastic problem
δ,∆ dwell time constraint, dwell time
e, λ leaf contribution, contribution cutoff
C, a, b, c constants
· , · quantity · in optimal, worst-case problem
·δ quantity · for minimum dwell-time δ
O(·),Ω(·) bounded above, below by · up to const.

Õ(·) bounded above by · up to log. terms
[·, ·] concatenation of two mode sequences

2 Problem statement

Consider a discrete-time nonlinear switched system with
states x ∈ X. The system can be at each step k in one
of M modes σ ∈ S =

{

σ1, . . . , σM
}

, where each mode
is autonomous:

xk+1 = fσk
(xk) (1)

2

The dwell time is defined as the number of steps dur-
ing which the mode remains unchanged after a switch.
A function g(xk, σk) assigns a numerical stage cost to
each state-mode pair, e.g. quadratic in xk up to satu-
ration limits, see Example 1. Under a fixed initial state
x0, define an infinitely-long switching sequence σ∞ =
(σ0, σ1, . . .) and the infinite-horizon discounted cost of
this sequence:

J(σ∞) =

∞
∑

k=0

γkg(xk, σk) (2)

where γ ∈ (0, 1) is the discount factor and xk+1 =
fσk

(xk). The dynamics f can be very general and a
closed-form mathematical expression may not be avail-
able for them; the only requirement is that f can be
simulated numerically.

To start with, we define two different problems:

PO. Optimal control: Find the optimal value J =
infσ∞

J(σ∞) and a corresponding switching sequence
that achieves it.

PW. Worst-case switches: Find the largest possible cost:
J = supσ∞

J(σ∞), and a corresponding switching
sequence that achieves it.

PO is useful when the switching rule can be controlled,
while PW is interesting when switches are a disturbance
and we are interested in the performance under the worst
possible disturbance.

We will also consider a more refined case where the
switches are known to evolve stochastically, following a
Markov chain. In particular, the probability of moving
from mode i to j is P(σk+1 = j |σk = i) = p(i, j), with
p ∈ [0, 1]M×M known. The initial mode σ0 is distributed
with p0(σ0), p0 ∈ [0, 1]M (if the initial mode is known,
then p0 can give it probability 1). Both p and p0 must
define valid probability distributions. In this case, we are
interested in estimating the expected discounted cost.

PS. Stochastic switches: Find the expected discounted
cost J̃ = Eσ∞

{J(σ∞)}, over the possible switching
sequences σ∞ generated according to p0, p.

In all three problems, we rely on a central assumption
of cost boundedness.

Assumption 1 The stage costs are bounded, so that
g(x, σ) ∈ [0, G] ∀x ∈ X,σ ∈ S.

The main role of discounting and reward boundedness
is to ensure that the infinite-horizon cost J in (2) is
bounded to [0, G

1−γ], which implies the same for the ex-

pected value J̃ . Our planning algorithms rely on this
boundedness property and would not be implementable

without it. Note that many other works in control use
discounting, e.g. [17,1,25]. Bounded costs are typical in
AI methods for optimal control, such as the planning
class in our focus [27] and reinforcement learning [42].
A good way to achieve boundedness is by saturating a
possibly unbounded original reward function, see Exam-
ple 1. This changes the optimal solution (here, the se-
quence of switches) in ways that are nontrivial to an-
alyze, but is often sufficient in practice. On the other
hand, the physical limitations of the system may be
meaningfully modeled by saturating the states and ac-
tions. In this case, a reward bound follows from the sat-
uration limits. Next, we impose a stability requirement.

Assumption 2 For any sequence of switches σ∞ that
can occur, the system is stable from x0 (the state trajec-
tory is bounded).

Regarding the qualifier “can occur”, in Section 4.2 we
will restrict the sequences so that a minimum dwell time
is respected; in that case, only those sequences can occur
and thus must lead to stability. Assumption 2 is natural
in PW, since if the worst sequence destabilizes the sys-
tem there is little point in investigating its cost. In the
stochastic switched systems relevant to PS, more refined
stability properties are usually assumed, such as almost
sure stability [13]. Our Assumption 2 is stronger since it
requires the system to be stable surely (in the probabilis-
tic sense). The situation is more involved in PO, since
our algorithms actually only examine near-optimal se-
quences, so strictly speaking the property is only needed
for those sequences; however a formal analysis of this
would require first a deep understanding of general sta-
bility properties with discounted cost, which are still in
their infancy [34] and, as previously noted, outside the
focus of this paper. Instead, we restrict ourselves in this
paper to the rather strong Assumption 2, which allows
us to focus on optimality. Note nevertheless that in some
simple cases, like in the upcoming linear example, con-
ditions to ensure stability exist.

Example 1 A classical switched system is obtained
when the modes are linear and the cost is quadratic. Fur-
ther, we saturate the cost to G to ensure Assumption 1:

fσk
= Aσk

xk

g(xk, σk) = min{x⊤Qx,G}

where Q is positive definite. For these dynamics, Theo-
rem 1 in [18] provides a minimum dwell time which, if
obeyed, guarantees stability for any switching sequence.
We provide and analyze an algorithm that enforces a
minimum dwell-time constraint in Section 4.2. �

3

3 Background: Optimistic planning for deter-
ministic systems

This section introduces optimistic planning for deter-
ministic systems (OP) [23,32], which forms the basis of
our approach: it supplies independence of the mode dy-
namics, as well as a way to design sequences with known
lower and upper bounds on the performance. Both PO
and PW will be encompassed as variants of an optimal
control problem that involves maximizing a reward func-
tion ρ : X × S → [0, 1], where S is the discrete set of M
actions. Given an initial state x0, the value of a sequence
is:

v(σ∞) =
∞
∑

k=0

γkρ(xk, σk) (3)

and the optimal value is v∗ = supσ∞
v(σ∞). Under mild

technical conditions, this optimum exists, together with
a sequence that achieves it [3]. Define a finite-length se-
quence of d actions as σd = (σ0, . . . , σd−1), and denote
rk+1 = ρ(xk, σk).

At a high level, OP iteratively refines promising action
sequences until a computational budget n, related to
the number of evaluations of the model f , is exhausted.
Based on the value information accumulated about these
sequences, OP then chooses a sequence that is as good
as possible.

ba bb

L
T

d = 1

d = 2

d = 3

b

d 0=

r = 0 r =0

0 0.1 0.1 0

00.8

[0.25, 0.5]

[0, 0.5] [0.05,0.55] [0, 0.5]

[=0.05, =0.3]l b

aa ab

a

aba abb

Fig. 1. Illustration of an OP tree T . Nodes are labeled by
action sequences, while arcs represent transitions and are
labeled by the associated rewards, shown in blue. Near the
nodes, lower bounds l and upper bounds b are shown in red
boldface, see (4) for their definition. The leaves are enclosed
in a dashed line. The tree is shown after 4 expansions, and
γ = 0.5. (Figure best viewed in color.)

In more detail, the planning process can be visualized
using a tree structure T . Fig. 1 shows such a tree for a
problem with two control actions a and b (so, M = 2).
Each node at some depth d is labeled by the correspond-
ing action sequence σd; for example, the gray node at
d = 3 has sequence σ3 = (a,b, a). Each node is also la-
beled by the state resulting from applying the sequence;
state labels are not shown in the figure. Planning begins
with a single root node labeled by the empty sequence
and x0, and proceeds by iteratively expanding nodes.

The expansion of a node σd, xd consists of simulating all
M actions from the associated state xd, and adding for
each j a child node labeled by the one-action-longer se-
quence σd+1 = [σd, σ

j] and by the state fσj (xd), where
[·, ·] denotes sequence concatenation. An arc between a
parent and a child corresponds to a transition between
the corresponding states, and is itself labeled by the re-
ward associated with this transition. E.g. in Fig. 1, the
arc leading to the gray node has reward 0.8. Unexpanded
states in the tree T are called leaves, and the set of leaves
is denoted LT .

For any node/sequence σd, because all the rewards at
depths larger than d are in [0, 1], we can define a lower
bound l(σd) and an upper bound b(σd) on the values
v(σ∞) of all infinite action sequences that share the ini-
tial subsequence up to σd, as follows:

b(σd) =

d−1
∑

i=0

γiρ(xi, σi) +
γd

1− γ
=: l(σd) +

γd

1− γ
(4)

Here, xi, i = 0, . . . , d− 1 is the state sequence obtained
by applying σd. The algorithm is optimistic because it
expands at each iteration the most promising sequence:
the one with the largest upper bound. After n node
expansions, a greedy, “safe” sequence that maximizes l
among the leaves is returned, together with bounds on
the performance, see Algorithm 1.

Algorithm 1 Optimistic planning.

1: initialize tree T ← {σ0}
2: for t = 1, . . . , n do
3: find optimistic leaf: σ

† ← arg maxσ∈L(T) b(σ)

4: add to T the children of σ
†

5: end for
6: return sequence σ

∗
d = arg maxσ∈L(T) l(σ), lower

bound l∗ = l(σ∗
d), upper bound b∗ =

maxσ∈L(T) b(σ)

To exemplify, consider first the dashed node in Fig. 1.

It has upper bound 0 + γ · 0.1 + γ2

1−γ = 0.55, which is

maximal among all leaves, so this node is the optimistic
one. The gray node has lower bound 0+γ ·0.1+γ2 ·0.8 =
0.3, again maximal, so this is the greedy node which
would be returned if the algorithm were stopped at the
current iteration. As a useful exercise, the reader may
verify that the algorithm indeed obtains the tree of Fig. 1
after running for 4 iterations.

We will use the OP form described above to introduce
our approach, but note that the actual implementation
can be designed to avoid the explicit maximizations
over the leaves. While OP is a type of nonlinear model-
predictive control, its AI heritage (e.g. the A* graph
search algorithm) leads to some atypical near-optimality
guarantees, described next.

4

To analyze the complexity of finding the optimal se-
quence from x0, define the near-optimal subtree:

T ∗ = {σd | d ≥ 0, v∗ − v(σd) ≤
γd

1− γ
} (5)

where the value of a finitely long sequence is v(σd) :=
supσ∞

v([σd,σ∞]). A core property of OP is that it only
expands nodes in T ∗. This subtree can be significantly
smaller than the complete tree containing all sequences,
and to measure its size let T ∗

d be the set of nodes at depth
d on T ∗ and |·| denote set cardinality. Then, define the

asymptotic branching factor as κ = lim supd→∞ |T
∗

d |
1/d

.
This is a complexity measure for the problem, and in-
tuitively represents an average number of children per
node in the infinite subtree T ∗; see also below for its
meaning in specific cases.

The upcoming theorem follows from the analysis in
[23,32]. Parts (i), (ii) show that OP returns a long, near-
optimal sequence with known performance bounds, and
part (ii) quantifies the length and bounds via branching
factor κ.

Theorem 3 When OP is called with budget n: 1

(i) The optimal value v∗, as well as the value v(σ∗
d)

of the sequence returned, are in the interval [l∗, b∗].

Further, the gap ε := b∗− l∗ satisfies ε ≤ γd∗

1−γ where

d∗ is the largest depth of any node expanded.
(ii) The length d of sequence σ

∗
d is at least d∗.

(iii) If κ > 1, OP will reach a depth of d∗ = Ω(log n
log κ),

and ε = O(n−
log 1/γ
log κ). If κ = 1, d∗ = Ω(n) and ε =

O(γcn), where c is a problem-dependent constant.

Note that d∗ is the depth of the developed tree minus
1. The smaller κ, the better OP does. The best case
is κ = 1, obtained e.g. when a single sequence always
obtains rewards of 1, and all the other rewards on the tree
are 0. In this case the algorithm must only develop this
sequence, and the gap decreases exponentially. In the
worst case, κ = M , obtained e.g. when all the sequences
have the same value, and the algorithm must explore the
complete tree in a uniform fashion, expanding nodes in
order of their depth.

1 Let g, h : (0,∞) → R. Statement g(t) = O(h(t)) (or
g(t) = Ω(h(t))) for large t means that ∃t0, c > 0 so that
g(t) ≤ ch(t) (or g(t) ≥ ch(t)) ∀t ≥ t0. When the statement
is made for small t, it means that ∃t0, c > 0 so that the
same inequalities hold for ∀t ≤ t0. Later on, we will also use
notation f(t) = Õ(g(t)) for small (or large) t, which means
that ∃a > 0, b ≥ 0, t0 > 0 so that f(t) ≤ a(log g(t))bg(t)
∀t ≤ t0 (or ∀t ≥ t0).

4 Solving the deterministic optimal-control and
worst-case problems

In our first set of major results, we explain how PO
and PW can be solved. We first explain how the OP al-
gorithm can be applied off-the-shelf when there are no
dwell time constraints. Next, a minimum dwell-time is
considered, where an extended algorithm with nontrivial
analysis is necessary. These results were largely proven in
our preliminary paper [7]; we include the proofs here too,
so as to keep the paper self-contained. Then, we move on
to fully novel contributions: consistency guarantees that
show the OP solution is better than e.g. fixed-mode tra-
jectories, and performance bounds in receding-horizon
closed loop.

4.1 Applying OP to switched systems

OP can be applied to the system in Section 2 by inter-
preting the mode switches as discrete actions. To solve
the optimal control problem PO and the worst-case
problem PW, the reward function is taken, respectively,
as:

ρ(x, σ) := 1−
g(x, σ)

G
, ρ(x, σ) =

g(x, σ)

G
(6)

so that maximizing ρ is equivalent to minimizing costs
g, and maximizing ρ to maximizing costs g. We use un-
derline to denote quantities under PO and overline for
PW, e.g. κ and κ are the complexity measures (branch-
ing factors) in the two problems. Then OP is simply ap-
plied with either of these two reward functions, and it
will produce certification bounds and design a switching
sequence that achieves them, as described next.

Corollary 4 (i) When applied to PO, OP returns
bounds l, b so that the optimal value J is in the inter-
val [G(1

1−γ − b), G(1
1−γ − l)], as well as a sequence σ

that achieves these bounds. The gap (interval size) is

Gε = O(n
−

log 1/γ
log κ) when κ > 1, or O(γcn) when κ = 1.

(ii) When applied to PW, OP returns bounds l, b so that
the worst-case value J is in the interval [Gl,Gb], as well
as a sequence σ that achieves these bounds. The gap is

Gε = O(n
−

log 1/γ

log κ) when κ > 1, or O(γcn) when κ = 1.

Proof: For any infinitely long sequence σ∞, it is easily
seen that the value under ρ is v(σ∞) = 1

1−γ −
1
GJ(σ∞),

and so v∗ = 1
1−γ −

1
GJ . Using this fact and Theorem 3,

Part (i) is derived immediately. We similarly observe
v(σ∞) = 1

GJ(σ∞) and derive Part (ii). �

4.2 Enforcing a dwell-time constraint

It is often important to ensure that after switching, the
system remains in the same mode for a certain number of

5

steps – the dwell time. This is because for some systems
fundamental properties (stability, performance, etc.) can
be guaranteed only under dwell time constraints, see e.g.
Example 1 and [18]. Another reason is that in practice,
it may be unsuitable or impossible to switch arbitrarily
fast, so the designer must guarantee by construction a
minimum dwell time. The dwell time may appear as a
constraint fixed in advance or as a design parameter to
be chosen.

Therefore, we introduce and analyze an algorithm that
enforces a dwell time of at least δ along any switching
sequence. Our starting point is OP, and most of the al-
gorithm remains the same, including: lower and upper
bounds, optimistic and greedy sequence selection rules.
One important change is introduced, in the node expan-
sion procedure. Define a function ∆(σ), which takes as
input any finite-length sequence σ and provides the last
dwell time at the end of the sequence. Then, the dwell-
time condition is checked for every node to be expanded.
If the dwell time is at least δ, a switch can occur, and so
children are created for all the actions (modes). Other-
wise, a switch is not allowed, so only the child that keeps
the mode constant is created. We call the algorithm OP
with a dwell-time constraint (OPδ) and summarize it in
Algorithm 2. By convention, it is assumed that the dwell
time condition is satisfied at d = 1, see also the discus-
sion on closed-loop application in Section 4.4.

Algorithm 2 OP with a dwell-time constraint.

1: initialize tree T ← {σ0}
2: for t = 1, . . . , n do
3: find optimistic leaf: σ

† ← arg maxσ∈L(T) b(σ)

4: if ∆(σ†) ≥ δ then
5: create all children of σ

†

6: else
7: create one child, for the last action σ on σ

†

8: end if
9: end for

10: return σ
∗
d = arg maxσ∈L(T) l(σ), l∗ = l(σ∗

d),

b∗ = maxσ∈L(T) b(σ)

aa

a b c

acab ca cccb

cca cccccb

ba bcbb

aaa aacaab abb acc baa bcc caa cbbbba bbcbbb

Fig. 2. Illustration of a constrained, OPδ tree for δ = 2. Gray
nodes have smaller dwell time than δ.

As an example, Fig. 2 illustrates a complete tree down
to depth 3, for M = 3 actions (a, b, c) and δ = 2. The
gray nodes have dwell time 1, determined by a direct ex-
amination of their sequences; so they are allowed only
one child, the one keeping the action unchanged. The

children of the gray nodes have dwell time 2, so they are
eligible for full expansion. Note that if δ were 3 instead,
then these children would not satisfy the constraint ei-
ther. Note that while the figure shows a uniform tree,
the algorithm will usually only create some of the nodes
on this tree, see the analysis.

Denote now by Sδ the set of sequences satisfying the
constraint, and the constrained optimal values:

v∗
δ = sup

σ∞∈Sδ

v(σ∞)

vδ(σd) = sup
σ∞s.t. [σd,σ∞]∈Sδ

v([σd,σ∞])

Of course, the constrained optimum is generally worse
than the unconstrained one, v∗

δ ≤ v∗, so enforcing the
constraint comes at a price. We analyze in the sequel the
bounds and gap provided by OPδ, in the general case of
a reward function ρ. Then, by choosing the rewards as
in (6), we will solve either PO or PW under the dwell-
time constraint. Note that whenever the distinction be-
tween unconstrained and constrained values is not clear,
we explicitly add the subscript δ to the quantity in the
constrained problem.

As for OP, define the near-optimal constrained subtree:

T ∗
δ = {σd | d ≥ 0,σd ∈ Sδ, v

∗
δ − vδ(σd) ≤

γd

1− γ
} (7)

where σd ∈ Sδ means that an infinite constrained se-
quence starting with σd exists. Then, the following prop-
erties similar to OP also hold in the constrained case.

Lemma 5 OPδ only expands nodes in T ∗
δ , and the op-

timal constrained value v∗
δ , as well as the value vδ(σ

∗
d) of

the sequence returned, are in the interval [l∗, b∗]. Further,

the gap [l∗, b∗] satisfies ε ≤ γd∗

1−γ where d∗ is the largest

depth of any node expanded by OPδ.

Proof: By definition of the algorithm all sequences ex-
panded satisfy the first condition σd ∈ Sδ. Further,
for any finite tree there exists some leaf sequence σ

′ so
that b(σ′) ≥ v∗

δ , and since σ
† maximizes the b-value,

b(σ†) ≥ v∗
δ , or equivalently l(σ†) + γd

1−γ ≥ v∗
δ . This im-

plies vδ(σ
†) + γd

1−γ ≥ v∗
δ , the same as the second condi-

tion in (7). So finally σ
† ∈ T ∗

δ .

Clearly, l∗ ≤ vδ(σ
∗
d) ≤ v∗

δ by definition. Consider now a
leaf sequence σ

′ on the final tree, that is an initial sub-
sequence of a constrained optimal sequence. Since b∗ is
the largest upper bound, b∗ ≥ b(σ′) ≥ v∗

δ , so combined
with the first inequality we get v∗

δ , vδ(σ
∗
d) ∈ [l∗, b∗]. Fur-

ther, by expanding nodes the largest b-value on the tree
can only decrease. Hence, for any node σ

† previously ex-
panded, found at some depth d, we have b∗ ≤ b(σ†) and

6

also l∗ ≥ l(σ†), so ε = b∗ − l∗ ≤ b(σ†) − l(σ†) = γd

1−γ .

One such node is at d∗, so ε ≤ γd∗

1−γ . Note that this proof

is largely the same as for original OP, see e.g. [7], except
that the dwell-time constrained values are substituted
for the unconstrained ones. �

So far the analysis simply established that OPδ pre-
serves some interesting properties of OP. The main nov-
elty of the constrained algorithm follows: the behavior
of the new gap ε obtained. To this end, the cardinality
of the near-optimal tree must be characterized using a
new complexity measure, which is defined as follows.

Definition 6 The complexity measure is the smallest
value of K for which there exists a constant C > 0 so

that
∣

∣

∣
T ∗

d,δ

∣

∣

∣
≤ C ·Kd/δ, ∀d ≥ 0.

Here T ∗
d,δ denotes the nodes of T ∗

δ at depth d. Note that
due to the special cases below, a K always exists and
belongs to the interval [1,Mδ] (it may be non-integer).
Constant K plays a similar role to the branching factor
κ in the unconstrained problem, and in some cases a
relationship between the two quantities can be found, as
we show later. Our results hold for any pair C,K, but we
take the smallest K. Using K, the gap ε is characterized
as follows.

Theorem 7 Given a computational budget n, the OPδ

algorithm produces a gap ε = O(n−δ
log 1/γ
log K) if K > 1, and

ε = O(γ
n
C) when K = 1, where C is the constant from

the definition of K.

Proof: Define dn to be the smallest depth so that n ≤
∑dn

i=0

∣

∣

∣
T ∗

i,δ

∣

∣

∣
; this means OPδ has expanded nodes at dn

(perhaps not yet at dn + 1), so d∗ ≥ dn and ε ≤ γdn

1−γ .

If K > 1, then 2 n ≤
∑dn

i=0 CKi/δ = C (K1/δ)dn+1−1
K1/δ−1

≤

c1K
dn/δ, from which dn ≥ δ (log n−log c1)

log K ≥ δ log n/ log K−

c2. Thus, after some manipulations ε ≤ c3n
−δ

log 1/γ
log K .

If K = 1, then n ≤
∑dn

i=0 C ≤ C(dn + 1), and dn ≥
n−1
C

leading to ε ≤ γ
n−1

C . The theorem is proven. �

While we measure complexity by the number n of nodes
expanded, the number of children of a node may be either
1 or M , so the computational cost of expansion varies.
Nevertheless, this only amounts to a constant factor in
the relationships, and so it does not affect the asymptotic
analysis. Next, we find the complexity measure K and
illustrate its relation to κ in two interesting cases.

2 We denote by ci positive constants whose value is unim-
portant to the asymptotic analysis.

Case 1: All sequences optimal Consider a problem
where all the rewards are identical, say equal to 1 or to
0. While any sequence is optimal in this problem, it is
nevertheless an interesting case that highlights the (cor-
rect) behavior of the algorithm in general. In this case
the algorithm must explore the entire tree uniformly, in
the order of depth, so to find K we must count all the
nodes at a given depth. Define the vector Nd of length
δ, so that Nd,i for i < δ counts the nodes σd with dwell
time ∆(σd) = i. The last element is different, it counts
all the nodes with dwell time at least δ, since they all
behave exactly the same in the algorithm. Looking e.g.
at Fig. 2, N3 = [6, 9] since the 6 gray nodes have dwell
time one, and 9 have dwell time at least two (3 of these
have dwell time three).

Each node with dwell time at least δ produces 1 child
like itself, and M − 1 children of dwell time 1; and each
node of dwell time i < δ produces 1 child of dwell time
i+1. Writing this explicitly, we have Nd+1 = [Nd,δ(M−
1), Nd,1, ..., Nd,δ−2, Nd,δ−1 + Nd,δ]. Using this, we will
prove by induction that:

Nd ≤ [δj−1M j(M − 1), δj−1M j(M − 1), . . . ,

δj−1M j(M − 1), δj−1M j]
(8)

where j = ⌈d/δ⌉ and (here and in the sequel) vector
inequalities hold elementwise. By directly computing all
counters for d ≤ δ, we see that relation (8) holds for
j = 0, 1. E.g., in particular, Nδ = [M(M − 1),M(M −
1), . . . ,M(M−1),M]. Then, assuming it holds at d = jδ,
we have:

Njδ+1 ≤ [δj−1M j(M − 1), δj−1M j(M − 1), . . . ,

δj−1M j(M − 1), δj−1M j+1]

Njδ+2 ≤ [δj−1M j+1(M − 1), δj−1M j(M − 1), . . . ,

δj−1M j(M − 1), 2δj−1M j+1 − δj−1M j]

Njδ+3 ≤ [2δj−1M j+1(M − 1), δj−1M j+1(M − 1), . . . ,

δj−1M j(M − 1), 3δj−1M j+1 − 2δj−1M j]

. . .

Njδ+δ ≤ [(δ − 1)δj−1M j+1(M − 1),

(δ − 2)δj−1M j+1(M − 1), . . . ,

δj−1M j+1(M − 1),

δδj−1M j+1 − (δ − 1)δj−1M j]

Clearly, all these vectors are smaller than [δjM j+1(M −
1), δjM j+1(M−1), . . . , δjM j+1(M−1), δjM j+1] so the
induction is finished. Then, finally:

∣

∣T ∗
d,δ

∣

∣ ≤

δ
∑

i=1

Nd,i ≤ δjM j+1 ≤M(δM)⌈
d
δ ⌉ ≤M2δ(δM)

d
δ

so K = Mδ. Since T ∗
d,δ has the largest possible size, Mδ

is also the upper limit of the possible values of K.

7

Comparing to OP, K equals δ times the branching factor
M in the OP tree. The two algorithms explore trees that
grow exponentially with the depth, but have different

size. Consider the resulting rates: ε = O(n−
log 1/γ
log M) for

OP, and ε = O(n−δ
log 1/γ
log Mδ) for OPδ. Since δ log 1/γ

log Mδ ≥
log 1/γ
log M for all M, δ ≥ 2, OPδ converges faster in this

worst-case sense. Of course, this does not mean that OPδ
is faster for any given particular problem, and in fact the
relationship varies, see also Case 2 next. �

Case 2: One optimal sequence In this case, a sin-
gle sequence has maximal rewards (equal to 1), and all
other transitions have a reward of 0. Here, two situa-
tions are possible. If the optimal sequence is within the
constrained set, OPδ always expands this sequence fur-

ther, we have
∣

∣

∣
T ∗

d,δ

∣

∣

∣
= 1 and K = 1, the easiest type of

problem. This also leads to the lower limit of 1 for K. In
this situation, the original OP explores the same path
so κ = 1. Thus the best-case convergence rate of the two
algorithms is the same – exponential.

Otherwise, the optimal sequence leaves the constrained
set at a node σ0 at some finite depth, and then the al-
gorithm must explore uniformly the subtree having σ0

at the root (perhaps in addition to some other nodes).
Then, since the analysis is asymptotic, for large depths,
K has the maximal value of Mδ again. Since OP is still
allowed to refine the optimal sequence, κ = 1 and here
introducing the constraint has made the problem signif-
icantly more complex. �

Having completed the analysis of generic OPδ, its prop-
erties in the context of PO and PW for switched sys-
tems are summarized in the following direct adaptation
of Corollary 4. The differences are that the values be-
come constrained, and the convergence rates change to
those of OPδ.

Corollary 8 (i) When applied to PO, OPδ re-
turns bounds l, b so that the optimal value Jδ :=
infσ∞∈Sδ

J(σ∞) is in the interval [G(1
1−γ − b), G(1

1−γ −

l)], as well as a sequence σ that achieves these bounds.

The gap is Gε = O(n
−δ

log 1/γ
log K) when K > 1, or O(γn/C)

when K = 1.

(ii) In PW, OPδ returns bounds l, b so that the worst-case
value Jδ := supσ∞∈Sδ

J(σ∞) is in the interval [Gl,Gb],
as well as a sequence σ that achieves these bounds. The

gap is Gε = O(n
−δ

log 1/γ

log K) when K > 1, or O(γn/C) when
K = 1.

So far we have covered the results in [7], providing addi-
tional technical insight. The next contributions are fully

novel, and deal with the consistency and closed-loop per-
formance of switching sequences returned by OP and
OPδ. While answering these questions is likely more use-
ful in PO, we give the analysis in a general form that is
also applicable to PW, where a “better” solution means
one that is closer to the worst-case performance.

4.3 Consistency guarantees

An important question in switched systems is whether
the sequence found guarantees an improvement over
some particular type of suboptimal solutions. Often,
the trivial sequences that keep the mode constant are
considered. This property is called consistency [19],
and next we guarantee two versions of it, where we
compare the (still suboptimal) solution found by OP
with alternative suboptimal solutions. The first ver-
sion shows improvement over finitely long sequences of
(nearly) the same length as that returned by OP, while
the second property proves that for any infinitely long
sequence that is strictly suboptimal, the algorithm will
find a better sequence given a sufficiently large budget
n. Importantly, these guarantees require no particular
structure on the sequences, so they hold not only for
constant-mode suboptimal sequences, but also periodic
ones, etc.

Theorem 9 Let σ
∗
d be the sequence returned by OP.

Note that by Theorem 3, d ∈ {d∗, d∗ + 1}. Then:

(i) For any sequence σ
′
d−1 of depth d − 1, we have

l(σ∗
d) ≥ l(σ′

d−1).
(ii) Take an εct > 0 and consider any sequence σ∞

that is strictly suboptimal with a suboptimality of
at least εct, i.e. v∗ − v(σ∞) ≥ εct. Then, for suf-
ficiently large budget n the sequence returned will
satisfy v(σ∗

d) ≥ v(σ∞).

Proof: For part (i), take an arbitrary sequence σ
′
d−1.

If σ
′
d−1 corresponds to a node that was created by the

algorithm, then the relation holds by definition, since the
sequence returned has the largest lower bound on the
created tree (including inner nodes, by the definition of
l). Otherwise, there exists some ascendent sequence σ

′
d′

of σ
′
d−1, for d′ < d− 1, over which the parent sequence

σ
∗
d−1 of σ

∗
d was preferred for expansion, see Fig. 3. This

means:
b(σ∗

d−1) ≥ b(σ′
d′) ≥ b(σ′

d−1)

because b-values decrease monotonically along every
path. Equivalently:

l(σ∗
d−1) +

γd−1

1− γ
≥ l(σ′

d−1) +
γd−1

1− γ

so finally l(σ∗
d) ≥ l(σ∗

d−1) ≥ l(σ′
d−1), and part (i) is

proven.

8

σ
*

d

σ
*

d-1

σd’

’

σd-1

’

Fig. 3. Sequences from the proof of Theorem (i). Here, σ
′

d−1

is not on the tree, and σ
′

d′ may not be a leaf on the final tree.

For part (ii), simply take a budget n that ensures a suf-

ficiently large d∗ so that γd∗

1−γ < εct. Then, v∗ − v(σ∗
d) <

εct, see Theorem 3(i), which combined with the defini-
tion of εct implies the desired result. �

A similar guarantee holds for OPδ, restricted to the set
of sequences that satisfy the dwell-time constraint. The
proof will be skipped, since it consists simply in substi-
tuting the constrained values and sequences in the proof
of Theorem 9.

Proposition 10 For the sequence σ
∗
d returned by OPδ:

(i) Given any constrained sequence σ
′
d−1 ∈ Sδ of depth

d− 1, we have l(σ∗
d) ≥ l(σ′

d−1).
(ii) Take an εct > 0 and consider any feasible sequence

σ∞ ∈ Sδ that is strictly suboptimal with a sub-
optimality of at least εct with respect to v∗

δ , i.e.
v∗

δ −v(σ∞) ≥ εct. Then for sufficiently large budget
n, vδ(σ

∗
d) ≥ v(σ∞).

4.4 Receding-horizon application

The results above are for a single sequence starting at x0.
In practice (and in our examples below), the algorithms
are used in receding horizon, by only applying the first
action σ0 of the sequence, then recomputing a new se-
quence from x1 and applying its first action σ1, etc. Of
course, the complexity measure κ or K may be differ-
ent at each encountered state. Importantly, for OPδ, if
a switch occurs at step k, then to guarantee the dwell-
time constraint the mode must be kept constant, keep-
ing the loop open, until k + δ − 1, and OPδ only needs
to be called again at step k + δ.

When OPδ is applied in this way at k ≥ 1, some of the
nodes at d = 1 have dwell-time 1 so they become con-
strained. This is unlike the case in Fig. 2 where they are
unconstrained. This restriction is easy to take into ac-
count in the implementation. Regarding the convergence
rate analysis, the restriction will change which nodes are
expanded at steps k ≥ 1, so the complexity measure
K computed without constraining the nodes at depth 1
may be different from the true value. However, the full
range of values of K is still possible even for this con-
strained tree, e.g. because the subtree of the single un-

constrained node at depth 1 can have any structure from
those described in the special cases. So, specializing the
analysis for steps k ≥ 1 would not be very informative.

The following result shows that applying either algo-
rithm in receding horizon can never lead to worse per-
formance than that of the first sequence, returned at x0.

Proposition 11 For either OP or OPδ, consider the
first sequence σd0,0 returned by the algorithm at k = 0,
and the closed-loop sequence σ∞,cl that it applies when
used in receding horizon. Then, v(σ∞,cl) ≥ l(σ∗

d0,0).

Proof: Consider first OPδ at two steps k, j where it is
consecutively applied. Define the sequence σdk,k com-
puted at k, and σdj ,j at j. In-between, the initial subse-
quence σj−k,k of length j−k is applied (this length may
be 1 or δ depending on whether a switch has occurred).
Consider also the trees Tk, Tj developed, see Fig. 4. It is
essential to note that by the definition of the algorithm,
it expands nodes in the same order in Tj as it did in the
subtree Tk(σj−k,k) of Tk with its root at σj−k,k. This is
because, firstly, the constraint is enforced in closed loop
so no new nodes become eligible for expansion at j with
respect to k. Secondly, the b-values in Tj are an affine
transformation of those in Tk, so the nodes maximizing
the b-value are the same.

Tk

Tj

σ’j

σj-k,k

σd jj,

Tk()σj-k,k

Fig. 4. Sequences and trees from the proof of Proposition 11.

Since OPδ has the same budget n when called at
j, clearly Tk(σj−k,k) ⊂ Tj , which means lj(σ

′
j) ≤

lj(σdj ,j), ∀σ
′
j ∈ Tk(σj−k,k). Subscripts were introduced

in the lower bounds since they may differ at different
steps even if they are computed for the same sequence,
due to the fact that the root state is different and so
the same actions can lead to different rewards. Since
σdk,k = [σj−k,k,σ′

j] for some σ
′
j , we have:

lk(σdk,k) = lk(σj−k,k) + γj−klj(σ
′
j)

≤ lk(σj−k,k) + γj−klj(σdj ,j) = lk([σj−k,k,σdj ,j])

Thus, closing the loop after some number of actions and
reapplying OPδ leads to an overall better value than just
applying the first sequence. This is true at any step, so
by applying it recursively, first for σd0,0 and σd1,1, then
for the next pair of sequences, etc. we obtain the desired
result.

9

In OP, the only changes are that j = k + 1 at any step,
and there are no constraints on the sequences. With
these changes, the proof becomes a special case of the
argument above, so we are done. Note that this argu-
ment for OP (but not for OPδ) already appeared in the
proof of Theorem 3 of [10]. �

5 Solving the stochastic-switches problem

Finally, we consider PS and propose a tree search algo-
rithm to approximate the expected discounted cost. We
introduce an appropriate complexity measure for this
problem, and provide a bound on the approximation ac-
curacy of the algorithm, which depends on the compu-
tation budget and on the complexity measure.

A similar tree structure to Fig. 1 will be used. In contrast
to the deterministic case, the arcs are now also labeled
by probabilities: the arc from the root to node i at depth
1 is labeled by p0(i), while an arc between modes i and
j at greater depths is labeled by p(i, j). A node at depth
d will be associated as before to its sequence σd, but
now also to the probability of this sequence, equal to the
product of probabilities along the path to the node:

P(σd) = p0(σ0)
d−2
∏

k=0

p(σk, σk+1) (9)

ba bb

d = 1

d = 2

d = 3

b

d 0=

r , p= 0 = 0.5 r p= 0, = 0.5

0, 0.25 0, 0.75 0.1, 0.6 0, 0.4

0, 0.40.8, 0.6

0.225,

0.0562

0.125,

0.0625
0.3,

0.15
0.2,

0.1

P=0.15,
e=0.0375

aa ab

a

aba abb

Fig. 5. Illustration of a stochastic tree. Transition probabil-
ities are shown on arcs in blue, after the rewards. Near each
leaf node, probabilities P are shown in red boldface, and
contributions e in red italic. Discount factor γ = 0.5. (Figure
best viewed in color.)

Fig. 5 exemplifies using the same tree as in Section 3,
but this time mode transitions are stochastic. In partic-
ular, p0(a) = p0(b) = 0.5, and p(a, a) = 0.25, p(a,b) =
0.75, p(b, a) = 0.6, p(b,b) = 0.4. Thus, the dashed node
has probability P((b, a)) = p0(b)p(b, a) = 0.5 ·0.6 = 0.3.

To find the expected cost, take the reward func-

tion ρ(x, σ) = g(x,σ)
G . Define the expected value

ṽ = Eσ∞
{v(σ∞)}, and recall the definition (4) of the

sequence bounds l and b. Using these, it is immediately

clear that, for any tree T , the following quantities define
lower and upper bounds on ṽ:

L(T) :=
∑

σ∈L(T)

P(σ) l(σ)

B(T) :=
∑

σ∈L(T)

P(σ) b(σ)

= L(T) +
∑

σ∈L(T)

P(σ)
γd(σ)

1− γ
=: L(T) + ε(T)

(10)

The depth of sequence σ was denoted d(σ) to highlight
the fact that it varies among the leaves. Notation ε(T)
is the gap between the two bounds. The contribution of

a leaf to this gap is defined as e(σ) := P(σ) γd(σ)

1−γ . At

this point it becomes clear that a good algorithm should
expand nodes in decreasing order of their contribution,
so as to maximally reduce the uncertainty on the ex-
pected value. For example, in Fig. 5 the contribution of

the dashed node (b, a) is 0.3 · γ2

1−γ = 0.15, the largest

among the leaves, so this node should be expanded next.
Furthermore, by using the individual sequence bounds
already computed in Fig. 1, we find L(T) = 0.0788,
B(T) = 0.4850.

Algorithm 3 summarizes the procedure. The algorithm
returns lower and upper bounds L∗, B∗ but does not
design a sequence, since this does not make sense in PS –
many sequences may in fact occur. Note that because of
reward scaling, the true expected cost J̃ is in the larger
interval [GL∗, GB∗].

Algorithm 3 Evaluation of stochastic switches.

1: initialize tree T ← {σ0}
2: for t = 1, . . . , n do
3: max-contrib. leaf: σ

† ← arg maxσ∈L(T) e(σ)

4: create all children of σ
†, labeled by 1, . . . ,M

5: end for
6: return bounds L∗ = L(T), B∗ = B(T)

This algorithm is a special case of optimistic planning for
Markov decision processes, from [8], where discrete con-
trolled decisions were allowed in addition to the stochas-
tic transitions. The simpler case of PS, without con-
trolled decisions, allows us to derive in the sequel a more
direct analysis than in [8]. Denoting ε∗ = B∗ − L∗, we
are interested in the evolution of ε∗ with the budget n.
We start by introducing a measure of the problem com-
plexity. Let T∞ denote the infinitely deep tree obtained
by continuing with all possible sequences indefinitely.

Definition 12 Define the subtree of sequences with con-
tributions larger than λ: Tλ = {σ ∈ T∞ | e(σ) ≥ λ}.
Then, the complexity measure is the smallest value of
β for which there exist constants a > 0, b ≥ 0 so that
|Tλ| ≤ a[log(1/λ)]bλ−β , ∀λ > 0.

10

The set Tλ is always a subtree at the top of T∞, because
the contributions monotonically decrease with increas-
ing depth. Recalling footnote 1, we say |Tλ| = Õ(λ−β).

Theorem 13 Given a budget of n expansions, when β >

0 the gap satisfies ε∗ = Õ(n−
1−β

β). When β = 0, then

ε∗ = Õ(γc′n1/b

) for a problem-dependent constant c′ > 0.

Proof: Denote n(λ) = a[log(1/λ)]bλ−β . When inter-
preted as a function of λ, |Tλ| is piecewise constant:
it remains unchanged as long as λ does not equal the
contribution of any node on the tree, and then jumps
to a larger value when λ becomes equal to the contri-
bution of some node(s). Consider now two consecutive
values λ1 > λ2 at such discontinuities, taken so that
n(λ1) ≤ n < n(λ2). Since nodes are expanded in order
of their contribution and |Tλ1

| ≤ n(λ1), all nodes in
Tλ1

have been expanded. Further, the decrease in con-
tribution from a parent to its largest-contribution child
is at most by a factor γ

M , when the probabilities are
uniform (otherwise, a larger-contribution child can be
found). This implies that the sequence of λ values at
the discontinuities decreases at most at the same rate,
so λ2 ≥

γ
M λ1, or equivalently λ1 ≤

M
γ λ2.

Next, the two cases for β are handled separately. When
β > 0, solving n < n(λ2) we get λ2 ≤ a2[log n]b2n−1/δ

for positive constants a2, b2. Hence:

ε∗ ≤ |Tλ1
|λ1 ≤ n

M

γ
λ2 ≤ a2

M

γ
[log n]b2n1− 1

β = Õ(n−
1−β

β)

The inequalities hold because the gap is at most the sum
of contributions over all leaves of Tλ1

(since they were
all expanded), and there are at most n such leaves, since
there are at most n nodes on this subtree. We also used
the inequalities for λ1 and λ2 derived above.

When β = 0, solving again n < n(λ2), we get λ2 ≤
exp[−(n/a)1/b], so as before:

ε∗ ≤ n
M

γ
exp[−(n/a)1/b] ≤ n

M

γ
γcn1/b

= Õ(γcn1/b

)

for some constant c′. The exponential was rewritten in
terms of γ to highlight that the increasing depth in the
tree, and hence the decreasing discounting, is the main
reason for the decrease in the gap. �

When β is smaller, the problem is simpler and the gap
bound decreases faster. In particular, the simplest case
is when β = 0 and the size of the tree increases only log-
arithmically (it is important to note that in this case,
b must be strictly positive because the size of Tλ can-
not remain constant; this was used in the proof above).
More insight is provided next, in two interesting, com-
plementary special cases that are analogous to those in
Section 4.2.

Case 1: Uniform probabilities Here the probabili-
ties are “flat”, unstructured so the problem is difficult:
p0(i) = p(i, j) = 1/M, ∀i, j. The contribution of any

node at depth d is e(σd) = (γ/M)d

1−γ , and so the tree Tλ

increases uniformly, one depth at a time. Given λ, define

d(λ) =
⌈

log λ(1−γ)
log γ/M

⌉

as an upper bound on the depth of

Tλ. The amount of nodes down to d(λ) is O(Md(λ)) =

O(M
log λ(1−γ)
log γ/M) = O(λ−

log M
log M/γ), leading to β = log M

log M/γ .

By applying Theorem 13, we get ε∗ = Õ(n−
log 1/γ
log M).

The interpretation is that since the algorithm must ex-
pand the tree uniformly, it requires large computational
effort to increase the depth and decrease the bound.
Hence, this bound shrinks slowly (the exponent of n−1

is small). In particular, to get to depth d and obtain a

gap γd

1−γ , the algorithm must expand n = O(Md) nodes,

which is a more direct way to derive the same rate. Note
also that the logarithmic term does not appear, so using
Õ instead of O is just an artifact of the general proof. �

Case 2: Structured probabilities For the second
case, we take highly structured probabilities, close to a
deterministic problem. Here, the algorithm can focus on
high-probability paths and decrease the bound quickly.
In particular, take M = 2 and p0, p(i, ·) ∀i are equal
to a Bernoulli distribution with probabilities (q, 1 − q)
and q close to 1. The analysis of |Tδ| is quite involved
and was performed in the supplementary material of

[8]. We give directly the result, β =
log(e

η)
η

log 1/(qγ) where

η = log 1/(qγ)
log 1/(γ(1−q)) . This value becomes smaller when q

approaches 1 so the problem gets closer to deterministic.
In particular, the limit of β as q → 1 is 0. This recovers
a fully deterministic problem, where the algorithm only
needs to expand n = d nodes to get to depth d, so the
gap is ε∗ = O(γn). Note that this is a special case of the
expression in Theorem 13, for c′ = b = 1. �

6 Simulation Results

We evaluate the approach on several linear switched ex-
amples: the first for optimal control PO, the second for
worst-case disturbance PW, and the third for stochas-
tic, Markov switching PS. Linear modes are chosen be-
cause most of the literature focuses on them, so we can
highlight relationships to existing techniques, and at the
same time confirm that our approach solves well this
baseline linear case. Finally, we test the approach on a
nonlinear switched system, for PO. Cost bounds G were
computed by setting saturation limits on the state vari-
ables, and applying the cost function g to these lim-
its. The limits were taken sufficiently large so that they
are never reached during the controlled trajectories. The
limit values are given separately for each example.

11

6.1 Optimal control of the switching rule for linear
modes and quadratic cost

We solve PO for two linear switched systems: one in
which stability can be guaranteed using [18], and another
in which it cannot. The first system is Example 3 of [22],
discretized with Ts = 0.01 s. The saturation limit was
1.5 absolute value, for both state variables. Over a 5 s
long trajectory, OP stabilizes the system with an (undis-
counted) cost of 25.69 in receding horizon, whereas the
design method in [18] gives the larger cost of 32.38.
Continuous-time solutions from [22] gave costs that, af-
ter rescaling by the sampling time to make them com-
parable to our discrete-time cost, have value 24.35 and
24.94. So OP gives results close to the state of the art in
linear switched design.

The second system is from [16]:

A1 =

[

0 −1.01

1 −1

]

, A2 =

[

0 −1.01

1 −0.5

]

(11)

Fig. 6 shows successful results when our approach is ap-
plied to control the switching rule in receding horizon. In

this figure, the initial state of the system is x0 = [−3, 3]
⊤

with a quadratic cost and Q = I and state limit 10. We
selected γ = 0.98, a budget n = 100, and an experiment
length of 80 steps.

0 10 20 30 40 50 60 70 80
−5

0

5

k

S
ta

te
s

0 10 20 30 40 50 60 70 80

1

1.2

1.4

1.6

1.8

2

k

M
o

d
e

Fig. 6. Optimal control for linear unstable modes.

6.2 Worst-case disturbance with dwell-time constraint

Next, we illustrate a problem of type PW: worst-case
disturbance. We borrow the example of [18], having two
linear modes A1 = eB1Ts and A2 = eB2Ts with:

B1 =

[

0 1

−10 −1

]

, B2 =

[

0 1

−0.1 −0.5

]

The sampling time is Ts = 0.5, the cost is quadratic with

Q = I and the initial state is x0 = [1, 1]
⊤

. In [18] stability
is guaranteed under a minimum dwell-time of δ = 6,
and we take advantage of this guarantee by applying the
constrained algorithm OPδ with δ = 6, and keeping the
very first mode constant for 6 steps. We also investigate
the simpler solution of just transforming the system into
a 6-step one, and then running OP without constraints
on the multi-step variant. In both cases, we select γ =
0.98, a budget n = 500 per call of the algorithm, an
experiment length of 300 s, and state limit 30.

0 50 100 150 200 250 300

1

1.2

1.4

1.6

1.8

2

M
o
d
e

0 50 100 150 200 250 300
−6

−4

−2

0

2

4

t [s]
S

ta
te

s

x
1
(t)

x
2
(t)

0 50 100 150 200 250 300

1

1.2

1.4

1.6

1.8

2

M
o
d
e

0 50 100 150 200 250 300
−1

0

1

2

3

t [s]

S
ta

te
s

x
1
(t)

x
2
(t)

Fig. 7. Controlled trajectories for worst-case disturbance.
Top: OPδ, bottom: OP using the multi-step system.

The results for the two approaches are shown in Fig. 7.
The undiscounted cost obtained by running OPδ in re-
ceding horizon is 142.10, close to the upper bound 152.17
obtained by [18]. Note that we reached our value by de-
signing a switching rule, whereas [18] do not. With the
multi-step system, we get a cost of 69.94, clearly show-
ing that the extra freedom provided by OPδ pays off.

6.3 Estimating expected cost with a stochastic switching
rule

To exemplify PS and the results in Section 5, consider
the second example of [21], with M = 4 second-order lin-
ear modes. The goal there was robust control with sys-
tem uncertainty, not optimal control, so the results will
not be comparable, but the system has the appropriate
structure. We consider the closed-loop dynamics of each

12

mode when controlled with the feedbacks designed in
[21], and set the four unknown transition probabilities
so that the overall transition matrix is:

p =

0.3 0.2 0.1 0.4

0.1 0.4 0.3 0.2

0.1 0.1 0.5 0.3

0.2 0.3 0.4 0.1

The initial mode probabilities are taken uniform, p0(i) =

0.25 ∀i. The initial state is x0 = [1, 1]
⊤

, the cost function
is quadratic with Q = I2, and the state limit is 50.

Algorithm 3 is run with a budget up to n = 10000,
and the evolution of the lower and upper bounds, to-
gether with the gap ε∗, is shown in Fig. 8. The bounds
are clearly improving as the budget increases, although
of course the improvement slows down due to the expo-
nential costs of the algorithm; Theorem 13 characterizes
the asymptotic decrease rate of ε∗. The final bounds for
n = 10000 are L∗ = 0.2641, B∗ = 1.1131.

10
0

10
1

10
2

10
3

10
4

0

1

2

3

4

5

6

Budget n

C
o

s
t

b
o

u
n

d
s

B
*

L
*

ε
*

Fig. 8. Results for expected cost evaluation. The values are
normalized, under ρ. Note the logarithmic horizontal axis.

6.4 Optimal control for nonlinear modes: Double tank

For the final example, we consider PO for the double-
tank system with nonlinear modes from [40]. The two
states of the system correspond to the fluid levels in
an upper and a lower tank. The output of the upper
tank flows into the lower tank, the output of the lower
tank exits the system, and the flow into the upper tank
is restricted to be either 1 or 2. The two modes have
continuous-time dynamics:

ẋ(t) =

[

1−
√

x1(t)
√

x1(t)−
√

x2(t)

]

, ẋ(t) =

[

2−
√

x1(t)
√

x1(t)−
√

x2(t)

]

Different from [40], we numerically integrate the dynam-
ics over sampling intervals of Ts = 0.1 to obtain the
discrete-time modes f1 and f2, see again (1). The cost

is defined as (x− x∗)
⊤

Q(x− x∗) with x∗ = [0, 3]
⊤

, and
Q = diag(0, 2), so the first state is not optimized and
the second must reach value 3.

We examine the effect of the computational budget n
on performance, which is measured by the undiscounted
cost along the trajectory in order to be consistent with
usual formulations of optimal control of switched sys-
tems. OP is run for a range of budgets from 10 to 200

in increments of 2, using the initial state x0 = [2, 2]
⊤

,
γ = 0.98, a trajectory length of 20 s, and state limit 5.
Fig. 9, top reports the results, showing that the cost de-
creases with larger budgets as expected, although the
differences are small, showing that the problem is sim-
ple enough to be solved well with small budgets. Note
that the cost no longer decreases for significantly larger
budgets, which indicates the solution is likely already
optimal (for discounted costs). Fig. 9, bottom shows the
trajectory for n = 200, which stabilizes the level to 3 in
around 6 s, like the approach in [40]. Since time is dis-
crete and the input flow can take only two discrete val-
ues, the level must oscillate slightly around the desired
value.

0 50 100 150 200
48.31

48.315

48.32

48.325

48.33

48.335

Budget

C
o
s
t

0 5 10 15 20
2

2.5

3

3.5

4

t [s]

S
ta

te
s

0 5 10 15 20

1

1.2

1.4

1.6

1.8

2

t [s]

M
o

d
e

x
1
(t)

x
2
(t)

Fig. 9. Top: Influence of computational budget for the non-
linear tanks. Bottom: Control and state trajectories in the
same problem.

7 Conclusions and future work

We introduced an approach to optimize or evaluate
discounted costs in discrete-time switched systems with
possibly nonlinear modes. When the switches are con-
trolled, a switching sequence is sought that minimizes
the cost. When the switches are a disturbance, the
approach estimates the maximal, worst-case costs (if
the switching rule is unknown) or the expected cost
(if switching probabilities are known). In the optimal
control and worst-case settings, the approach is able to
optionally include a minimum dwell-time constraint. It

13

provides upper and lower bounds on the optimal, worst-
case, or expected cost depending on the behavior of
the switches, and designs a sequence that achieves the
bounds in the deterministic case. The convergence rate
of the gap between bounds as a function of computation
is characterized.

An important future direction is an explicit treatment
of stability guarantees, either by connecting with exist-
ing conditions in the switched systems literature, or with
our approach for systems without switches in [34]. Start-
ing from other planing algorithms [8,9], approaches can
be developed for so-called dual switching systems [4],
where some of the switches are controlled and some are
a disturbance, evolving either stochastically or with un-
known rules. OPδ may also be modified to handle differ-
ent constraints such as maximum dwell time, periodicity
etc. which will require novel complexity analysis.

References

[1] D. Antunes, W. Heemels, and P. Tabuada, “Dynamic
programming formulation of periodic event-triggered control:
Performance guarantees and co-design,” in IEEE Conference
on Decision and Control, Hawai: U.S.A., 2012, pp. 7212–
7217.

[2] S. C. Bengea and R. A. DeCarlo, “Optimal control of
switching systems,” Automatica, vol. 41, pp. 11–27, 2005.

[3] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control:
The Discrete Time Case. Academic Press, 1978.

[4] P. Bolzern, P. Colaneri, and G. D. Nicolao, “Design
of stabilizing strategies for dual switching stochastic-
deterministic linear systems,” in Proceedings 19th IFAC
World Congress, Cape Town, South Africa, 24–29 August
2014, pp. 4080–4084.

[5] E. Boukas, Stochastic Switching Systems: Analysis and
design. Springer, 2006.

[6] M. S. Branicky, “Multiple Lyapunov functions and other
analysis tools for switched and hybrid systems,” IEEE
Transactions on Automatic Control, vol. 43, pp. 475–582,
1998.

[7] L. Buşoniu, M.-C. Bragagnolo, J. Daafouz, and C. Morarescu,
“Planning methods for the optimal control and performance
certification of general nonlinear switched system,” in
Proceedings 54th IEEE Conference on Decision and Control,
Osaka, Japan, 2015, accepted.

[8] L. Buşoniu and R. Munos, “Optimistic planning for
Markov decision processes,” in Proceedings 15th International
Conference on Artificial Intelligence and Statistics
(AISTATS-12), ser. JMLR Workshop and Conference
Proceedings, vol. 22, La Palma, Canary Islands, Spain, 21–23
April 2012, pp. 182–189.

[9] L. Buşoniu, E. Páll, and R. Munos, “An analysis of optimstic,
best-first search for minimax sequential decision making,” in
2014 IEEE International Symposium on Adaptive Dynamic
Programming and Reinforcement Learning (ADPRL-14),
Orlando, 10–12 December 2014.

[10] L. Buşoniu, R. Postoyan, and J. Daafouz, “Near-optimal
strategies for nonlinear networked control systems using
optimistic planning,” in Proceedings American Control
Conference 2013 (ACC-13), Washington, DC, 17–19 June
2013.

[11] N. Cardoso De Castro, C. Canudas De Wit, and F. Garin,
“Energy-aware wireless networked control using radio-
mode management,” in Proceedings 2012 American Control
Conference (ACC-2012), Montréal, Canada, 27–29 June
2012, pp. 2836–2841.

[12] M. Claeys, J. Daafouz, and D. Henrion, “Modal occupation
measures and LMI relaxations for nonlinear switched systems
control,” Automatica, vol. 64, no. 2, pp. 143–154, 2016.

[13] O. Costa, M. Fragoso, and R. Marques, Discrete-Time
Markov Jump Linear Systems. Springer, 2005.

[14] J. Daafouz, P. Riedinger, and C. Iung, “Stability analysis and
control synthesis for switched systems: A switched Lyapunov
function approach,” IEEE Transactions on Automatic
Control, vol. 47, pp. 1883–1887, 2002.

[15] D. Du, B. Jiang, and P. Shi, Fault Tolerant Control for
Switched Linear Systems. Springer, 2015.

[16] M. Fiacchini and M. Jungers, “Necessary and suficient
condition for stabilizability of discrete-time linear switched
systems: a set-theory approach.” Automatica, 2014.

[17] J. Filar, V. Gaitsgory, and A. Haurie, “Control of singularly
perturbed hybrid stochastic systems,” IEEE Transactions on
Automatic Control, vol. 46, no. 2, pp. 179–190, 2001.

[18] J. C. Geromel and P. Colaneri, “Stability and stabilization
of discrete-time switched systems.” International Journal of
Control, vol. 79, no. 7, pp. 719–728, 2006.

[19] J. C. Geromel, G. Deaecto, and J. Daafouz, “Suboptimal
switching control consistency analysis for switched linear
systems,” IEEE Transactions on Automatic Control, vol. 58,
pp. 1857–1861, 2013.

[20] J. C. Geromel and R. H. Korogui, “H2 robust filter design
with performance certificate via convex programming,”
Automatica, vol. 44, pp. 937–948, 2008.

[21] A. P. Gonçalves, A. R. Fioravanti, M. A. Al-Radhawi, and
J. C. Geromel, “H∞ state feedback control of discrete-
time Markov jump linear systems through linear matrix
inequalities,” in Proceedings of the 18th IFAC World
Congress, Milano, Italy, 28 August – 2 September 2011, pp.
12 620–12 625.

[22] D. Henrion, J. Daafouz, and M. Claeys, “Optimal switching
control design for polynomial systems: An LMI approach,” in
Proceedings of the IEEE Conference on Decision and Control
(CDC-13), 2013.

[23] J.-F. Hren and R. Munos, “Optimistic planning of
deterministic systems,” in Proceedings of the 8th
European Workshop on Reinforcement Learning (EWRL-08),
Villeneuve d’Ascq, France, 30 June – 3 July 2008, pp. 151–
164.

[24] M. Jungers and J. Daafouz, “Guaranteed cost certification
for discrete-time linear switched systems with a dwell time,”
IEEE Transactions on Automatic Control, vol. 58, no. 3, pp.
768–772, 2013.

[25] K. Katsikopoulos and S. Engelbrecht, “Markov decision
processes with delays and asynchronous cost collection,”
IEEE Transactions on Automatic Control, vol. 48, no. 4, pp.
568–574, 2003.

[26] B. Kiumarsi, F. L. Lewis, H. Modares, A. Karimpour, and M.-
B. Naghibi-Sistani, “Reinforcement Q-learning for optimal
tracking control of linear discrete-time systems with unknown
dynamics,” Automatica, 2014, appeared online.

[27] S. M. La Valle, Planning Algorithms. Cambridge University
Press, 2006.

[28] J. W. Lee and G. E. Dullerud, “Uniformly stabilizing sets
of switching sequences for switched linear systems,” IEEE

14

Transactions on Automatic Control, vol. 52, pp. 868–874,
2007.

[29] H. Li, Y. Gao, P. Shi, and H. K. Lam, “Observer-based fault
detection for nonlinear systems with sensor fault and limited
communication capacity,” IEEE Transactions on Automatic
Control, 2016, in press.

[30] D. Liberzon, Switching in Systems and Control., ser. Systems
and Control: Foundations and Applications. Birkhauser,
2003.

[31] H. Lin and P. J. Antsaklis, “Stability and stabilizability of
switched linear systems: A survey of recent results,” IEEE
Transactions on Automatic Control, vol. 54, no. 2, pp. 308–
322, 2009.

[32] R. Munos, “The optimistic principle applied to games,
optimization and planning: Towards foundations of Monte-
Carlo tree search,” Foundations and Trends in Machine
Learning, vol. 7, no. 1, pp. 1–130, 2014.

[33] S. Pettersson and B. Lennartson, “LMI for stability
and robustness for hybrid systems,” in Proceedings 1997
American Control Conference (ACC-97), 1997, pp. 1714–
1718.

[34] R. Postoyan, L. Buşoniu, D. Nešić, and J. Daafouz, “Stability
of infinite-horizon optimal control with discounted cost,” in
Proceedings 53nd Conference on Decision and Control (CDC-
14), Los Angeles, USA, 15–17 December 2014.

[35] P. Riedinger, C. Iung, and F. Kratz., “An optimal control
approach for hybrid systems,” European Journal of Control,
vol. 9, pp. 449–458, 2003.

[36] C. Seatzu, D. Corona, A. Giua, and A. Bemporad., “Optimal
control of continuous-time switched affine systems,” IEEE
Transactions on Automatic Control, vol. 51, pp. 726–741,
2006.

[37] M. S. Shaikh and P. Caines, “On the hybrid optimal control
problem: Theory and algorithms,” IEEE Transactions on

Automatic Control, vol. 52, pp. 1587–1603, 2007.

[38] R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King,
“Stability criteria for switched and hybrid systems,”
Automatica, vol. 49, no. 7, pp. 545–592, 2007.

[39] A. N. Vargas, E. F. Costa, and J. B. R. do Val, “Bounds
for the finite horizon cost of Markov jump linear systems
with additive noise and convergence for the long run average
cost,” in Proceedings 45th IEEE Conference on Decision and
Control (CDC-06), San Diego, US, 13–15 Dec 2006, pp. 5543–
5548.

[40] R. Vasudevan, H. Gonzalez, R. Bajcsy, and S. S. Sastry,
“Consistent approximations for the optimal control of
constrained switched systems,” SIAM Journal on Control
and Optimization, 2012.

[41] J. H. W. Zhang and A. Abate, “Infinite-horizon switched
LQR problems in discrete time: A suboptimal algorithm with
performance analysis,” IEEE Transactions on Automatic
Control, vol. 57, pp. 1815–1821, 2012.

[42] M. Wiering and M. van Otterlo, Eds., Reinforcement
Learning: State of the Art. Springer, 2012, vol. 12.

[43] X. Xu and P. J. Antsaklis, “Results and perspectives on
computational methods for optimal control of switched
systems,” in Hybrid Systems: Computation and Control,
2003.

[44] X. Zhong, H. He, H. Zhang, and Z. Wang, “Optimal control
for unknown discrete-time nonlinear Markov jump systems
using adaptive dynamic programming,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 25, no. 12,
pp. 2141–2155, 2014.

[45] F. Zhu and P. J. Antsaklis, “Optimal control of switched
hybrid systems: A brief survey,” Discrete Event Dynamic
Systems, vol. 25, no. 3, pp. 345–364, 2015.

15

