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Two methods for the computation of nonlinear modes
of vibrating systems at large amplitudes

Rémi Arquier, Sergio Bellizzi, Robert Bouc, Bruno Cochelin
Laboratoire de Mécanique et d’Acoustique, CNRS, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France 
The aim of this paper is to present two methods for the calculation of the nonlinear normal modes of vibration for undamped non-
linear mechanical systems: the time integration periodic orbit method and the modal representation method. In the periodic orbit 
method, the nonlinear normal mode is obtained by making the continuation of branches of periodic orbits of the equation of motion. 
The terms ‘‘periodic orbits’’ means a closed trajectory in the phase space, which is obtained by time integration. In the modal represen-
tation method, the nonlinear normal mode is constructed in terms of amplitude, phase, mode shape, and frequency, with the distinctive 
feature that the last two quantities are amplitude and total phase dependent. The methods are compared on two DOF strongly nonlinear 
systems.
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1. Introduction

Extending the concept of normal modes of vibration to
the case where the restoring forces contain nonlinear terms,
has been a challenge to many authors. This has led to the
so-called nonlinear normal modes (NNMs) which have
great potential for applications in nonlinear vibrating sys-
tems. For instance, a damped system exited by harmonic
forcing will have its resonances close to the NNMs, and
this is a first obvious motivation for their computation. It
is also now established that the knowledge of the NNMs,
together with their bifurcations, can be very helpful to
understand the dynamics of a nonlinear system [1]. Some
important phenomenon such as the localisation of the
motion [2], the interaction between modes [3], the pumping
of energy of a linear system by a pure nonlinear one [4],
can be nicely explained using the NNM concept. The
NNMs are also important for the modal controllability
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of nonlinear systems [5]. Finally, eventhough the principle
of superposition does not hold for nonlinear equations, the
NNM can be useful to generate effective reduced-order
models for multi-degree-of-freedom nonlinear systems
[6,7].

Following the pioneer work by Rosenberg [8] on conser-
vative systems, several attempts have been made to develop
methods for the calculation of nonlinear normal modes.
Without entering into details, we mention here several clas-
ses of techniques which have aimed this goal. They are the
harmonic balance approach [9–12], the normal form theory
[13–15], many perturbation techniques [16,17] such as the
famous multiple scale analysis, and the invariant manifold
method [18,19] which led to a new definition of NNMs,
extending the concept to nonconservative systems. Many
of the above mentioned methods are based on some kind
of perturbation expansions with a truncature of the series
after the first few leading order terms. They have the
advantage to provide analytical expressions of the NNMs,
but on the other hand, the drawback to be limited to weak
nonlinearities or small amplitudes. Is it now evident, see



[7,20] for instance, that numerical methods should be
developed to complete the analytical ones. These numerical
methods should be able to explore the NMN at large
amplitude of vibration, and possibly, to detect all kind of
bifurcations along a NNM. The aim of this paper is to
present and compare two approaches that fall in that cate-
gory. The first one is the time integration of a periodic orbit
and the second, the modal representation method. In both
of them, we compute a one dimensional family of periodic
solutions that are parametrized either by the level of
mechanical energy or by the amplitude of the orbits. These
families of periodic orbits provide a two dimensional
invariant subspace of the phase space which has the prop-
erty to pass through the equilibrium point (zero amplitude
orbits) and to be tangent to the linear mode of the under-
lying linear system (small amplitude orbits). Accordingly,
these families of orbits correspond to the NNM as defined
by Shaw and Pierre [18,19].

The paper is organized as follows: the mechanical frame-
work is given in Section 2. Section 3 is devoted to the first
method which is the time integration of periodic orbit. The
NNMs are computed here by making the continuation of
branches of periodic orbits that are parametrized by the
energy level. The closed orbits are computed using an ‘‘exact
energy conserving’’ time integration algorithm [21]. This
transforms the boundary value problem into an algebraic
one which depends on a free parameter, and which is solved
with a semi-analytical continuation technique: the so-called
asymptotic-numerical method (ANM) [22]. This approach
provides the period of the oscillations on the NNMs, and a
time discrete representation of the orbits. The determination
of the stability and of the bifurcation of the NNM is well
established with this numerically oriented approach [23]. It
will presented in a forthcoming paper. Section 4 is devoted
to the second method called ‘‘the modal representation
method’’. As in the linear case, an expression is developed
for the NNM in terms of the amplitude, mode shape, and fre-
quency, with the distinctive feature that the last two quanti-
ties are amplitude and total phase dependent. The dynamics
of the periodic response is defined by a one dimensional non-
linear differential equation governing the total phase
motion. The period of the oscillations, depending only on
the amplitude, is easily deduced. It is established that the fre-
quency and the mode shape provide the solution to a 2p-peri-
odic nonlinear eigenvalue problem from which a numerical
Galerkin procedure is developed for approximating the
NNMs. This formulation allows us to characterize the sim-
ilar NNMs. It leads also to an analytical (parametric) expres-
sion of the invariant manifold and it permits to compute the
NNM even in the case of resonance relations between the
eigenvalues of the linearized system. The extension of the
formulation in the case of damped autonomous mechanical
systems is considered in [24]. Finally, in Section 5, these two
methods are compared on a benchmark problem with two
Green–Lagrange springs, which is representative of
geometrically nonlinear thin structures such as plates and
shells.
2

2. Mechanical framework

In this study, we consider the undamped autonomous
nonlinear n degrees of freedom (n-DOF) mechanical system

M €UðtÞ þ FðUðtÞÞ ¼ 0; ð1Þ

where M is the mass matrix, and F(U) is the vector of
restoring forces including linear and nonlinear terms. The
overdots stand for temporal derivatives. The following
assumptions will be made throughout this study:

• H1: M is a symmetrical positive definite matrix;
• H2: FðUÞ ¼ oW

oU
ðUÞ where W(U) is a scalar potential

energy function of the vector U 2 Rn, W has a continu-
ous second derivatives, is positive, and admits a local
minimum at U = 0. (As usual oW

oU
ðUÞ will be denoted

W,U(U)).

The conservative system (1) has a first integral corre-
sponding to the conservation of the total energy E, which
is the sum of the kinetic energy and the potential energy
W i.e.

EðUðtÞÞ ¼ 1

2
_UðtÞTM _UðtÞ þ W ðUðtÞÞ. ð2Þ

The linear equation

M €UðtÞ þ ½W ;UUð0Þ�UðtÞ ¼ 0; ð3Þ
where [W,UU(0)] denotes the Hessian matrix for the func-
tion W at U = 0, will be called the underlying linear system
(or linearized system) associated with the nonlinear equa-
tion (1).

It should be noted that the framework (1) includes the
equations of motion of elastic thin structures with geomet-
rical nonlinearities such as shells, plates, beams and cables.
The continuous model should be discretised using a classi-
cal Ritz or finite element method.

In the following, we focus on the periodic solution of
(1). If there is no internal resonance (the eigenfrequencies
of the linearized system (3) are no commensurable), the
conservative system (1) possesses at least n two dimensional
families of periodic solution around the stable origin
U = 0. These two dimensional families of periodic orbits
allow description of two dimensional invariant manifolds
of the phase space, corresponding to the NNM, as defined
by Shaw and Pierre [18].
3. Periodic orbits method

The numerical computation of periodic orbits has
already been addressed in textbooks [23,25] either for the
calculation of isolated orbits or for the continuation of a
family of orbits. The most popular method is the so-called
shooting method which consists in finding a suitable initial
condition, that induces a closed trajectory in the phase
space. This leads to a boundary value problem [23] where



the boundary condition is in fact a periodicity condition.
Since the physical system is nonlinear, iterative process like
Newton–Raphson method is intensively used to find the
initial condition. It should be noted that each Newton–
Raphson iteration requires the entire computation of the
orbit by direct time integration. The whole process is thus
relatively heavy and can fail when the periodic solutions
are unstable.

Shooting techniques have already been used to deter-
mine the forced response of nonlinear damped systems
[26]. Once one orbit has been computed for a given value
of the forcing term frequency, a pseudo-arc length contin-
uation procedure is performed to obtain a diagram
response of the amplitude response with respect to the forc-
ing frequency.

Our method keeps the essential aspects of continuation
of periodic orbits, but with some adaptation for applica-
tion to the NNM of conservative systems at large
amplitudes.

• We do not consider any forcing terms nor damping in
the governing equation. Hence, the system has a first
integral corresponding to the conservation of the total
energy. This brings some additional troubles in the
numerical determination of the periodic orbits, that
are addressed in Section 3.1.

• As an alternative to shooting where only the initial point
U(0), _Uð0Þ is unknown, we prefer a global approach
where the unknown is the values of the vector
U(t), _UðtÞ at the temporal grid point. This global
approach is known to have a better convergence and is
more robust than the shooting one [27]. It is presented
in Section 3.2.

• For the continuation of the closed orbits, we use the
ANM which is more convenient than the classical New-
ton–Raphson for following branches and for detecting
bifurcations [28].

For convenience, Eq. (1) is re-written as a first-order dif-
ferential equation

RðZÞ ¼ A _Zþ fðZÞ ¼ 0; ð4Þ

where Z = [UT,VT]T is the 2n state vector, V ¼ _U denotes
the velocity,

A ¼
I

M

" #
and fðZÞ ¼

�V

FðUÞ

" #
.

1 One isolated orbit if we are on a regular point on the branch.
3.1. Periodic orbits for a conservative system

The terms ‘‘periodic solution’’ or ‘‘periodic orbit’’ mean
a closed trajectory in the phase space. It is defined as
follows:

Z(t) is a periodic orbit of Eq. (4), with the period T, if it
solves the system
3

SunderðZðtÞ; T Þ ¼
A _ZðtÞ þ fðZðtÞÞ ¼ 0 for 0 < t < T ;

Zð0Þ � ZðT Þ ¼ 0:

(

ð5Þ
Eq. (5) is the governing equation that must be satisfied over
the time interval 0 < t < T, where T is the unknown period
of the periodic orbit. The second equation is the periodicity
condition which forces the first state Z(0) to be equal to the
last Z(T) to close the trajectory.

For autonomous conservatives systems with a first inte-
gral, Eq. (5) defines a two dimensional family of periodic
orbits. For the numerical solution of Eq. (5) it is manda-
tory to add other conditions in order to define unique
closed orbits belonging to these two dimensional spaces.
Otherwise, numerical problem such as noninvertible mat-
rice occurs.

• The first condition is the classical ‘‘phase condition’’
[23,25] which forces the initial point Z(0) to be unique
for a given periodic orbit. Here, the component i of
the initial state vector Z0 is set to zero. Usually, this
component corresponds to a velocity degree of freedom,
so we have i 2 [n + 1,2n],

Zð0Þf gi ¼ 0. ð6Þ
• The second condition, named ‘‘Energy condition’’, pre-

scribes the value of the total mechanical energy on the
periodic orbit. By this way the value E0 ‘‘select’’ one
orbit on the NNM i.e.

EðZð0ÞÞ ¼ E0. ð7Þ
The new system, denoted Sover, obtained by grouping Eqs.
(5)–(7):
SoverðZðtÞ; T ;E0Þ ¼

A _ZðtÞ þ fðZðtÞÞ ¼ 0 for 0 < t < T ;

Zð0Þ � ZðT Þ ¼ 0;

Zð0Þf gi ¼ 0;

EðZð0ÞÞ ¼ E0

8>>><
>>>:

ð8Þ
defines one isolated orbit1 of Eq. (4). It is possible to solve
numerically Sover (after application of a suitable discretisa-
tion scheme), and obtain periodic orbits for different values
of E0. However, even though the solution of Sover is unique,
the system Sover is overdetermined, there is one more equa-
tion than unknowns. This type of system could be numer-
ically solved by Least Square Methods but this situation is
not suitable for the continuation method we want to use,
and not convenient when the number of unknown is large.

To remove this drawback we follow a solution proposed
in [29] and extended in [30] for systems with multiple first
integrals. It consists in replacing the conservative system
(1) by a nonconservative system which contains the



dissipative term A oE
oZ
ðZðtÞÞ into the governing equation.

This leads to the following new system, denoted Ssquare,

SsquareðZðtÞ; T ; b;E0Þ

¼

A _ZðtÞ þ fðZðtÞÞ þ bA oE
oZ
ðZðtÞÞ ¼ 0 for 0 < t < T ;

Zð0Þ � ZðT Þ ¼ 0;

Zð0Þf gi ¼ 0;

EðZð0ÞÞ ¼ E0:

8>>><
>>>:

ð9Þ

with a new scalar unknown b which controls the amount of
dissipation. The dissipative term is the gradient of the total
energy E. It is acting like a force which is always perpendic-
ular to the orbit, and which tends to bring Z toward the
origin. The new system equation (9) can have a periodic
orbit only if b = 0. Indeed, if Z(0) � Z(T) = 0, we have

EðZðT ÞÞ � EðZð0ÞÞ

¼
Z T

0

dE
dt
ðZðtÞÞdt ¼

Z T

0

oE
oZ
ðZðtÞÞT _ZðtÞdt

¼ �
Z T

0

oE
oZ
ðZðtÞÞTðA�1fðZðtÞÞ þ b

oE
oZ
ðZðtÞÞÞdt

¼ �
Z T

0

�FðUÞ

MV

" #T I

M�1

" # �V

FðfUgÞ

" #
þ b

oE
oZ
ðZðtÞÞ

����
����

2
0
@

1
Adt

¼ �
Z T

0

FðUÞTV� VFðUÞ þ b
oE
oZ
ðZðtÞÞ

����
����

2

dt

¼ �b
Z T

0

oE
oZ
ðZðtÞÞ

����
����

2

dt ¼ 0; ð10Þ

which proves that b = 0 whatever the value of oE
oZ
ðZðtÞÞ.

Hence, the solutions given by Eq. (9) correspond to the
solutions of the original conservative system (8). The
advantage of Eq. (9) over (8) is that the Jacobian matrix
is square and non-singular.2

3.2. Time discretisation and global solving

The implicit Newmark method is the most classical
numerical schemes for the time integration in structural
dynamics. In the nonlinear regime, it has been shown that
this scheme can be unstable for conservative systems [31].
Simo and Tarnow have proposed an energy conserving dis-
cretisation scheme to remove this drawback [21]. They
introduce a subtle modification of the internal forces in
the discrete equations, which induce a conservation of the
total energy between two time steps. Such a conservative
time stepping scheme is well adapted to find closed orbits
in a system which has no forcing, nor dissipation. Indeed,
in presence of numerical damping for instance, the trajec-
tory could not come back at the same energy level after a
period of integration, unless very small steps are used in
order to limit the numerical dissipation. In regards of
theses considerations, we have chosen the Simo scheme
2 Except at bifurcation points of course.

4

to re-write the system (9) in a ‘‘time discretised manner’’.
We shall not enter in the details of the Simo integration
scheme, and we will now describe how we obtain one peri-
odic orbit.

According to our numerical experience, see also [27], we
preferred to use a global solution technique instead of the
more classical shooting method. By global solution tech-
nique, we mean that the unknown vector Zop contains all
the state vectors Zk,k=0,. . .,m of the system for each time
steps tk,k=0,. . .,m : Zop = [Z0,Z1,Z2, . . . ,Zm]T. With Zk =
Z(t = tk). Hence, if we have m + 1 time steps for one orbit,
we write the governing equation m time in the same system.
This leads to a large and very sparse system, which can be
written as follows:

SsquareðZop;T ;b;E0Þ

¼

RdðZ0;Z1;T ÞþbDdðZ0;Z1;T Þ ¼ 0;

RdðZ1;Z2;T ÞþbDdðZ1;Z2;T Þ ¼ 0;

..

. ..
. ..

.

RdðZm�1;Zm;T ÞþbDdðZm�1;Zm;T Þ ¼ 0;

Z0�Zm ¼ 0;

Z0f gi ¼ 0;

EdðZ0;Z1;T Þ ¼ E0;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð11Þ

where Rd is the discretised form of the behaviour equation
and Dd is discretised form of the dissipative term. Note also
that we use the classical time normalisation procedure in
order to have a constant number of time steps. This nor-
malisation consists in replacing the real time step dt by
the following expression:

dt ¼ T=m;

where T is the period and m the number of time steps which
remains constant. This explains why Rd, Dd and Ed depend
on the period T.

Solving this system for a given value of E0 permits to
obtain one periodic orbit on the NNM. It is possible to
do this with an initial good estimate and some Newton
corrections.

3.3. Numerical construction of the NNM

For the construction of one NNM, we start by finding a
periodic orbit near the linear domain where nonlinear
terms are negligible: we use the linear mode as a first esti-
mate, then we apply a classical correction method to return
on the solution branch. By this way we obtain the first
point (one orbit) for our continuation. Next, we follow
the branch by the ANM.

The ANM is a continuation method to solve nonlinear
algebraic problems S(U) = 0, S 2 Rn and U 2 Rn+1 [22,
32]. This method is based on power series expansions of
the unknowns U(s) with respect to the path parameter s

and it consists in generating a succession of branches,
instead of a sequence of points.



Assuming U = [Zop,T,b,E0]T the system (11) can be
re-written in a quadratic form3 like

SðUÞ ¼ LðUÞ þQðU;UÞ; ð12Þ

where L is linear, and Q quadratic. Denoting U0 a known
solution point, introducing the following expansion

UðsÞ ¼ U0 þ
Xn

i¼1

siUi; ð13Þ

in Eq. (12) and equating the terms at the same power of s,
results in the decomposition of the nonlinear system in a se-
quence of linear systems that will be solved successively. To
complete the system, we need to add a condition which is
the definition of a, the path parameter. For instance we
can use the classical pseudo-arc length parameter s defined
by

UTU1 ¼ s. ð14Þ
Hence, the linear problems can be written as follows:

order 1:
LtðU1Þ ¼ 0;

UT
1 U1 ¼ 1;

�
ð15Þ

order p :
LtðUpÞ ¼ Fnl

p ;

UT
p U1 ¼ 0;

(
ð16Þ

where Lt(Æ) is a tangent operator at U = U0 : Lt(Æ) =
L(Æ) + Q(Æ,U0) + Q(U0,Æ).

Each resolution of Eq. (16) at order p give the terms Up.
The domain of validity of the solution is defined a posteri-
ori by analysing the convergence radius of the series, and
so, a part of a branch is calculated for each step. Advanta-
ges of this method mainly lie in three points: analytical
solutions are obtained, only one matrix inversion is needed
for each part of branch; eventually, robust continuation is
performed, using optimal steps, and this method is much
more reliable than classical incremental-iterative methods
such as Newton–Raphson. Bifurcation points [28] are also
easier to detect.

In summary, the ANM provides a succession of contin-
uous representation of the family of periodic orbits. By this
way, we obtain the two dimensional invariant surface of
the state space, introduced by Shaw and Pierre [18,19].

4. Modal representation method

Here also the NNM will be defined in the framework of
periodic solutions of Eq. (1) and the following properties of
periodic functions will be used. If U*(t) is a periodic solu-
tion with period T > 0 of Eq. (1) (i.e. U*(t) = U(t + T),
"t), then the function U** defined by U**(t) = U*(�t) is
also a T-periodic solution for Eq. (1). Hence this section
will be devoted to the T-periodic solution of Eq. (1) with
3 The details of this re-written form will be described in a forthcoming
paper.
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symmetry U*(t) = U*(�t). This property implies that the
associated Fourier series will contain only cosine terms.

4.1. Linear case

If F(U) = KU where K is a symmetrical positive definite
matrix, the general solution of Eq. (1) can be expressed as

UðtÞ ¼
Xn

p¼1

apwp cosðxpt þ upÞ;

where (xp,wp) solve the eigenproblem

Kwp ¼Mwpx
2
p with wT

p Mwp ¼ 1 and wT
p Mwl ¼ 0; p 6¼ l.

ð17Þ
The contribution of a mode is given by (where the subscript
p has been omitted)

UðtÞ ¼ aw cosðxt þ uÞ
and can be re-written as

UðtÞ ¼ aw cosðUðtÞÞ ð18Þ
with

_UðtÞ ¼ x;

Uð0Þ ¼ u:

(
ð19Þ

The scalar function U(Æ) (or total phase) describes the time
evolution on the modal line (a straight line) in the configu-
ration space.

4.2. Nonlinear case with odd restoring force

In addition to H1 and H2, we assume throughout this
subsection that

• H3: F(U) = � F(�U).

As suggested by the linear case, a normal mode is defined
as a periodic solution to Eq. (1) and is sought in the form

UðtÞ ¼ aWða;UðtÞÞ cosðUðtÞÞ ð20Þ
with

_UðtÞ ¼ Xða;UðtÞÞ;
Uð0Þ ¼ u:

(
ð21Þ

The vector W and the scalar X are now functions which de-
pend on two variables and they are 2p-periodic with respect
to the second variable. By analogy with the linear case, the
functions, W and X, will be referred to here as the modal
vector (function) and the resonance frequency (function)
of the nonlinear normal mode, respectively. The one
dimensional differential equation (21) governing the total
phase motion U will define the dynamics of the periodic re-
sponse and the scalar quantities a (a > 0) and u (2[0,2p])
will set the initial conditions of the vibration in mode
motion on the phase space. To ensure that the parameter



a appropriately characterizes the amplitude of the vibra-
tion in mode motion, a normalization condition on the
modal vector W is required. In this study (and without loss
of generality), we will adopt the following condition:

WTða;/ÞMWða;/Þ ¼ 1 8ða;/Þ 2 Rþ � ½0; 2p�. ð22Þ

Differentiating Eq. (20), substituting into Eq. (1) and elim-
inating the time variable in the resulting equation, Eq. (1)
reduces to the following differential equation:

LðX2;W; /Þ þ 1

a
FðWa cos /Þ

¼MWðX2 cos /þ 1

2
ðX2Þ;/ sin /Þ; ð23Þ

where the differential operator L is given by

LðX2;W; /Þ ¼ X2 cos /MW;// � 2X2 sin /MW;/

þ 1

2
ðX2Þ;/ cos /MW;/ ð24Þ

and (Æ),/ denotes partial differentiation with respect to /. The
differential rule (X2),/ = 2XX,/ has been used to work with
the unknown function X2 in place of X. Eq. (23), which
can be viewed as an extension of the eigenvalue–eigenvector
problem (17), will be named nonlinear eigenvalue–eigenvec-
tor problem and will be used together with the normalization
condition (22) to characterize the nonlinear normal mode of
motion, i.e. to characterize the modal vector W and the
square frequency X2. Thus, the modal vector W and the fre-
quency X will be viewed here as amplitude and total phase
dependent and will be searched for as 2p-periodic functions
with respect to / for fixed a. More specifically, according to
the symmetry assumption H3, these functions will be
searched for as even periodic functions with respect to / with
period p. It follows that the Fourier series of U(t) in terms of
U(t) will contain only odd cosines terms.

For fixed a 2 Rþ and under H1–H3, it can be shown (see
[33]) that there exist n 2p-periodic functions, ðX2

pða; �Þ;
Wpða; �ÞÞwith X2

pða; �Þ > 0, which solve Eqs. (23) and (22) with

(1) each solution ðX2
pða; �Þ; Wpða; �ÞÞ is unique in some

neighbourhood of a = 0 and ðx2
p; wpÞ where the pair

ðx2
p; wpÞ characterizes a normal mode of the underly-

ing linear system;
(2) the period of the vibration in mode motion
ðX2

pða; �Þ; Wpða; �ÞÞ depends only on the amplitude a
and it is given byZ p
T pðaÞ ¼ 2
0

1

Xpða;/Þ
d/; ð25Þ
(3) as a! 0, the nonlinear normal mode ðX2
pða; �Þ;

Wpða; �ÞÞ tends toward the linear one (xp,wp).

For each pair ðX2
pða; �Þ; Wpða; �ÞÞ, Eq. (20) together with

_UðtÞ ¼ aXða;UðtÞÞðW;/ða;UðtÞÞ cos UðtÞÞ
�Wða;UðtÞÞ sin UðtÞÞ; ð26Þ
6

define a ‘‘synchronous’’ periodic oscillation [8] (nonlinear
normal mode). The modal line in the configuration space
can be either straight or curved. It should be mentioned
that this formulation gives also a characterization of the
NNM in the framework of invariant manifold [18–20] in
the phase space. For each pair ðX2

pða; �Þ; Wpða; �ÞÞ, the
invariant manifold coincides with the set, in the phase
space, defined by Eqs. (20) and (26) taking the initial con-
ditions a and u to be independent variables.

An illustrative example: Let us consider the following 2
d.o.f. nonlinear system governed by the equations of
motion

€u1 þ ðk þ 1Þu1 � u2 þ rðu1 � u2Þ2ðu1 � u2Þ ¼ 0; ð27Þ
€u2 � u1 þ ðk þ 1Þu2 þ rðu1 � u2Þ2ðu2 � ulÞ ¼ 0; ð28Þ

where k and r are positive constant characterizing the lin-
ear and nonlinear stiffnesses, respectively.

It is easy to show that the following two pairs:

X2
1ða;/Þ¼ k;

W1ða;/Þ¼ ð1=
ffiffiffi
2
p

;1=
ffiffiffi
2
p
ÞT;

(
X2

2ða;/Þ¼ kþ2þ ra2ð3þ cos2/Þ;

W2ða;/Þ¼ ð1=
ffiffiffi
2
p

;�1=
ffiffiffi
2
p
ÞT

(

solve the associated eigenvalue–eigenvector problem (23)
and (22). This two pairs define two nonlinear normal
modes of the system (27) and (28). Each nonlinear normal
mode can be viewed as the continuation of the linear nor-
mal modes of the underlying linear system. The first mode
is not affected by the nonlinearity whereas the nonlinearity
only affects the dynamics (W2(a,/) is a constant vector) of
the second mode. Both modes are similar.

4.3. General case

When F(U) 5 � F(�U), the periodic solution (to char-
acterize the nonlinear normal modes) are sought in the
form

UðtÞ ¼ aWða;UðtÞÞ cos UðtÞ þ aBða;UðtÞÞ ð29Þ
with

_UðtÞ ¼ Xða;UðtÞÞ;
Uð0Þ ¼ u;

(
ð30Þ

where the vectors B and W, and the scalar X are functions
which depend on two variables and are 2p-periodic with re-
spect to the second variable. The term depending on B has
been added in Eq. (29) to balance the even cosine terms
which can appear in the Fourier series of U(t) in terms of
U(t) when assumption H3 is not satisfied. The function B

will be referred to here as the bias term of the nonlinear
normal mode. Hence B will be viewed (like W and X) as
amplitude and total phase dependent, and will be searched
for an even periodic function with respect to / for fixed a.

Differentiating Eq. (29), substituting into Eq. (1) and
eliminating the time variable in the resulting equation,
Eq. (1) reduces now to the following differential equation:



LðX2;W; /Þ þ 1

a
FðWa cos /þ aBÞ þ X2MB;//

þ 1

2
ðX2Þ;/MB;/ ¼MWðX2 cos /þ 1

2
ðX2Þ;/ sin /Þ; ð31Þ

where the differential operator L is still given by Eq. (24).
Here also the differential rule (X2),/ = 2XX,/ has been used
to work with the unknown function X2 in place of X. Eq.
(31), which is an extension of the eigenvalue–eigenvector
problem (23) will be used together with the normalization
condition (22) to characterize the nonlinear normal mode
of motion i.e. to characterize the modal vector W, the
square frequency X2 and the bias term B.

Apparently, we have to solve, for fixed a, two Eqs. (31)
and (22) for three unknowns (X2(a, Æ), W(a, Æ), B(a, Æ)). Recall-
ing the periodicity properties of the functions X2 and W (as
established in the previous section), the bias term B has to be
a 2p-periodic function with only even cosine terms and we
can only look for even p-periodic solutions (X2(a, Æ),
W(a, Æ), B(a, Æ)). Consequently using the decomposition

FðaWða;/ÞþaBða;/ÞÞ¼Fevenða;W;B;/ÞþFoddða;W;B;/Þ;

where Feven (respectively, Fodd) stands for the even
(respectively, odd) cosine terms in the Fourier series of
F(aW(a,/) + aB(a,/)) with respect to /, Eq. (31) can be
splitted in two equations

LðX2;W; /Þ þ 1

a
Foddða;W;B; /Þ

�MW X2 cos /þ 1

2
ðX2Þ;/ sin /

� �
¼ 0; ð32Þ

X2MB;// þ
1

2
ðX2Þ;/MB;/ þ

1

a
Fevenða;W;B; /Þ ¼ 0; ð33Þ

where Eq. (32) (respectively, Eq. (33)) stands for the odd
(respectively, even) cosine terms in the Fourier series of
Eq. (31).

It should be noticed that X2 and W are mainly influenced
by the odd cosine terms whereas B is mainly influenced by
the even cosine terms. Note also that when F is an odd
function, Eq. (33) is trivially satisfied with B = 0 and Eq.
(32) reduces to Eq. (23).

4.4. Galerkin procedure to calculate the NNMs

To obtain accurate approximate solutions to Eqs. (32),
(33) and (22), a Galerkin method can be implemented.
According to the periodic properties, the functions X2, W
and B can be expanded into a finite Fourier series with
respect to the variable / according to

X2
mða;/Þ ¼

Xm

k¼0

X2
m;2kðaÞ cos 2k/; ð34Þ

Wmða;/Þ ¼
Xm

k¼0

Wm;2kðaÞ cos 2k/; ð35Þ

Bmða;/Þ ¼
Xm

k¼0

Bm;2kðaÞ cos 2k/; ð36Þ

where m denotes the order of the truncated series.
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Inserting Eqs. (34)–(36) into Eqs. (32), (33) and (22), and
applying the Galerkin procedure, the corresponding deter-
mining equations readZ 2p

0

LðX2
m;Wm; /Þ þ 1

a
Foddða;Wm;Bm; /Þ

�

�MWmðX2
m cos /þ 1

2
ðX2

mÞ;/ sin /Þ
�

� cosð2k þ 1Þ/d/ ¼ 0;Z 2p

0

X2
mMðBmÞ;// þ

1

2
ðX2

mÞ;/MðBmÞ;/
�

þ 1

a
Fevenða;Wm;Bm; /Þ

�
cosð2kÞ/d/ ¼ 0;

Z 2p

0

WT
mMWm � 1

� �
cosð2kÞ/d/ ¼ 0;

for k = 0, . . . ,m. This constitutes a set of 2(m + 1)n + m + 1
nonlinear equations for the 2(m + 1)n + m + 1 unknown
coefficients X2

m;2k, Wm,2k and Bm,2k. The set of algebraic
equations can be solved, for given a and m using a New-
ton–Raphson method, together with an incremental-con-
tinuation procedure with respect to the parameters a and/
or m. The linear normal modes of the underlying linear sys-
tem can be used as the starting point for m = 0 and a small
value of the amplitude a. The order, m, of truncated series
may be increased to produce more accurate results. As de-
scribed in Section 3.3, a continuation method (like AMN
method) could also be used to solve the set of algebraic
equations and hence to detect more easily the bifurcations
points.

Once the X2
m;2k’s, Wm,2k’s and Bm,2k’s have reached the

desired level of accuracy at the desired amplitude level a,
the differential Eq. (30) can be solved numerically. The
resulting time history, U(t), allow us to derive the corre-
sponding time histories of the displacement (29).
5. Numerical examples

We consider a 2 d.o.f. nonlinear system composed of a
mass m connected to four springs with length L (see
Fig. 1). Under the assumption of large displacement, the
strain energy can be defined by

W ðuÞ¼ 1

2

X4

i¼1

kie2
i with

ei¼ ui
Lþ 1

2
u1

L

� �2þ u2

L

� �2
	 


for i¼ 1;2;

ei¼� ui
Lþ 1

2
u1

L

� �2þ u2

L

� �2
	 


for i¼ 3;4;

8><
>:

where ei denotes the Green–Lagrange strain of the ith
spring and u = (u1,u2)T. The equation of motion is then
given by

m 0

0 m

� �
€uþ oW

ou
ðuÞ ¼ 0. ð37Þ

Without loss of generality, we will assume that L = 1 and
m = 1. It should be noted that the Green–Lagrange strain
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Fig. 2. Symmetrical case with k1 = 1 and k2 = 2. Energy versus frequency
from the continuation of the first mode: exact solution given by the modal
representation method (dashed line), periodic orbit method with m = 41
(continuous line) and with m = 21 (dotted line).
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Fig. 1. Two d.o.f. nonlinear system with 4 springs.
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Fig. 3. Symmetrical case with k1 = 1 and k2 = 2. Displacement u1 versus
time for E = 0.734. Modal representation method (dashed line), periodic
orbit method with m = 41 (continuous line).
e ¼ 1
2

l2�L2

L2 has been used instead of the more classical engi-
neering strain eg ¼ l�L

L for the spring. This leads to govern-
ing equations with quadratic and cubic nonlinearities as it
is the case for beams, plates, and shell. This simple example
is in fact representative of thin elastic structure.

5.1. Symmetrical case

We consider here the symmetrical configuration of the
springs around the mass m defined by k1 = k3, k2 = k4,
which leads to the following equation of motion:

€u1 þ 2k1u1 þ ðk1 þ k2Þu1ðu2
1 þ u2

2Þ ¼ 0; ð38Þ
€u2 þ 2k2u2 þ ðk1 þ k2Þu2ðu2

1 þ u2
2Þ ¼ 0. ð39Þ

Using the modal representation method it is easy to show
that Eqs. (38) and (39) possess two nonlinear normal
modes, which can be viewed as the continuation of the nor-
mal modes of the underlying linear system. Theses nonlin-
ear normal modes are defined by the following two pairs of
frequency and mode shape functions:

X2
1ða;/Þ ¼ 2k1 þ ðk1þk2Þ

4
a2ð3þ cos 2/Þ;

W1ða;/Þ ¼ ð1; 0ÞT;

(

X2
2ða;/Þ ¼ 2k2 þ ðk1þk2Þ

4
a2ð3þ cos 2/Þ;

W2ða;/Þ ¼ ð0; 1ÞT:

(

Each pair solves the eigenvalue–eigenvector problem (23)
and (22). These modes are similar i.e. in the configuration
space, the modal line of the first (respectively, the second)
mode coincides with the horizontal (respectively, vertical)
axis. For each nonlinear normal mode, the motion is given
by Eq. (20) solving the differential Eq. (21) with the associ-
ated frequency function.

The periodic orbit method has been used with different
numbers of time steps. The nonlinear normal modes have
been computed by doing these three steps: (i) we have
selected a periodic solution with low energy from the linear
mode; (ii) we have used a correction algorithm to return on
8

the nonlinear branch; (iii) we have computed a succession
of analytical representations (13) that give a discrete
parameterisation in time and continuous parameterisation
in energy of the nonlinear normal mode.

For various parameter values k1 and k2, the two meth-
ods lead to the same nonlinear normal mode (at least
before bifurcation points). Fig. 2 compares the backbone
curve in the energy frequency space of the first nonlinear
normal mode for k1 = 1 and k2 = 2. The energy is defined
by Eq. (2) and the frequency is obtained from the orbit’s
period. In the modal representation method the backbone



curve has been obtained from Eq. (25), and using the
amplitude–energy relationship

EðaÞ ¼ W ðaW1Þ; ð40Þ
deduced from Eq. (2) with the total phase U equal to zero.
In this case, the modal representation method gives the
exact solution, and, as expected, we can observe that
the accuracy of the periodic orbit method increases with
the number of time steps used.

Fig. 3 compares periodic motion obtained by the peri-
odic orbit method and the modal representation method
for the energy value E = 0.734. The periodic solution in
the modal representation method has been obtained solv-
ing Eq. (21) using the classical Runge–Kutta method with
the amplitude value �a given by Eð�aÞ ¼ 0:734 where E is
defined by Eq. (40) and choosing for the initial condition
/ = 0 which coincides with the phase condition (6)
imposed in the periodic orbit method. In the periodic orbit
method the periodic solution has been extracted from the
series (13).

5.2. Asymmetrical case

We consider now the asymmetrical configuration of the
springs around the mass m defined by k3 = 0, k4 = 0 which
leads to the following equations of motion:
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Fig. 4. Asymmetrical case with k1 = 1 and k2 = 2. Modal representation
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€u1þ k1u1þ
1

2
k1ð3u2

1þu2
2Þþ k2u1u2þ

1

2
ðk1þ k2Þu1ðu2

1þu2
2Þ¼ 0;

ð41Þ

€u2þ k2u2þ
1

2
k2ð3u2

2þu2
1Þþ klu1u2þ

1

2
ðk1þ k2Þu2ðu2

1þu2
2Þ¼ 0

ð42Þ
and we focus here on the first nonlinear mode when k1 = 1
and k2 = 2.

Using the modal representation method, the first nonlin-
ear mode is obtained solving the eigenvalue–eigenvector
problem (32), (33) and (22) with the Galerkin procedure
described in Section 4.4. The first underlying linear mode
(x2

1 ¼ 1 and w1 = (1, 0)T) has been used as the starting
point and m = 2 terms have been retained in the finite Fou-
rier series (34)–(36) to approximate the modal functions on
the domain ((a,/) 2 [0, 0.36] · [0,2p]). The two components
of the bias vector function B and the two components of
the mode shape vector function W1 are shown in Fig. 4.
The frequency function X1 is shown in Fig. 5. For a = 0,
all the modal functions do not depend on the variable /
and are equal to the corresponding linear mode values.
When a increases, the behaviours of the modal functions
are monotonous with respect to the variable a and the fluc-
tuations with respect to the variable / increase with a.
φ(d) ψ
2 versus a and

φ(b) aB2 versus a and
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of the first nonlinear mode: bias and modal shape vector functions.



0.1

0.2

0.3
a

0

π

2π

φ

φ

0.85

0.9

0.95

1

Ω

0.1

0.2

0.3

(a) Ω versus a and
-0.4

-0.2

0
0.2

0.4

U1

-0.4

0

0.2

0.4

V1

-0.04

-0.02

0

0.02

U2

0
U1

-0.2

0

V1

(b) Invariant manifold

Fig. 5. Asymmetrical case with k1 = 1 and k2 = 2. Modal representation of the first nonlinear mode: frequency function and invariant manifold in the
phase subspace (U1,V1,U2).

Fig. 6. Asymmetrical case with k1 = 1 and k2 = 2. Left: Part of the projection of the invariant manifold in the phase subspace (u1,u2,v1) computed by the
periodic orbit method. Right: projections of some orbits extracted from the invariant manifold.
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Fig. 7. Asymmetrical case with k1 = 1 and k2 = 2. Periodic trajectory of the first mode in the phase space for E = 0.0565. Modal representation method
with m = 2 (dashed line), periodic orbit method with m = 41 (continuous line).
Thus, the number of terms in the finite Fourier series used
in the Galerkin procedure has to be increased to accurately
10
approximate the modal functions for large values of the
amplitude a. The softening behaviour of the system is
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Fig. 8. Asymmetrical case with (a) k1 = 1 and k2 = 2 and (b) k1 = 3 and k2 = 1. Energy versus frequency: from the modal representation method with
m = 2 (dashed line) and periodic orbit method with m = 41 (continuous line).
confirmed in Fig. 5(a). Fig. 5(b) shows a picture of the
invariant manifold in the phase subspace (U1,V1,U2) where
the axis V1 corresponds to the velocity variable _u1. This
three dimensional surface is defined by Eq. (29) and its
derivative expression and parameterised by the variable a

and /(2 [0,0.36] · [0,2p]).
Using the periodic orbit method, the nonlinear normal

mode is obtained as in the symmetric case (see previous
section). Fig. 6 shows a picture of the invariant manifold
of the first nonlinear mode in the phase subspace
(U1,V1,U2) and some orbits (periodic solutions) extracted
from the manifold and projected in the configuration space
(U1,U2) and in the phase subspace (U1,V1). This approxi-
mation of the invariant manifold looks like the approxi-
mation obtained by the modal representation method
(see Fig. 5). In fact the two approximations are indistin-
guishable as shown in Fig. 7 where, for example, the tra-
jectory of the periodic orbit for the energy value
E = 0.0565 obtained by the two methods are plotted in
the configuration space (U1,U2) and in the phase subspace
(U1,V1). With the modal representation method, the
periodic orbit has been obtained solving first the scalar
differential Eq. (29) with the initial value u = 0 and the
approximate frequency function X at the amplitude
value �a ¼ 0:356 solution of the following algebraic
equation:

�a2

2
ðW;/ð�a; 0Þ þ �aB;/ð�a; 0ÞÞTMðW;/ð�a; 0Þ þ �aB;/ð�a; 0ÞÞ

þ W ð�aWð�a; 0Þ þ �aBð�a; 0ÞÞ ¼ 0:0565;
in which the approximated modal functions X, W and B

have been used. Finally the mode motion is obtained
inserting the trajectory of the total phase U in Eq. (29) eval-
uated at a ¼ �a.

Fig. 8 shows the backbone curve in the energy frequency
space for two pairs of k1 and k2. The two methods have
been used, and the results are in good agreement.
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6. Conclusion

In this paper, two methods have been described for the
determination of the nonlinear normal modes of undamped
nonlinear mechanical systems. In the periodic orbit
method, the nonlinear normal mode is constructed by mak-
ing the continuation of branches of periodic solutions of
the equation of motion. The terms ‘‘periodic orbit’’ means
a closed trajectory in the phase space, which is obtained by
a suitable energy conserving time integration. In the modal
representation approach, the nonlinear normal mode is
constructed in terms of amplitude, phase, mode shape,
and frequency, with the distinctive feature that the last
two quantities are amplitude and total phase dependent.
The resulting equation are solved using a Galerkin proce-
dure. Both methods can provides the nonlinear modes at
large amplitudes, and they lead to the same results.

These two approaches reveal some differences. The peri-
odic orbit method is more suitable for FEM formulation
whereas the modal representation approach is more suit-
able for parametrical (analytical) description of the modes.
Extension to dissipative systems is possible and has been
already discussed in [24] but it is an open problem for the
periodic orbit method. Finally, the stability analysis of
the computed orbit is rather straightforward for the period
orbit method using the monodromy matrix [23] whereas it
requires additional development for the modal representa-
tion approach.

References

[1] Vakakis AF, Manevitch L, Mikhlin Y, Pilipchuk A, Zevin A. Normal
modes and localization in nonlinear systems. New York: John
Wiley; 1996.

[2] Gendelman O, Vakakis AF. Transitions from localisation to nonlo-
calisation in strongly nonlinear damped oscillators. Chaos Solitons
Fract 2000;11:1535–42.

[3] Nayfeh AH. Nonlinear interaction: analytical, computational and
experimental methods. New York: John Wiley Series in Nonlinear
Science; 2000.



[4] Gendelman O, Manevitch LI, Vakakis AF, M’Closkey R. Energy
pumping in nonlinear mechanical oscillators: Part I—dynamics of the
underlying Hamiltonian systems. ASME J Appl Mech 2001;168:
34–48.

[5] Slater JC, Inman DJ. On the effect of weak non-linearities on linear
controllability and observability norms, an invariant manifold
approach. ASME J Sound Vib 1997;199(3):417–29.

[6] Pesheck E, Pierre C, Shaw SW. Accurate reduced-order models for a
simple rotor blade model using nonlinear normal modes. Math
Comput Model 2001;33:1085–97.
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linéaires. PhD thesis, Université de la Méditerranée, Marseille, 2004.
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