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ON CONGRUENCE HALF-FACTORIAL KRULL MONOIDS

WITH CYCLIC CLASS GROUP

A. PLAGNE AND W. A. SCHMID

Abstract. We carry out a detailed investigation of congruence half-factorial
Krull monoids of various orders with finite cyclic class group and related prob-
lems. Specifically, we determine precisely all relatively large values that can
occur as a minimal distance of a Krull monoid with finite cyclic class group,
as well as the exact distribution of prime divisors over the ideal classes in
these cases. Our results apply to various classical objects, including maximal
orders and certain semi-groups of modules. In addition, we present applica-
tions to quantitative problems in factorization theory. More specifically, we
determine exponents in the asymptotic formulas for the number of algebraic
integers whose sets of lengths have a large difference.

1. Introduction

This paper is concerned with two very closely linked questions. On the one
hand, we study properties of Krull monoids with finite cyclic class group that have
a specific arithmetic property. On the other hand, we apply these results to obtain
a refined understanding of the arithmetic of Krull monoids with finite cyclic class
group where each class contains a prime divisor. There are a variety of classical
structures to which our results apply, including maximal orders of number fields
(more generally holomorphy rings of global fields) with finite cyclic class group,
certain semigroups of isomorphy classes of modules, certain Diophantine monoids
and several others (for details we refer to Section 3.4). The arithmetic property
in question is the notion of congruence half-factoriality. We recall that an atomic
monoid – in this paper, the term monoid always means a commutative cancella-
tive semigroup with identity, a classical example is the multiplicative monoid of a
domain – is a monoid such that each non-zero and non-invertible element is the
product of irreducible elements. The monoid is called factorial if each element has
an essentially unique factorization into irreducibles, where by essentially unique we
mean unique up to ordering and associates. If only the number of factors in the
factorizations of an element is uniquely determined by the element, the monoid is
called half-factorial. This property was first investigated by Carlitz [2]; a first more

systematic investigation of this property was carried out by Skula [40], Śliwa [41],
and Zaks [44] motivated by some number-theoretic questions of Narkiewicz (see [32,
Chapter 9]).
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Roughly two decades ago, on the one hand Chapman and Smith [8, 9] consid-
ered another (weakened) condition along these lines. Namely, they considered the
property that the number of factors in a factorization (also called the length of
the factorization) of an element is only unique modulo some fixed non-negative
integer d. They called this property d-congruence half-factoriality. We also use
the terminology congruence half-factorial of order d with the same meaning. Of
course, 0-congruence half-factorial means merely half-factorial whereas the condi-
tion 1-congruence half-factorial is void. However, for any other choice of d, this is a
new and non-trivial condition. Thus, by congruence half-factorial monoid we mean
a monoid that is d-congruence half-factorial for some d 6= 1.

On the other hand, Geroldinger [14] started a systematic investigation of the
structure of sets of lengths of factorizations. We informally recall the definition of
a set of lengths. For a non-zero and non-invertible element a of an atomic structure
one defines the set of lengths of a, denoted by L(a) as the set of all integers ℓ
such that there exist irreducible elements u1, . . . , uℓ such that a = u1 . . . uℓ; for an
invertible element, its set of lengths is {0} and for the zero-element it is empty.
Geroldinger [14, 15] proved that for a fixed structure (of the above form) there is a
finite set of positive integers such that all the sets of lengths are almost arithmetical
multiprogressions (i.e., a certain union of arithmetic progressions with the same
difference from which some elements at the ‘beginning’ and the ‘end’ might be
removed) with a difference that is an element of this set and there is a global
bound on the number (and location) of the ‘removed’ elements (see Section 3.5 for
a precise definition). To get an understanding of the differences appearing in this
description it is necessary to understand the minimal distance between the elements
of the sets of lengths of certain submonoids (even for domains one has to consider
submonoids).

For an early paper highlighting and clarifying the close relation between these
two problems see [6], in particular the discussion on page 89. These two very closely
related themes suggest two pairs of questions.

– For a given type of class group what are the values of d such that d-
congruence half-factorial Krull monoids with this type of class group exist?
Essentially equivalently, what are the minimal distances in sets of lengths
appearing for Krull monoid with this type of class group?

– For such a d, what are conditions on the monoid that characterize that it
is d-congruence half-factorial? Essentially equivalently, which monoids do
yield a specific minimal distance?

Since the introduction of these ideas, both these questions were investigated by
various researchers (for recent contributions see, e.g., [4, 13, 21, 25, 26, 35, 45]).
The investigations so far mainly focused on the first type of questions, due to the
fact that a (partial) solution to it is a precondition for even beginning to consider
the second one; see [25, 36] for some initial results. Moreover, we point out that
it was typical – we do so as well – to focus on (relatively) large d; mainly, since
they are the more interesting ones in understanding the arithmetic and since they
are more relevant in applications, for example, to the problem of giving arithmetic
characterizations of the class group (see, e.g., [24, 26, 37, 45]).

By transfer results – a first version in the number theoretic context is due to
Narkiewicz [31], later developments are mainly due to Geroldinger and Halter-
Koch, we refer to their monograph [20, Section 3.2] for an overview – it is known
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that all these questions depend only on the distribution of prime divisors or prime
ideals (in a suitable sense) over the classes, and that they can be studied in the
associated block monoid, that is, a monoid of zero-sum sequences over the class
group.

The investigations of this paper are restricted to the case where the class group of
the underlying monoid is finite cyclic, which arguably is a central case that already
received considerable attention. While our results do not provide a complete answer
to the two types of questions at hand – we present some arguments why we consider
it as highly unlikely that such a complete answer will be found in the foreseeable
future – we present results that go significantly beyond what was previously known.
In particular, this allows us to explore certain phenomena that essentially were
‘invisible’ in all situations considered so far. In the following section, we informally
discuss part of our results and the context.

2. Overview of results and methods

As mentioned in the Introduction, we study several closely linked questions that
are not exactly identical, yet to a considerable extent reduce to the same core
problem. We start by discussing our contribution to the core problem and then
some applications of these results.

We only recall precise definitions in the next section (see in particular Section
3.5). This core problem is to understand for a finite abelian group G with |G| ≥ 3
– in this paper we focus on cyclic groups – the set of minimal distances ∆∗(G) and
associated inverse problems. The restriction |G| ≥ 3 is due to the fact that by a
well-known result, an early version is due to Carlitz [2], for |G| ≤ 2 one only gets
half-factorial structures where the problems that concern us here do not arise.

This set ∆∗(G) is a finite set of positive integers, namely the integers min∆(G0)
whereG0 ⊂ G is a subset, fulfilling a certain non-degeneracy condition. And, ∆(G0)
is the set of successive distances of the monoid of zero-sum sequences over G0, i.e.,
distances between successive elements in the sets of lengths of these sequences.
By the associated inverse problem we mean the problem of determining, for some
element d ∈ ∆∗(G), the structure of all sets G0 ⊂ G such that min∆(G0) = d.

As is common we focus on the problem for large elements of ∆∗(G); where large
is to be understood as still relatively large in comparison to max∆∗(G).

First, we briefly recall what was known on this problem; needless to say, this is
not intended as a historical survey, we merely wish to provide some context for our
results. We focus on the case that G is finite cyclic.

By a recent result of Geroldinger and Zhong [25] it is known that for G a finite
abelian group, with |G| ≥ 3,

max∆∗(G) = max{exp(G)− 2, r(G)− 1}

where exp(G) and r(G) denote the exponent and the rank of G, respectively (for
definitions see the subsequent section). In the other direction, it is known that
min∆∗(G) = min∆(G) = 1 for |G| ≥ 3 (see [20, Theorem 6.7.1]).

If G is a finite cyclic group, by a result of Geroldinger and Hamidoune [21] (for
earlier results see [13] and [16]), we have, for the latter we assume |G| ≥ 4,

(2.1) max∆∗(G) = |G| − 2 and max(∆∗(G) \ {|G| − 2}) =

⌊
|G| − 2

2

⌋
.
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That is, also the second largest element is known; for results along these lines for
more general groups we refer to [25, 26, 37]. Moreover, the structure of all sets
corresponding to the maximal element |G| − 2 is known; this was proved in [36] for
a larger class of groups, not only cyclic ones.

There are also results showing that certain numbers are elements of ∆∗(G) that
are all based on the fact that the situation where only two non-zero classes contain
prime ideals is well understood due to the works [15] and [4] (see Theorem 4.1 and
the discussion there).

Conversely, for cyclic groups of prime power order, yet not in the general case,
these results were applied (see [15]) to obtain ‘upper bounds’ for ∆∗(G) via reducing
to the two-elements case and using a certain divisibility property; see equality (3.3)
for this property and the discussion below for further details.

Here, for general finite cyclic groups, of sufficiently large order, we determine all
the elements of ∆∗(G) of size at least |G|/10. Thus, we considerably improve the
above-mentioned results (2.1).

For illustration we state a weakened version of our main result going only down to
|G|/5; for stating our actual result (Theorem 7.3), we use some specialized notation,
which we do not want to state right away.

Theorem 2.1. Let G be a finite cyclic group of order at least 250. We have

∆∗(G) ∩ N≥|G|/5 = N ∩

{
|G|−2,

|G| − 2

2
,
|G| − 3

2
,
|G| − 4

2
,
|G| − 4

3
,

|G| − 6

3
,
|G| − 4

4
,
|G| − 5

4
,
|G| − 6

4
,
|G| − 8

4

}
.

(2.2)

While in retrospect there is a clear explanation why exactly these values and no
others appear, the precise structure is somewhat subtle.

The condition that |G| ≥ 250 should be essentially purely technical and the
value 250 is chosen generously – if one wished to be precise regarding this bound
one would have to compute a bound for each value (see Remark 7.4). It is clear
that one needs some bound to avoid degenerate cases, yet our bound is admittedly
larger than the one necessitated by this effect. It stems from the fact that we have a
‘rough’ description for all values of ∆∗(G) as small as (2|G|2)1/3 (cf. Theorems 6.2),
and we need that the range in which we want to make precise statements is ‘above’
this value. While we do not know how to significantly improve the (2|G|2)1/3 in
general, we point out that for a specific value of |G| this bound is improvable by
a direct calculation and, if needed, the methods presented in this paper are strong
enough to allow to reduce the bound to the threshold where the result itself becomes
unfeasible – yet doing so is likely very tedious.

Moreover, we show that in case the order of G is a prime power, this ‘rough’
description can be turned into a precise one in the full range, i.e., we obtain an exact
description of all elements of ∆∗(G) of size at least (2|G|2)1/3 (see Theorem 7.2),
improving on the above-mentioned ‘bounds’; the result is particularly interesting
due to the fact that as in the general case, but even more visibly, one gets that
certain yet not all divisors of elements whose presence in ∆∗(G) was already known
are contained in ∆∗(G).

The above-mentioned results give a (partial) answer to the first type of questions,
i.e., what are the large orders for which congruence half-factorial Krull monoids of
this order and what are the (large) differences in their sets of lengths.
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Regarding the second type of questions, we provide complete answers for all the
values listed in Theorem 2.1 and some selected additional values for general finite
cyclic G and we provide answers for considerably more values in the case where the
cardinality of G is a prime number. Here is the result we obtain in this special case
and below we give a partial version of the result in the general case.

Theorem 2.2. Let H be a non-half-factorial Krull monoid with finite cyclic class
group G and suppose the order of G is prime. Let d ≥ (2|G|2)1/3. The monoid H
is d-congruence half-factorial if and only if at most two non-zero classes, say g1, g2,
contain prime divisors and these two classes satisfy the property that there are two
integers c1, c2 ∈ N such that c2g1 + c1g2 = 0 and dc1c2 divides |G| − c1 − c2.

Note that the last condition implies that (|G| − c1 − c2)/(c1c2) is integral.
The fact that structures fulfilling the respective conditions on the classes are

d-congruence half-factorial was already known by the work of Chang, Chapman
and Smith [4], and moreover they showed that under the assumption that only two
non-zero classes contain prime divisors these are all (indeed they proved this with
a weaker condition on d, cf. Theorem 6.2 for details).

We point out that for the case of general |G| to obtain such results, even only
a complete characterization for all values d that are at least f(|G|) for any f that
is o(|G|) presently seems completely unfeasible. Doing so would require – yet most
likely would not suffice – to first obtain a complete understanding of half-factorial
sets of all finite cyclic groups. To see that this is the case it suffices to recall that
for G′

0 a half-factorial subset of a finite abelian group G′ and G′′
0 a subset of a

finite abelian group G′′ the set of distances of (G′
0 ∪ G′′

0) ⊂ G′ ⊕ G′′ is equal to
the set of distances of G′′

0 . In this sense the problem of understanding congruence
half-factorial Krull monoids with finite cyclic class group is an actual extension of
the problem of understanding half-factorial Krull monoids with finite cyclic class
group.

Now, if we have |G| = mn with co-prime m and n the cyclic group G is the direct
sum of a cyclic group of order m and a cyclic group of order n. For m arbitrary and
n large relative to m, the union of a set with minimal distance n−2 from the cyclic
group of order n with a half-factorial set of the group of order m would still have
minimal distance n− 2, which would exceed f(mn) for sufficiently large n. Thus,
in order to determine all such sets we would need to determine all half-factorial
subsets of a cyclic group of order m for arbitrary m.

The problem of determining the half-factorial sets of finite cyclic groups is studied
since the mid-Seventies, yet the answers obtained so far are not at all complete (see
[33] for partial results). Thus, one is limited to a result addressing the problem
for d ≥ c|G| for some c < 1. The precise choice regarding c we made, that is 1/5,
is somewhat arbitrary. On the one hand, we wanted to choose it small enough to
highlight certain interesting phenomena, and on the other hand, we did not want
to choose it too small as the technical difficulty increases rapidly. Our choice is not
the limit of our method.

Now, we only state the result for d equal to |G| − 2, (|G| − 2)/2, (|G| − 3)/2 and
(|G| − 4)/2.

Theorem 2.3. Let H be a non-half-factorial Krull monoid with finite cyclic class
group of order n ≥ 250. Then,



6 A. PLAGNE AND W. A. SCHMID

(i) H is (n − 2)-congruence half-factorial if and only if exactly two non-zero
classes, say g1 and g2, contain prime divisors, they are of order n, and
they satisfy g1 = −g2,

(ii) H is (n − 2)/2-congruence half-factorial if and only if exactly two non-
zero classes of order n, say g1 and g2, contain prime divisors and they
satisfy g1 = −g2 and the only other non-zero class that might contain
prime divisors is the class of order 2,

(iii) H is (n−3)/2-congruence half-factorial if and only if exactly two non-zero
elements of the class group, say g1 and g2, contain prime divisors, they
are of order n, and they satisfy g1 = −2g2 (or g2 = −2g1),

(iv) H is (n− 4)/2-congruence half-factorial if and only if
– a class g1 of order n contains prime divisors as does the class −2g1,
and the only other non-zero class that might contain prime divisors
is 2g1, or

– exactly three non-zero classes contain prime divisors, two are of order
n/2, say g1 and g2, and satisfy g1 = −g2, and the third one is of order
2, and 4 ∤ n.

For the full result see Theorem 8.4; yet, this is phrased in an abstract way, and
for a more direct but slightly imprecise impression see Theorem 7.7 – note that the
sets do not match exactly in one case of point (iv) for reasons explained in Section
8.

In addition to groups of prime order, for other special types of cyclic groups –
such as those whose order is a prime-power, a product of two prime powers, or that
has only ‘large’ prime divisors – various variants of our results could be established
more or less directly with the methods at hand. We do not state too many of
them explicitly; rather we try to present the approach developed in this paper in as
modular and general a form as seemed feasible, in order to make future applications
and modifications, if needed, as simple as possible; we expect that certain variants
will be relevant to future investigations, it is however impossible to foresee, which
exact variant will be relevant.

We end by outlining the key points of our approach to this problem, and the
general structure of the paper.

First, we recall some standard notions (see Section 3), and collect together and
establish various, in part technical, results that are used throughout the paper (see
Section 4). This includes some of the already mentioned results by Geroldinger [15],
and by Chang, Chapman, and Smith [3, 4] as well as some results that can be seen as
part of the recently introduced auxiliary framework of higher-order block monoids
(see [39]), generalizing the classical block monoid context. These last results are
relevant for composite n, since in this case it is a significant problem that elements
of various different orders exist, and to a certain extent they can be resolved using
these tools.

Second, we establish the following key technical result which gives an at first
seemingly weak conclusion, which however is crucial in order to have the tools
mentioned above at hand (for details on undefined notation see Section 3).

Theorem 2.4. Let G be a finite cyclic group, with |G| ≥ 3, and let G0 ⊂ G such
that min∆(G0) ≥ log |G|. Then there exists a subset G2 ⊂ G0 of cardinality 2 that
is not half-factorial.
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It is our understanding, that the lack of such a result impeded earlier progress on
the problems considered in this paper. Its proof is embedded into a more general
analysis of the relation between weakly half-factorial sets, large-cross-number sets
and half-factorial sets, for finite cyclic groups and more generally torsion groups.
This is carried out in Section 5.

Then, after having applied all this machinery, a variety of results are already
established (in a conceptual way); however, to obtain results of the announced
strength we need to carry out various quite particular investigations, which as said
we did not carry out to the absolute limit of what seemed manageable to us, but
we rather tried to get a balance between added insight and technical complexity.
Section 6 contains preparatory results, in Lemma 7.1 we collect the facts obtainable
without these particular investigations, and the remainder of Section 7 is dedicated
to obtain our results on ∆∗(G) and the associated inverse problem.

Finally, in Section 8 we apply these results to obtain results on congruence half-
factoriality. In part this application is, by known results, very direct; however,
for other parts some work is required. And, in Section 9 we give applications to
quantitative questions of factorization theory. More specifically, it is a classical
problem in factorization theory, indeed one of the motivating problems (see [32,
Chapter 9]) to obtain asymptotics on the number of (non-associated) elements of
a ring of algebraic integers having some specific factorization property; an utmost
classical example being that the element is prime, however in particular in view
of the fact that factorizations are non-unique there are numerous variants. Now,
as mentioned in the Introduction, the sets of lengths of the elements of a ring
of algebraic integers are suitably generalized arithmetic progressions, in particular
there is a finite number of ‘patterns’ (the technical term is period) that describe
up to small deviations all sets of lengths. An important goal in the present context
is to count the number of elements corresponding to one fixed such ‘pattern’. It is
known that the order of the respective counting function is

x

(log x)α
(log log x)β

where the real numbers α and β depend only on the ‘pattern’ and the class group;
for more precise results see (3.4) and Section 9. While there is an abstract combi-
natorial description of these constants known, which we recall in Section 9, there
are only very few and special cases in which that combinatorial problem was solved
and the numerical values of these constants are known (see [20, Theorem 9.4.10]
and [36]). Using our result, we can determine the value of α in several new cases.

3. Preliminaries

To fix notations and to provide some background, we briefly recall some key
notions of this paper. Our notation follows closely the one frequently used in
factorization theory; for an expansive account see [20], and for an introduction to
the aspects most relevant to the current paper see [17].

3.1. Generalities. We denote by N and N0 the positive and non-negative integers,
respectively. Moreover, we use for a a real number notation like N>a and N≥a with
the obvious meaning. Occasionally, it is convenient to have the convention that
gcd ∅ = min ∅ = 0. All intervals in this paper are intervals of integers, even if the
end-points are non-integral.
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3.2. Monoids and factorizations. In this paper, we say that H is a monoid if
it is a commutative, cancellative semigroup with identity; we use multiplicative
notation for monoids and denote the identity element simply by 1H or just 1 (if
there is no ambiguity). The classical example to have in mind is the multiplicative
monoid of non-zero elements of a domain. The monoid H is called atomic if each
non-invertible element is the product of (finitely) many irreducible elements (also
called, atoms). We denote the set of irreducibles of H by A(H), and the set of
invertibles by H×. Moreover, the monoid is called reduced if H× = {1}; we denote
by Hred = H/H× the reduced monoid associated to H . Recall that H is atomic if
and only if Hred is atomic.

A submonoid H ′ ⊂ H is called divisor closed if for each a ∈ H ′ every b ∈ H
with b |H a is already an element of H ′; and it is called saturated if for a, b ∈ H ′

one has a |H′ b if (and only if) a |H b, in other words if b = ac for some c ∈ H then
in fact c ∈ H ′. If the monoid in question is clear we omit the subscript specifying
in which monoid the divisibility relation holds.

For a set P , let F(P ) denote the free (abelian) monoid with basis P . And, for
p ∈ P and f ∈ F(P ), let vp(f) ∈ N0 denote the p-adic valuation of f (or the
multiplicity of p in f), so that

f =
∏

p∈P

pvp(f);

of course, all but finitely many of the vp(f) are 0. To preserve certain helpful
connotations, we frequently refer to elements of F(P ) as sequences over P ; in
particular, we do so if P is (a subset of) an abelian group (cf. below). And, in the
same vein, we refer to

∑
p∈P vp(f) as the length of f , which we denote by |f |, and

to the identity element as the empty sequence.
Since we occasionally make use of it, we recall a formal framework for studying

factorizations. For a monoid H , let

Z(H) = F(A(Hred))

denote the monoid of factorizations of H , and let

πH : Z(H) → Hred

denote the factorization homomorphism, i.e., the homomorphism defined via π(a) =
a for a ∈ A(Hred).

For a ∈ H , let

ZH(a) = π−1
H (aH×)

denote the set of factorizations of a (in H). Again, we typically omit explicit
references to H . A monoid is factorial if and only if the set of factorizations of
each element is a singleton; and it is atomic if and only if the set of factorizations
of each element is nonempty. Moreover, let

LH(a) = {|z| : z ∈ ZH(a)}

denote the set of lengths of a. Equivalently, for a ∈ H \H×, the set L(a) is the set
of all ℓ ∈ N such that there exist u1, . . . , uℓ ∈ A(H) with a = u1 . . . uℓ, i.e., a has a
factorization into irreducibles of length ℓ. For a ∈ H× we have L(a) = {0}.

An important notion in factorization theory is that of a transfer homomorphism.
A homomorphism θ : H → B between monoids is called a transfer homomorphism
if
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– the product set θ(H)B× is equal to B (in other words, θ is surjective up
to invertible elements),

– θ−1(B×) = H×, and
– for each u ∈ H and b1, b2 ∈ B with θ(u) = b1b2 there exist u1, u2 ∈ H
such that u = u1u2 and θ(ui) and bi are associated (i.e., are equal up to
multiplication with an invertible element) for i = 1 and 2.

It is easy to see that a transfer homomorphism θ : H → B induces a trans-
fer homomorphism of the respective associated reduced monoids, which we also
denote by θ. A key property of a transfer homomorphism is that it also in-
duces a homomorphism of the factorization monoid Z(H) and Z(B), given by
u1 . . . uℓ 7→ θ(u1) . . . θ(uℓ); note that atoms are mapped to atoms. So, in particular
LH(a) = LB(θ(a)) for each a ∈ H .

Finally, we recall the definition of the set of distances of a monoid. First, for a
set L = {ℓ1, ℓ2, . . . } of integers with ℓi < ℓi+1 for each index i, we let

∆(L) = {ℓ2 − ℓ1, ℓ3 − ℓ2, . . . }

denote the set of successive distances of L. Now, for a ∈ H , we define ∆(a) =
∆(L(a)), and let

∆(H) =
⋃

a∈H

∆(a)

be the set of (successive) distances of H . The minimal distance of the monoid is
the minimum of this set.

A monoid is called half-factorial if |L(a)| = 1 for each a ∈ H , i.e., for each
element every factorization of this element has the same length (yet it might still
have several essentially different factorizations). Equivalently, H is half-factorial if
and only if ∆(H) = ∅.

3.3. Abelian groups and zero-sum sequences. We use additive notation for
abelian groups. We denote by ord g ∈ N ∪ {∞} the order of an element g ∈ G.
Yet note that we almost exclusively deal with finite, or at least torsion, abelian
groups, indeed most of the time cyclic ones, so that the order, in this paper, is
essentially always finite. We denote by r(G) and r∗(G) the rank and the total
rank, respectively, of an abelian group G; for a finite cyclic group with at least two
elements – the only case of actual relevance here – this is of course 1 and ω(|G|),
the number of distinct prime divisors of the order of G, respectively. We recall that
for an abelian torsion group the rank of the group is the supremum of all its p-ranks
for p a prime number. For n a positive integer we denote by Cn a cyclic group of
order n.

Let G be an abelian group, and G0 ⊂ G. Let S ∈ F(G0) be a sequence over
G0. The notions of length and multiplicity were already mentioned. We recall some
more specific notions. We call

– supp(S) = {g ∈ G0 : vg(S) > 0}, the support of S,
– σ(S) =

∑
g∈G0

vg(S)g ∈ G, the sum of S,

– Σ(S) = {σ(T ) : 1 6= T | S}, the set of subsequence sums of S,
– and assuming all elements appearing in S have finite orders, we let

k(S) =
∑

g∈G0

vg(S)

ord g
∈ Q

be the cross number of S.
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Moreover, if G0 ⊂ 〈e〉 (the group generated by e) and e has finite order, then
let σe denote the map from G0 to [1, ord e] such that for each h ∈ G0 one has
h = σe(h)e. This map can be extended to a homomorphism from F(G0) to (N0,+),
which we also denote by σe. Note that σ(S) = σe(S)e, in particular for each B
with σ(B) = 0 one has ord e | σe(B). Moreover, note that for g another generating
element of 〈e〉 we have

(3.1) σe(h) ≡ σe(g)σg(h) (mod ord e).

The notation we use is slightly non-standard. In some earlier works, typically an
element e was a priori fixed, and the notation σ0 was used for σe. However this is
not sufficiently general for our purpose as we sometimes need to consider these maps
for more than one generating element in the same argument. Another notation that
is used is || · ||e, called the e-norm of a sequence. However, we feel that it has a
slightly different connotation, and in our context it is also slightly less convenient
on typographical grounds.

A sequence S ∈ F(G0) is called a zero-sum sequence if σ(S) = 0 and it is called
zero-sum free if 0 /∈ Σ(S). A zero-sum sequence is called a minimal zero-sum
sequence if it is non-empty and has no proper zero-sum subsequence. Let

B(G0) = {S ∈ F(G0) : σ(S) = 0}

denote the set of zero-sum sequences over G0; evidently, B(G0) is a submonoid of
F(G0). And, let A(G0) and A∗(G0) denote the set of minimal zero-sum sequences
and zero-sum free sequences over G0, respectively; note that A(G0) is the set of
irreducible elements of B(G0).

If G0 consists of torsion elements only, we denote by

K(G0) = sup{k(A) : A ∈ A(G0)}

the cross number of G0 and by

k(G0) = sup{k(A) : A ∈ A∗(G0)}

the little cross number of G0. We recall (see for example [20, Theorem 5.5.5]) that,
for G a finite abelian group, we have the following two inequalities:

(3.2) k(G) ≤ log |G| and K(G) ≤
1

q
+ log |G|,

where q is the smallest prime divisor of |G|.

3.4. Krull and block monoids. A monoid H is called a Krull monoid if there
exists a free monoid F(P ) and a homomorphism ϕ : H → F(P ) such that

a |H b if and only of ϕ(a) |F(P ) ϕ(b)

for all a, b ∈ H ; such a homomorphism is called a divisor homomorphism (into
a free monoid). If in addition, for each p ∈ P there exist a1, . . . , ak ∈ H such
that gcd{ϕ(ai) : i ∈ [1, k]} = p, then F(P ) is called a monoid of divisors of H and
ϕ a divisor theory. Every Krull monoid has an essentially unique divisor theory.
Recall that there are various equivalent definitions for Krull monoids, e.g., as com-
pletely integrally closed and v-noetherian monoids; for a detailed account see [28],
especially Chapters 22 and 23.

Let H be a Krull monoid with divisor theory ϕ : H → F(P ). Then C(H) =
q(F(P ))/q(ϕ(H)) is called the class group of H ; up to isomorphism a Krull monoid
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has a unique divisor theory, thus C(H) does not depend on ϕ. Moreover, we denote
by D(H) = {g ∈ C(H) : g ∩ P 6= ∅} the set of classes containing prime divisors.

Consider

β̃

{
F(P ) → F(D(H))

p1 . . . pℓ 7→ [p1] . . . [pℓ]

where [pi] denotes the class containing pi. Note that the image of β̃ ◦ ϕ is equal

to B(D(H)). The map β : H → B(D(H)), induced by β̃, is called the block
homomorphism, and B(D(H)) is called the block monoid associated to H . The
block homomorphism is a transfer homomorphism (indeed, the archetypal example
of a transfer homomorphism).

In particular, we have
LH(a) = LB(D(H))(β(a))

for each a ∈ H and
∆(H) = ∆(B(D(H))).

We point out that the block monoids themselves and more generally monoids of
zero-sum sequences are Krull monoids, as the embedding B(G0) →֒ F(G0) is easily
seen to be a divisor homomorphism (yet, in general, this is not a divisor theory).

We collect relevant examples of structures to which our results apply, that is
structures that are Krull monoids or structures that admit a transfer homomor-
phism to a Krull monoid with potentially finite cyclic class group.

To start we note that a domain is a Krull domain if and only if its multiplicative
monoid is a Krull monoid, by a result due to Krause [29]. Furthermore, Dedekind
domains and more generally integrally closed noetherian domains are Krull domains
(see, e.g., [20, Section 2.11]). The notions of class group recalled above for monoids
coincide with the usual ones in those context; that is, it is the ideal class group for
a Dedekind domain and the divisor class group for a Krull domain. Indeed, for a
Dedekind domain D, if I•(D) denotes its non-zero ideals (a free monoid over the
non-zero prime ideals), the map

ϕ :

{
D \ {0} → I•(D)

a 7→ aD

is a divisor theory; recall that the monoid of ideals is a free monoid generated by
the prime ideals. For Krull domains and monoids, it suffices to consider (non-zero)
divisorial ideals, also called v-ideals, instead (with v-multiplication as operation).

We now give some more specific examples of Krull monoids and domains.

– Rings of integers in algebraic number fields and more generally holomorphy
rings in global fields (see, e.g., [20], in particular Sections 2.11 and 8.9).

– Regular congruence monoids in Dedekind domains, for example the do-
mains mentioned above (see, e.g., [19] or [20, Section 2.11]).

– Rings of polynomial invariants of finite groups (see, e.g., [11, Theorem
4.1]).

– Diophantine monoids (see, e.g., [7], especially Theorem 1.3 for examples
with finite cyclic class group).

Another source of examples are semi-groups of isomorphy classes of certain mod-
ules (the operation being the direct sum). These are Krull monoids in various cases.
For an overview we refer to the monograph of Leuschke and Wiegand [30]. We high-
light a result of particular relevance to us by Baeth and Geroldinger [1, Theorem
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5.5], yielding Krull monoids with finite cyclic class group (of any order) such that
each class contains a prime divisor (earlier example often had infinite class groups).

Besides Krull monoids themselves there are other structures that are not Krull
monoids themselves, for example they might be not commutative or not integrally
closed, yet still admit a transfer homomorphism to a Krull monoid. For such a
structure the system of sets of lengths is still equal to that of a Krull monoid, and
our results apply (in case of finite cyclic class group).

The first example below is due to Smertnig [43, Theorem 1.1], the second due
to Geroldinger, Kainrath, and Reinhart [23, Theoorem 5.8] (their actual result is
more general); the first is not commutative, the second not integrally closed.

– Let O be a holomorphy ring in a global field and let A be a central sim-
ple algebra over this field. For H a classical maximal O-order of A one
has that if every stably free left H-ideal is free, then there is a transfer-
homomorphism from H \ {0} to the monoid of zero-sum sequence over a
ray class group of O, which is a finite abelian group.

– Let H be a seminormal order in a holomorphy ring of a global field with

principal order Ĥ such that the natural map X(Ĥ) → X(H) is bijective

and there is an isomorphism between the v-class groups of H and Ĥ . Then
there is a transfer-homomorphism from H \{0} to the monoid of zero-sum
sequence over this v-class group, which is a finite abelian group.

3.5. Key notions. Having all the preceding preparatory notions at hand, we col-
lect those notions that are most relevant to the present paper (some of them were
already informally discussed).

Let H be an atomic monoid. The set of minimal distances of H is defined as

∆∗(H) = {min∆(S) : S ⊂ H divisor closed , ∆(S) 6= ∅}.

It is traditional to exclude half-factorial submonoids S in the definition, so that 0
is never an element of ∆∗(H), as opposed to always; note that we use the convention
that min ∅ = gcd ∅ = 0.

It is well known (see for example [20, Proposition 1.4.4]) that indeed

(3.3) min∆(H) = gcd∆(H).

In particular, if S ⊂ H is a divisor-closed submonoid, then ∆(S) ⊂ ∆(H) and thus
min∆(H) | min∆(S).

For G an abelian group (in this paper essentially only finite cyclic groups occur)
we write ∆∗(G) instead of ∆∗(B(G)) and we note that S ⊂ B(G) is divisor closed if
and only if S = B(G0) for some G0 ⊂ G. Moreover, for G0 ⊂ G we write min∆(G0)
instead of min∆(B(G0)).

An atomic monoid H is called d-congruence half-factorial, or congruence half-
factorial of order d, if for each a ∈ H one has ℓ ≡ ℓ′ (mod d) for all ℓ, ℓ′ ∈ L(a).
A congruence half-factorial monoid is a monoid that is d-congruence half-factorial
for some d 6= 1; we recall that no condition is imposed by being 1-congruence half-
factorial. It follows from (3.3) that H is d-congruence half-factorial if and only
if d | min∆(H). Moreover, d = min∆(H) means that H is d-congruence half-
factorial and d is the maximal order (in the partial order induced by divisibility)
for which H is congruence half-factorial.

We will study the set ∆∗(G) and for d ∈ ∆∗(G) the structure of those sets
G0 ⊂ G such that d = min∆(G0).
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We already mentioned the relevance of ∆∗(G) for describing sets of lengths. We
recall this connection and relevant notions in detail.

We recall the Structure Theorem for Sets of Lengths for Krull monoids with
finite class group. It is a central result in factorization theory; the initial version
is due to Geroldinger [14], the refined version we recall below, is due to Freiman
and Geroldinger [12]. Moreover, we add that a result of this form is also known for
other classes of monoids, in particular certain though not all Krull monoids with
infinite class group (see [20, Chapter 4] for an overview, and [18], [22] for recent
contributions).

To state the Structure Theorem, we first recall a definition.

Definition 3.1. A finite set of integers L is called an almost arithmetical multi-
progression (AAMP) with difference d, period {0, d} ⊂ D ⊂ [0, d] and bound M if
there exists some integer y such that

L = y + (L′ ∪ L∗ ∪ L′′) ⊂ y + (D + dZ)

with

L∗ = (D + dZ) ∩ [0,maxL∗], L′ ⊂ [−M,−1]

and

L′′ ⊂ [maxL∗ + 1,maxL∗ +M ].

Now, we recall the Structure Theorem for Sets of Lengths.

Theorem 3.2. Let H be a Krull monoid with finite class group G satisfying |G| ≥
3. There exists some M ∈ N0 such that for each a ∈ H, L(a) is an AAMP with
difference d in ∆∗(G) and bound M .

It is crucial that the bound M and the set ∆∗(G) are finite and independent of a;
otherwise the statement would be trivial. Moreover, it was recently proved, though
there was some evidence for this before, that this structural description is in a
certain sense optimal (see [38]). Note that, for |G| ≤ 2, the monoid is half-factorial
so that the condition |G| ≥ 3 merely excludes corner-cases.

Of course, such a result would also hold for suitable sets other than ∆∗(G), such
as any superset of it, yet ∆∗(G) is the natural choice; in particular if one wishes a
condition that depends on the class group only, which is typically the case, or is in
a situation where every class contains a prime divisor. Thus, to gain information
on ∆∗(G) is key towards a more precise understanding of sets of lengths and thus
an important problem of factorization theory.

From its early beginning on it is classical in factorization theory to consider quan-
titative problems, too (see, e.g., Narkiewicz’ monograph [32, Chapter 9]). That is,
one is for example interested in the number, in an asymptotic sense and up to
associates, of algebraic integers (of some number field) that have a certain factor-
ization property; or equivalently, the number of principal ideals with the respective
factorization property. Indeed, one can ask this question for other structures, such
as elements of a holomorphy ring of an algebraic function field over a finite field,
or consider the problem in a suitable abstract setting.

We do not discuss this in detail here and only consider the classical setting of
rings of algebraic integers; the results we establish apply verbatim in the other or
more general context. It should also be noted that more precise asymptotic results
than recalled below can be obtained, in particular an asymptotic equality instead
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of merely the order, but this is not relevant here. For details on the results touched
upon below, we refer to [20, Section 9.4].

Let K be an algebraic number field, let OK denote its ring of integers, and let H
denote the non-zero principal ideals of OK . Note that H is a Krull monoid with the
same class group as the ideal class group of OK . In view of the Structure Theorem
for Sets of Lengths the following definition is a natural one:

Let d ∈ N, M ∈ N0 be sufficiently large (this could be made explicit), and
{0, d} ⊂ D ⊂ [0, d]. Then P(H,D,M) denotes the set of all a ∈ H such that L(a)
is an AAMP with period D and bound M , and such that

maxL(a)−min L(a) ≥ 3M + (max∆(H))2.

These conditions are in place to guarantee that it makes sense – to the extent
possible – to say that D is ‘the’ period of L(a). On the one hand, to give an
extreme example, a singleton is an AAMP with period D for every D, so one needs
some condition. On the other hand, a set L that is an AAMP with period D (and
difference d) and some bound M is also an AAMP with period

k−1⋃

i=0

(id+D)

(and difference kd) and bound M ; moreover, it is typically possible to slightly ‘shift’
the central part so that L is also an AAMP with period D′ where D′ equals s+D
for some s ∈ [0, d] and the bar denotes the projection onto Z/dZ. The conditions
guarantee that this mild level of non-uniqueness, just illustrated, is the only one.

Let P(H,D,M)(x) denote the counting function associated to this set, that is
the number of elements in P(H,D,M) of (absolute) norm at most x. It is known
that if P(H,D,M) 6= ∅, then

(3.4) P(H,D,M)(x) ≍
x

(log x)1−a/|G|
(log log x)b

where a and b are non-negative integers and G denotes the class group of H . For
a description of a and b and more discussion on this see Section 9; here we only
mention that both depend only on D and the class group, and a is intimately linked
to the inverse problem – that is, the structure of sets G0 with specified min∆(G0) –
associated to elements of ∆∗(G) that are related to maxD, mainly its multiples but
depending on D possibly also (certain) divisors. As mentioned above, it is possible
to obtain more precise asymptotic results, too. We briefly discuss this in Section 9
as well.

4. Some auxiliary results

For sets of the form G0 = {e, ae} (with a ∈ [1, ord e]) the problem of determining
min∆(G0) is solved, by the work of Chang, Chapman, and Smith [4] building on
work by Geroldinger [15]. First, we recall the special case mainly relevant for our
purpose in a form convenient for the present application; then we comment briefly
on the context.

Theorem 4.1. Let G be a finite cyclic group, e be a generating element of G and
a ∈ [1, |G|] such that gcd(a, |G|) = 1. Then min∆({e, ae}) >

√
|G| if and only if
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there exist some positive integers c1 and c2 such that

a =
|G| − c1

c2

and the quantity

da =
|G| − (c1 + c2)

c1c2

is integral and satisfies da >
√
|G|. Indeed, in this case min∆({e, ae}) = da.

By the above-mentioned works it is known that min∆({e, ae}), using the no-
tation of the above result, can be expressed in terms of the continued fraction
expansion of n/a. The fact that continued fractions play a role in this context can
be roughly understood by noting that a minimal zero-sum sequence containing ae
with multiplicity k exists if and only if ⌈ka/n⌉n− ka is smaller than ⌈ja/n⌉n− ja
for each 0 < j < k, and observing the connection to ‘good’ rational approximations
of n/a.

More specifically, Corollary 3.2 of [4] asserts that if min∆({e, ae}) is greater

than
√
|G|, then the odd continued fraction expansion of n/a is of length 3; the

‘odd’ means that the lengths of the continued fraction expansion is odd, which can
be achieved by (in turn) allowing that the last term is 1. We point out that [4,
Corollary 3.2] is formulated for n prime only, as is [4, Lemma 3.1] on which it is
based, yet its proof carries over verbatim, and the only result that is used, i.e.
[4, Theorem 2.1], is formulated for general n. In fact, up to here the argument
even works for a not coprime to n with a minimal modification of [4, Lemma 3.1].
Moreover, it is asserted in [4] (see specifically equation (1), Proposition 3.4, and
the subsequent discussion in that paper) that the odd continued fraction expansion
of n/a is of length 3, as there let us denote it by [b, d, c], if and only if

a =
n− c

b
and d =

n− b− c

bc
.

Moreover, in this case, d = min∆({e, ae}). Again, the original discussion is for n
prime, yet the condition that a and n are coprime suffices for the arguments to hold.
These last conditions are precisely what is encoded in the conditions of the above
result. Also, note that if n−c

b and n−b−c
bc are positive integers, then n−c

b is invertible

modulo n and its inverse is n−b
c . We point out that the condition that the minimal

distance is large is only needed to guarantee that the continued fraction expansion
is of length 3. The remainder of the argument does not need this size-condition.
For later reference we formulate this as a remark.

Remark 4.2. Let n be a positive integer and let G be a finite cyclic group of order
n. Let e be a generating element of G and let b, c ∈ [1, n] such that n−c

b and n−b−c
bc

are positive integers. Then

min∆

({
e,

n− b

c
e

})
=

n− b − c

bc
.

Finally, observe that while with more work and at the expense of a more com-
plicated formulation the restriction that a and |G| are coprime could be avoided,
this condition is essentially irrelevant in view of Lemma 4.5 below.

The following lemma of Geroldinger [15] (also see [20, Lemma 6.8.5]) gives a
simplified way of determining min∆(G0) for G0 a subset of a finite cyclic group
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containing a generating element. We use it frequently and it was also used in the
proof of the above-mentioned result.

Lemma 4.3. Let G be a finite cyclic group and let e be a generating element of G.
Further, let G0 be a subset of G containing e. Then,

min∆(G0) = gcd

{
σe(A) − |G|

|G|
: A ∈ A(G0)

}
.

If G0 contains more than one generating element one is evidently free to choose
any of these generating elements as the distinguished one; yet, it needs to be fixed
throughout an argument.

Based on this lemma, we obtain the following result.

Lemma 4.4. Let G be a finite cyclic group and let e be a generating element
of G. Further, let G0 be a subset of G containing e. Let x ∈ [1, |G|] such that
min∆(G0 ∪ {xe}) ≥ x. Then,

min∆(G0 ∪ {xe}) = min∆(G0).

Proof. We set n = |G|. For B ∈ B(G0 ∪ {xe}), let

f(B) =

{
ex(xe)−1B if (xe) | B,

B otherwise.
.

We note that σ(B) = σ(f(B)), and thus f(B) is a zero-sum sequence, too. First,
suppose that f(A(G0 ∪ {xe})) ⊂ A(G0 ∪ {xe}); in other words, the minimality of
zero-sum sequences is preserved under this replacement. We claim that in this case
we have

min∆(G0 ∪ {xe}) = min∆(G0).

To see this, it suffices to note that σe(A) = σe(f(A)) and that fn(A) ∈ A(G0), as
vxe(A) ≤ n, which together with Lemma 4.3 implies that min∆(G0) = min∆(G0∪
{xe}).

So, we may now assume that there exists some A ∈ A(G0∪{xe}) such that f(A)
is not a minimal zero-sum sequence. We consider

C = enA = (en−x(xe))f(A).

By definition of C, we have

(4.1) 2 ∈ L(C).

We also have 1 + L(f(A)) ⊂ L(C) which implies 1 + min L(f(A)) ∈ L(C). But,
since f(A) is not a minimal zero-sum sequence by assumption (and clearly f(a) is
non-empty), we have min L(f(A)) ≥ 2. It follows that 1 + min L(f(A)) ≥ 3. With
(4.1), this implies

min L(f(A))− 1 =
(
1 + min L(f(A))

)
− 2 ≥ min∆(C).

Using min L(f(A)) ≤ x, as otherwise we would get a non-trivial zero-sum subse-
quence of A, we then infer

min∆(C) ≤ min L(f(A))− 1 ≤ x− 1,

implying the claim. �
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The following lemma is useful to reduce the complexity of certain arguments. It
can be seen as part of the framework of higher-order block monoids as introduced
in [39]; though for this special case one could avoid that machinery. For the first
result see in particular [39, Proposition 4.1]; while the latter is also easily derivable
from results of that paper, it is in fact already contained in [20, Theorem 6.7.11]
(inspecting the proof, one sees that G0 being finite there is not relevant).

Lemma 4.5. Let G be an abelian torsion group, and let G0 ⊂ G. For g ∈ G0, let
nG0

(g) denote the smallest n ∈ N such that ng ∈ 〈G0 \ {g}〉.

(i) Let G1 = {nG0
(g)g : g ∈ G0}. The map B(G0) → B(G1) induced by

hnG0
(h) 7→ nG0

(h)h for each h ∈ G0 is well-defined and a transfer homo-
morphism. In particular, L(G0) = L(G1).

(ii) Let g ∈ G0 and Gg = (G0 \ {g}) ∪ {nG0
(g)g}. The map B(G0) → B(Gg)

induced by gnG0
(g) 7→ nG0

(g)g and h 7→ h for each other h is well-defined
and a transfer homomorphism. In particular, L(G0) = L(Gg).

By ‘well-defined’ we mean that B(G0) is contained in the (free) submonoid of
F(G0) generated by {hnG0

(h) : h ∈ G0} and {gnG0
(g)} ∪ (G0 \ {g}), respectively;

thus, the above-mentioned maps clearly make sense.
As we use it occasionally we make the following remark, which is a direct con-

sequence of this lemma, and the results we recalled after Theorem 4.1 (also see
Lemma 5.1).

Remark 4.6. For G finite cyclic and G0 ⊂ G with |G0| = 2, we have that ∆(G0) =
∅ if and only if |{nG0

(g)g : g ∈ G0}| = 1. In particular, a subset of a finite cyclic
group containing two distinct elements of the same order is never half-factorial.

The following lemma is relevant in Section 8. We do not know whether an
analogue holds for finite abelian groups in general.

Lemma 4.7. Let G be a finite cyclic group. For each subset G0 ⊂ G, there exists
a generating subset G′

0 ⊂ G such that there is a transfer homomorphism

θ : B(G′
0) → B(G0).

Proof. Let n = |G|. For n = 1 this is trivial and we assume n > 1. We proceed by
induction on t the number of prime divisors counted with multiplicity of n/|〈G0〉|.

For t = 0, of course G0 is generating and we can simply set G′
0 = G0.

Suppose t > 0. Let p be one of the prime divisors, say, the smallest one. Now,
let g ∈ G0 such that the p-adic valuation of ord g is maximal among all elements
of G0. Since p divides n/|〈G0〉| the p-adic valuation of ord g is less than the one
of n. Therefore, there exists some h ∈ G \ {0} such that ph = g. We observe
that ordh = p ord g (note that since we assumed h 6= 0 this must even hold true
if g = 0), and we infer that h /∈ G0. Moreover, it is easy to see that p is the
minimal positive integer j such that jh ∈ 〈G0〉. Thus, Lemma 4.5 implies that
there exists a transfer homomorphism θ′ : B(G0 ∪ {h}) → B(G0). Moreover, since
〈G0〉 is a proper subset of 〈G0∪{h}〉, we get by the induction hypothesis that there
exists a generating subset G′

0 of G such that there is a transfer homomorphism
θ′′ : B(G′

0) → B(G0 ∪ {h}). Since the composition of transfer homomorphisms is
again a transfer homomorphism, setting θ = θ′ ◦ θ′′, the claim is proved. �
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5. Non-large-cross-number sets and related notions

The main purpose of this section is to prove Theorem 2.4. To this end we need
some additional notions namely that of weakly half-factorial sets and large-cross-
number sets, which we recall below. We then establish some results involving these
notions that are used to prove the above-mentioned proposition. These results are
proved in more generality than needed, since we believe they are of some indepen-
dent interest.

The (arithmetic) definition of a half-factorial subset was already recalled in Sec-
tion 3. We recall the classical characterization of half-factorial sets of abelian torsion
groups; it goes back to – independently yet with minor variations on the generality
of the result – Skula [40], Śliwa [41], and Zaks [44]; for a modern proof see [20,
Proposition 6.7.3].

Lemma 5.1. Let G be an abelian torsion group, and let G0 be a subset of G. The
set G0 is half-factorial if and only if k(A) = 1 for each A(G0).

The following two notions are inspired by this characterization; the former very
directly, the latter more implicitly. The notion of a weakly half-factorial set was in-
troduced by Śliwa [42], using a different terminology; for more recent investigations
on these sets, see [34] and also [20, Section 6.7]. The terminology large-cross-number
set was introduced in [37], however the underlying idea is older; see, e.g., the work
of Gao and Geroldinger [13].

Definition 5.2. Let G be an abelian torsion group, and let G0 be a subset of G.

(i) We say that G0 is a large-cross-number set if k(A) ≥ 1 for each A ∈ A(G0).
(ii) We say that G0 is a weakly half-factorial set if k(A) ∈ N for each A(G0).

From the characterization in Lemma 5.1 and the definitions, it follows that each
half-factorial set is a weakly half-factorial set, and each weakly half-factorial set is
a large-cross-number set.

Weakly half-factorial sets in finite cyclic groups have a simple structure; namely,
we have the following result at our disposal (see [42], and for more general results,
using the terminology of the present paper, see [34] or [20, Theorem 6.7.5]).

Lemma 5.3. Let G be a finite cyclic group. A set subset G0 of G is weakly
half-factorial if and only if there exists some generating element e of G such that
G0 ⊂ {de : d | |G|}.

We start by showing that a subset of a finite cyclic group that is not a large-
cross-number set contains a non-half-factorial subset of cardinality 2.

Lemma 5.4. Let G be a finite cyclic group, and let G0 be a subset of G that is
not weakly half-factorial. There exists a subset G2 ⊂ G0 with |G2| = 2 that is not
weakly half-factorial.

Proof. To simplify the writing of the proof, we define n = |G|. Let e be a generating
element of G such that G0 ∩ {de : d | n} has maximal cardinality; we denote this
set by G′

0 and set D0 = σe(G
′
0), the set of the respective divisors of n. We denote

Gd = {de : d | n}.
Since G0 is not weakly half-factorial, we know by Lemma 5.3 that there exists

some h ∈ G0 \G
′
0. Let nh ∈ N be minimal such that nhh ∈ 〈G′

0〉.
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We have that nh | n, and more precisely, for d′ = gcd(σe(h), n), we have

nh =
lcm(d′, gcdD0)

d′
=

gcdD0

gcd(d′, gcdD0)
.

By Lemma 4.5, we know that each zero-sum sequence over G′
0 ∪ {h} contains h

with a multiplicity that is a multiple of nh (this includes 0), and the replacement
hnh 7→ nhh induces a surjection from the minimal zero-sum sequences over G′

0∪{h}
to the ones over G′

0 ∪ {nhh}, which also preserves the cross number of zero-sum
sequences.

Thus, if nhh ∈ Gd, then G′
0 ∪ {nhh} is weakly half-factorial. And, as the cross

numbers of minimal zero-sum sequences are the same, we get that G′
0 ∪ {h} is

weakly half-factorial. Yet, this contradicts the choice of e, since if G′
0 ∪ {h} is

weakly half-factorial, then there exists some e′ such that G′
0 ∪ {h} ⊂ {de′ : d | n},

contradicting the choice of e.
So, we may assume that nhh /∈ Gd. This means that

nhσe(h) 6≡ d (mod n)

for each d | n.
Let m ∈ D0, and let nm ∈ N minimal such that nmh ∈ 〈me〉; that is,

nm =
lcm(m, d′)

d′
.

We have that lcm(m, d′) | nmσe(h). Let km ∈ [1, n] be congruent to nmσe(h)
modulo n; we also have lcm(m, d′) | km. We consider the sequence

(me)
n−km

m hnm .

This is a minimal zero-sum sequence and its cross number is
(

1

n/m

)
n− km

m
+

nm

ordh
=

n− km
n

+
lcm(m, d′)

n
= 1 +

lcm(m, d′)− km
n

.

Now, if this is not integral then the set {me, h} is not weakly half-factorial, and we
are done. Thus, suppose this is integral and thus at least 1, and so km = lcm(m, d′).
Consequently,

(5.1) nmσe(h) ≡ lcm(m, d′) (mod n),

and inserting the explicit expression for nm we have

σe(h) lcm(m, d′)

d′
≡ lcm(m, d′) (mod n) ,

implying

σe(h) ≡ d′
(
mod

n gcd(m, d′)

m

)
.

Since these congruences hold for each m ∈ D0, it follows that

σe(h) ≡ d′
(
mod lcm

{
n

m/ gcd(m, d′)
: m ∈ D0

})
,

which we reformulate as

σe(h) ≡ d′
(
mod

n

gcdD0/ gcd(gcdD0, d′)

)
,
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implying that

σe(h)
gcdD0

gcd(gcdD0, d′)
≡ d′

gcdD0

gcd(gcdD0, d′)
(mod n).

Yet,

σe(h)
gcdD0

gcd(gcdD0, d′)
= σe(h)nh

and d′ gcdD0/ gcd(gcdD0, d
′) is a divisor of n. Thus, we deduce that nhh ∈ Gd,

which contradicts our assumption. �

A slight modification of the proof of this lemma also allows to show that in
finite cyclic groups the notions of weakly half-factorial set and large-cross-number
set coincide; and indeed cyclic groups are the only finite abelian groups with that
property, and more generally groups of rank 1 the only torsion abelian groups. We
do not actually apply this result anywhere in the paper; yet, we include it here as
it seems interesting and it can be obtained quickly here.

Proposition 5.5. Let G be an abelian torsion group. The following two statements
are equivalent:

(i) A subset G0 ⊂ G is a weakly half-factorial set if and only if it is a large-
cross-number set.

(ii) The rank of G is 1.

Proof. First, suppose the rank of G is 1, and we have to establish the equivalence
of the notions weakly half-factorial and large-cross-number. Let G0 ⊂ G. It is
immediate that a weakly half-factorial set is a large-cross-number set. We assume
that G0 is a larger-cross-number set and show that it is weakly half-factorial. Since
both properties are of finite character, i.e., they hold for G0 if and only if they hold
for every finite subset of G0, we may assume that G0 is finite, or indeed that G is
a finite cyclic group.

Now, we proceed as in the proof of Lemma 5.4. That is, we pick e a generating
element of G such that G0∩{de : d | n} has maximal cardinality and denote this set
by G′

0. We have to show that G0 \G′
0 6= ∅ yields a contradiction. This is achieved

by the exact same argument, except that just before (5.1), we have to infer instead
from the fact that the set is a large-cross-number set that the cross number is at
least 1.

To establish the converse implication, suppose G does not have rank 1. Since
the rank is the supremum of all p-ranks, it follows that there exists a prime p such
that the p-rank of G is at least two. Therefore, it effectively suffices to show that
Cp ⊕ Cp contains a large-cross-cumber set that is not weakly half-factorial, or in
other words we may assume G = Cp ⊕ Cp for some prime p. We consider the set
G1 = {e1, e2,−e1 + e2} ⊂ G where e1, e2 are independent. We observe that

A(G1) = {ej1(−e1 + e2)
jep−j

2 : j ∈ [1, p− 1]} ∪ {ep1, e
p
2, (−e1 + e2)

p}

and so

k(A(G1)) =

{
j

p
: j ∈ [p, 2p− 1]

}
,

implying that G1 is a large-cross-number set, yet not weakly half-factorial. �

In a similar vein, we note for the sake of completeness that Lemma 5.4 can be
generalized along the same lines.
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Proposition 5.6. Let G be an abelian torsion group. The following two statements
are equivalent:

(i) For each subset G0 ⊂ G that is not weakly half-factorial, there exists a
subset G2 ⊂ G0 with |G2| = 2 that is not weakly half-factorial.

(ii) The rank of G is 1.

Proof. First, suppose the rank of G is 1, and G0 ⊂ G is not weakly half-factorial.
We have to show that G0 contains a subset of cardinality 2 that is not weakly
half-factorial. It is clear that G0 contains a finite subset G′

0 that is not weakly
half-factorial, e.g., just consider the support of a minimal zero-sum sequence whose
cross number is not integral. The group generated by G′

0 is finite, and thus cyclic.
Now, the existence of a not weakly half-factorial set of cardinality 2 follows by
Lemma 5.4.

Second, suppose G does not have rank 1. As the rank of G is by definition the
supremum of the p-ranks of G over all primes p, it follows that there exists a prime
p such that the p-rank of G is at least two. Hence, it suffices to show that Cp ⊕Cp

contains a not weakly half-factorial set not containing such a set of cardinality 2,
or in other words we may assume G = Cp ⊕ Cp for some prime p. As in the proof
of Proposition 5.5, we consider the set G1 = {e1, e2,−e1+ e2} ⊂ G where e1, e2 are
independent. There we saw that

k(A(G1)) =

{
j

p
: j ∈ [p, 2p− 1]

}
,

implying that G1 is not weakly half-factorial. Yet, every subset of cardinality 2 is
independent, thus half-factorial and hence also weakly half-factorial. �

To prove Theorem 2.4, we also use [37, Proposition 3.6], which we recall in a
simplified form below; on the one hand, we plug-in the upper bound for K(G)
recalled in Section 3 and on the other hand we use the trivial estimate r∗(G) <
1 + log |G| valid for finite cyclic groups.

Theorem 5.7. Let G be a finite cyclic group with |G| ≥ 3, and let G0 be a non-
half-factorial large-cross-number subset of G. Then,

min∆(G0) < log |G|.

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. We have to show that a subset G0 of a finite cyclic group
of order n > 1 that fulfills min∆(G0) ≥ logn, has a non-half-factorial subset
of cardinality 2. First, suppose that G0 is weakly half-factorial. It is thus in
particular a large-cross-number set. Now, Theorem 5.7 yields a contradiction to
the assumption on the minimal distance. Thus, we have that G0 is not weakly
half-factorial. In this case, the claim follows by Lemma 5.4. �

In view of this proof, we see that the condition min∆(G0) ≥ log |G| stems
directly from Theorem 5.7; in particular, one could replace the condition by more
technical ones, such as the one in [37, Proposition 3.6] or even an abstract one
involving the quantity m(G), as used in [37], whose definition we do not wish to
recall here.

We point out that for certain types of finite cyclic groups the condition on
min∆(G0) ≥ log |G| can be dropped altogether, but introducing it is crucial to
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obtain a result valid for general finite cyclic groups. Indeed, Geroldinger [15, Propo-
sition 6] showed that each non-half-factorial subset of a cyclic group of prime-power
order contains a non-half-factorial subset of cardinality 2, and pointed out that for
general finite cyclic groups this assertion is false; the simplest example is the set
{e, 6e, 10e, 15e}where e is a generating element of a cyclic group of order 30. More-
over, as we detail below the assertion that every non-half-factorial subset contains
a half-factorial subset of cardinality 2 is also true for finite cyclic groups of total
rank 2. This can be summarized in the following corollary, to the proof of Theorem
2.4.

Corollary 5.8. Let G be a finite cyclic group. The following statements are equiv-
alent:

(i) Each weakly half-factorial subset of G is a half-factorial set.
(ii) Each non-half-factorial subset of G contains a non-half-factorial subset of

cardinality 2.

Proof. That the former statement implies the latter is clear by the proof of Theorem
2.4. To see the converse, it suffices to note that a weakly half-factorial set of
cardinality 2 is half-factorial; this can be seen using Lemma 5.3, and then Lemma
4.5; the resulting set has cardinality 1. �

To see how this corollary contains the above mentioned results, we recall that
if |G| is a prime-power or the product of two prime-powers, then the condition of
the corollary is always, yet non-trivially, fulfilled; however, in case |G| has at least
three distinct prime divisors the situation becomes subtle and the pair of assertions
of the corollary might or might not hold (see, e.g., [33] for relevant results).

Regarding the second part of the above proof, we mention the following result
from [5].

Proposition 5.9. Let G be a finite cyclic group. Every weakly half-factorial subset
of G of cardinality 3 is half-factorial.

6. Sets containing two elements of maximal order

The aim of this section is to investigate min∆(G0) and related questions for a
subset G0 of a finite cyclic group G with the additional condition that G0 contains
at least two generating elements of G. They are main tools in the proofs of our
main results that are given in Section 7.

The main result of this section gives a precise description of the ‘large’ values
that min∆(G0) can attain for these types of sets; throughout this section the term
‘large’ means at least (2|G|2)1/3, that is the bound appearing in Theorem 6.2.

In order to make the formulation of our results, at least in part, somewhat
compact, we first introduce some notation. The relevance of the quantities below
can be inferred from Theorem 4.1.

Definition 6.1. Let n be a positive integer.

(i) We let M(n) be the set of triples of positive integers (c1, c2, d) such that
c1 and c2 belong to [1, n], d | n and the fractions

n− c1 − c2
c1c2

and
(n− c1 − c2)d

c2n

are positive integers.
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(ii) We let I(n) denote the set of all positive integers of the form

gcd

{
n− c1 − c2

c1c2
,
(n− c1 − c2)d

c2n

}

where (c1, c2, d) ∈ M(n),
(iii) We let J(n) denote the set of all positive integers which divide a positive

integer of the form
n− c1 − c2

c1c2

for some c1, c2 in [1, n].

Clearly, I(n) ⊂ J(n). We point out that given a pair of positive integers (c1, c2)
such that (n− c1 − c2)/(c1c2) is an integer, (c1, c2, d) ∈ M(n) implies that

n

d
| (c1 + c2);

yet, the converse implication is not true. Moreover, we recall that n−c1−c2
c1c2

being

integral implies that n−c1
c2

is integral and invertible modulo n; and its inverse is

given by n−c2
c1

.

Furthermore we point out that for n ≤ 6 we have (2n2)1/3 > n − 2; in view
of max∆∗(G) ≤ |G| − 2, as recalled in (2.1) this makes some of the results below
trivial for n ≤ 6.

Theorem 6.2. Let G be a finite cyclic group and let G0 be a subset of G containing
at least two generating elements. Suppose that min∆(G0) ≥ (2|G|2)1/3. Then

min∆(G0) ∈ I(|G|).

Moreover, G0 contains exactly two generating elements, say e and g, and they
satisfy the conditions

σe(g) =
|G| − c1

c2
and de = dg

for some (c1, c2, d) ∈ M(|G|) such that

min∆(G0) = gcd

{
|G| − c1 − c2

c1c2
,
(|G| − c1 − c2)d

c2|G|

}
.

This result is sharp, except for the lower bound on min∆(G0). Namely, we
obtain the following result, which is essentially a converse to the just mentioned
result.

Proposition 6.3. Let G be a finite cyclic group. For each m ∈ I(|G|) there exists
a subset G0 ⊂ G containing exactly two generating elements such that min∆(G0) =
m. More precisely, for (c1, c2, d) ∈ M(|G|), and e a generating element of G, the
element

g =

(
|G| − c1

c2

)
e

is another generating element of G, and

min∆

({
e,

|G| − c1
c2

e, de

})
= gcd

{
|G| − c1 − c2

c1c2
,
(|G| − c1 − c2)d

c2|G|

}
.
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Since the proof of this result is constructive, we do not need to impose a condition
on the size of the minimal distance or other parameters.

We start with some preparatory results. First, we show that if a set contains
two generating elements, and a third element that is not of a certain special form,
then the minimal distance of this set, and thus of any set containing such a set,
cannot be ‘large.’

Proposition 6.4. Let G be a finite cyclic group. Let e, g, h be three distinct ele-
ments in G, such that e and g are generating elements and h is arbitrary (possibly
generating). We set G0 = {e, g, h} and d = |G|/ ordh. If σe(h) 6= d and σg(h) 6= d,
then

min∆(G0) <
(
2|G|2

)1/3
.

Proof. We set n = |G| and we assume that n ≥ 7 as otherwise the result is im-
mediate by the general bound n − 2 (see (2.1)). We assume that σe(h) 6= d and
σg(h) 6= d, and that min∆(G0) ≥ (2n2)1/3.

We start by considering just min∆({e, g}). Since {e, g} is a subset of G0 and,
by Remark 4.6, is not half-factorial, it follows that min∆({e, g}) ≥ min∆(G0) ≥
(2n2)1/3.

Thus, by Theorem 4.1, we get that

σe(g) =
n− c

(g)
1

c
(g)
2

for some positive integers c
(g)
1 , c

(g)
2 such that

n− c
(g)
1 − c

(g)
2

c
(g)
1 c

(g)
2

is integral. And, we have

(2n2)1/3 ≤ min∆({e, g}) =
n− c

(g)
1 − c

(g)
2

c
(g)
1 c

(g)
2

<
n

c
(g)
1 c

(g)
2

.

It thus follows that both c
(g)
1 and c

(g)
2 – indeed even their product – are smaller

than (n/2)1/3.
Next, we consider min∆({e, h}). Let b′ = σde(h); note that by the definition

of d this is well-defined, b′ ∈ [1, n/d − 1] is co-prime to n/d, and b′ 6= 1 by the
assumption σe(h) 6= d. By Lemma 4.5, we know that

min∆({e, h}) = min∆({de, h}) = min∆({e′, b′e′})

with e′ = de. And, by Remark 4.6, we also know that {e′, b′e′} is not half-factorial.
Thus, min∆({e′, b′e′}) ≥ min∆(G0) ≥ (2n2)1/3. Again, by Theorem 4.1, applied
to the group of order n/d generated by e′, and an argument similar to the one
before, we get

b′ =
n/d− c

(b′)
1

c
(b′)
2

with some positive integers c
(b′)
1 and c

(b′)
2 that are smaller than (n/2)1/3/d. We

observe that

σe(h) = dσde(h) =
n− dc

(b′)
1

c
(b′)
2

.
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Finally, we consider min∆({g, h}). We set

b′′ = σdg(h),

and get as above

min∆({g, h}) = min∆({dg, h}) = min∆({g′, b′′g′})

where g′ = dg. And, again,

b′′ =
n/d− c

(b′′)
1

c
(b′′)
2

with some positive integers c
(b′′)
1 and c

(b′′)
2 smaller than (n/2)1/3/d.

We compute σg(h) in two ways. We have, as for σe(h),

σg(h) =
n− dc

(b′′)
1

c
(b′′)
2

.

Yet, since by (3.1) we have σg(h) ≡ σg(e)σe(h) (mod n) and by the just obtained
results, we also have

σg(h) ≡

(
n− c

(g)
2

c
(g)
1

)(
n− dc

(b′)
1

c
(b′)
2

)
(mod n).

Using the two conditions for σg(h) it follows that

−dc
(b′′)
1 c

(g)
1 c

(b′)
2 ≡ c

(g)
2 dc

(b′)
1 c

(b′′)
2 (mod n)

and so dc
(b′′)
1 c

(g)
1 c

(b′)
2 +dc

(g)
2 c

(b′)
1 c

(b′′)
2 , which is a positive integer, has to be at least n.

Yet, this contradicts the conditions on the sizes of the involved parameters obtained
above. �

The next result complements the just obtained one. We consider sets containing
two generating elements, and elements of a special form. Note that the result is
trivial for n ≤ 4.

Lemma 6.5. Let G be a finite cyclic group. Let e, g ∈ G be two distinct generating
elements of G such that min∆({e, g}) > |G|1/2. Let D ⊂ G such that for each
h ∈ D we have that σe(h) = σg(h) and this common value is a divisor of |G|.
Then, at least one of the following two assertions holds:

(i) For some positive integers c1, c2 such that the triple (c1, c2, gcd(σe(D)))
belongs to M(|G|),

min∆({e, g} ∪D) = gcd

{
|G| − c1 − c2

c1c2
,

(
|G| − c1 − c2

c2|G|

)
gcd(σe(D))

}
.

(ii) min∆({e, g} ∪D) ≤ |G|1/2 + log |G| − 1.

Moreover, if σe(D) is totally ordered with respect to divisibility, then we are in
case (i).

Proof. We set n = |G| and assume n ≥ 5 as otherwise the result is trivial. By
Theorem 4.1, we know that σe(g) = (n− c1)/c2 for positive integers c1 and c2 such
that

min∆({e, g}) =
n− c1 − c2

c1c2
.

Our goal is to apply Lemma 4.3 to determine min∆({e, g} ∪D).
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We consider a minimal zero-sum sequence over {e, g}∪D that actually contains
some element of D; so let

A ∈ A({e, g} ∪D) \ A({e, g}).

We note that ec1gc2 ∤ A (as sequences) since ec1gc2 is a non-empty zero-sum se-
quence and thus, A being a minimal zero-sum sequence, would have to equal A,
which in turn would contradict our assumption.

So, we know that vg(A) < c2 or ve(A) < c1. First, we assume that v = vg(A) <
c2. Let

A = gvF

and define fe(A) = gveσe(F ). Note that σe(A) = σe(fe(A)) and thus fe(A) is a
zero-sum sequence (over {e, g}).

We, first, argue that if fe(A) is not a minimal zero-sum sequence, then we are in

case (ii). We write F =
∏ℓ

i=1(die) and consider the zero-sum sequence B = Aenℓ.
It is evident that 1 + ℓ is a length of B. Noting that

B = fe(A)
ℓ∏

i=1

(
en−di(die)

)
,

we see that ℓ′ + ℓ is a length of B for each ℓ′ ∈ L(fe(A)).
We establish an upper bound for maxL(fe(A)). Since each minimal zero-sum

sequence dividing fe(A) contains g or is equal to en it follows that maxL(fe(A)) ≤
v+ σe(F )/n. We note that ord(die) = n/di for each 1 ≤ i ≤ ℓ and thus σe(F )/n =
k(F ). Moreover, since F is a subsequence of the minimal zero-sum subsequence A,
it is zero-sum free or a minimal zero-sum sequence (the latter only happens if it is
equal to A, that is, v = 0). Further, we recall that v < c2 and c2 ≤ n1/2 by the
assumption (n− c1 − c2)/(c1c2) > n1/2. Thus, we get

v +
σe(F )

n
≤ c2 − 1 + k(F ) ≤ n1/2 + logn.

where for the last inequality we used (3.2) to bound k(F ). Now, since 1 + ℓ
and max L(fe(A)) + ℓ are lengths of B, it follows that if maxL(fe(A)) > 1, then
min∆(L(B)) ≤ n1/2 + logn − 1. Thus, in case fe(A) is not a minimal zero-sum
sequence we get the bound claimed in (ii).

So, we may assume that for each minimal zero-sum sequence A ∈ A({e, g}∪D)\
A({e, g}) with vg(A) < c2 we have that fe(A) is a minimal zero-sum sequence.

Yet, for each minimal zero-sum sequence A ∈ A({e, g} ∪ D) \ A({e, g}) with
ve(A) < c1, the exact same argument works, interchanging the roles of e and g
as well as c1 and c2. However, there is one crucial point to observe. Namely,
denoting, for A = ewgvF ′ with F ′ ∈ F(D), the sequence ewgv+σg(F

′) by fg(A)
– the sequence obtained by the analogue of the replacement defining fe(A) – we
clearly have σg(A) = σg(fg(A)). However, for our further analysis we actually
need to understand the relation between σe(A) and σe(fg(A)) as we wish to apply
Lemma 4.3 and we must not mix in our considerations σe and σg, but consistently
use one of the two.

Thus we observe that σg(F
′) = σe(F

′) and furthermore

σe(fg(A))− σe(A) = σe(F
′)

(
n− c1
c2

− 1

)
.

Note that gcdσe(D) | σe(F
′).
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Thus, it follows that if all minimal zero-sum sequences remain minimal zero-sum
sequences under the replacements, then (the equality by Lemma 4.3)

min∆({e, g} ∪D) = gcd

{
σe(A)

n
− 1: A ∈ A({e, g} ∪D)

}

is a multiple of

gcd

{
gcd

{
σe(A)

n
− 1: A ∈ A({e, g})

}
, gcd(σe(D))

(
n− c1 − c2

c2n

)}
.

We observe that for each element h ∈ D, we have the minimal zero-sum sequence
hgn−σe(h), and that

σe(hg
n−σe(h)) = n

n− c1
c2

− σe(h)
n− c1 − c2

c2

that is
σe(hg

n−σe(h))

n
− 1 =

n− c1 − c2
c2

− σe(h)
n− c1 − c2

nc2
.

Moreover, we recall that by Lemma 4.3 and Theorem 4.1

gcd

{
σe(A)

n
− 1: A ∈ A({e, g})

}
=

n− c1 − c2
c1c2

.

In combination this yields that min∆({e, g} ∪D) indeed also divides

gcd

{
n− c1 − c2

c1c2
,

(
n− c1 − c2

c2n

)
gcd(σe(D))

}
,

establishing the result.
It remains to show the additional statement. To this end we need to analyze

under which conditions a minimal zero-sum sequence remains minimal under fe or
fg.

It suffices to do so in one case, the other one being analogous. Let A be a minimal
zero-sum sequence, containing an element of D, and assume that vg(A) < c2. (We
use the notation v, F , and fe(A) with the same meaning as above.)

Claim: The sequence fe(A) is a minimal zero-sum sequence if and only if σe(F ) ≤
n.

To establish this claim we first observe that if σe(F ) > n, it is immediate that
fe(A) is not a minimal zero-sum sequence. Now, suppose fe(A) is not a minimal
zero-sum sequence, say fe(A) = A1A2 with non-empty zero-sum sequences A1 and
A2. Let v1 and v2 denote the multiplicities of g in A1 and A2, respectively. We
have v1 + v2 = v. Moreover, it follows that gvien−viσe(g) | Ai for i ∈ {1, 2};
for the sake of formal correctness we observe that n − viσe(g) is non-negative as
vi ≤ v < c2 and σe(g) = (n − c1)/c2. Thus, the multiplicity of e in fe(A) is at
least 2n − (v1 + v2)σe(g) > n; again, since v < c2 and σe(g) = (n − c1)/c2. Since
ve(fe(A)) = σe(F ), this establishes the claim.

Now, it suffices to note that if σe(D) is totally ordered with respect to divisibility,
we have σe(F ) ≤ n as otherwise F would have a non-empty zero-sum subsequence.

�

Now, we are ready to give the proof of the main result of this section.
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Proof of Theorem 6.2. Let n = |G|. To avoid some notational inconveniences, we
assume – this is no restriction – that 0 /∈ G0. By Theorem 4.1 we know that
σe(g) = (n− c1)/c2 with c1, c2 ∈ N such that

min∆({e, g}) =
n− c1 − c2

c1c2
.

Let h ∈ G0\{e, g}. By Proposition 6.4 and in view of the condition on min∆(G0),
we get that σe(h) or σg(h) is a divisor of n. We assume σe(h) = d is a divisor of n.
This assumption introduces an asymmetry in e and g; yet, it actually dissolves in
the course of the argument.

By Lemma 4.4 and again by the condition on min∆(G0), we know that if d <
(2n2)1/3, then necessarily min∆(G0 \ {h}) = min∆(G0). Repeatedly applying this
argument, we may assume without restriction that G0 does not contain an element
of this form.

Now, suppose that d ≥ (2n2)1/3. We consider the set {h, g} ⊂ G0. Its minimal
distance is a multiple of the minimal distance of G0. We will assert that this is
only possible if the former is 0, that is {h, g} is a half-factorial set.

By Lemma 4.5, we get that {h, g} has the same minimal distance as {h, dg}. Yet
this is a subset of 〈dg〉, i.e., a finite cyclic group of order n/d, and thus

min∆({h, dg}) ≤ n/d− 2 < (2n)1/3,

where we used the first statement of (2.1) for the first inequality.
Thus, min∆({h, dg}) = 0, which is only possible if h = dg (cf. Remark 4.6). In

particular, this means that de = dg, which resolves the above mentioned asymmetry.
Thus we have (without restriction) G0 = {e, g} ∪ D such that for each h ∈ D

we have σe(h) | n and σe(h)e = σe(h)g; and so also σe(h) = σg(h). The minimal
distance of sets of this form has been determined in Lemma 6.5, and it is precisely
of the claimed form.

To get the ‘moreover’-statement it suffices to inspect the proof and to note that
if σe(h)e = σe(h)g for each h ∈ D, then gcd(σe(D))e = gcd(σe(D))g. �

We now come to the proof of the converse statement.

Proof of Proposition 6.3. The proof is essentially a direct consequence of Lemma
6.5; it merely remains to check two details.

First, as pointed out after Definition 6.1 the integrality of the fraction n−c1−c2
c1c2

guarantees that for e a generating element of G the element

g =

(
n− c1
c2

)
e

is also generating.
Second, the integrality of d(n− c1 − c2)/(c2n) is equivalent to d(g − e) = 0, and

thus de = ge. Hence, we can apply Lemma 6.5 to the set {e, g, de}, and get the
required minimal distance. �

We underline the fact that the proof of Theorem 6.2 is non-constructive, in the
sense that it does not allow to extract the structure of the set G0; this is due to
the non-constructiveness of Lemma 4.4. The following lemma partly resolves this
issue. Again, the result is trivial for groups of order at most 4.
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Lemma 6.6. Let G be a finite cyclic group. Let e, g ∈ G be two distinct generating
elements of G such that min∆({e, g}) > |G|1/2, that is by Theorem 4.1,

σe(g) =
|G| − c1

c2

for some (c1, c2, |G|) ∈ M(|G|). And, let h ∈ G. Suppose min∆({e, g, h}) ≥
(2|G|2)1/3. Then, σe(h) = d or σg(h) = d for some divisor d of |G|, and this
divisor verifies de = dg or d | gcd(c1, c2).

Proof. Let n = |G| ≥ 5. If neither σe(h) nor σg(h) is a divisor of n we are done by
Proposition 6.4. Since the condition de = dg or d | gcd(c1, c2) is symmetric in e and
g, recall that e = n−c2

c1
g, we may thus assume that h = de for some divisor d | n.

Suppose dg 6= de. By Lemma 4.5 the minimal distances of {de, g} and {de, dg} are
equal, and – by Remark 4.6 it is non-zero – at least (2n2)1/3, the minimal distance
of {e, g, de}.

Note that {de, dg} is contained in a cyclic group of order n/d. Let b = σde(dg).
It is clear that gcd(b, n/d) = 1 as g is a generating element of G. By Theorem 4.1,
it follows that b = (n/d− b1)/b2 for some (b1, b2, n/d) ∈ M(n/d).

We observe that b = (dσe(g)−kn)/d for a suitable integer k. Thus, one condition
on c1, c2 and b1, b2 we obtain is that

(6.1)
n− c1
c2

− k
n

d
=

n/d− b1
b2

.

Yet this is not all. In addition, b1, b2 and c1, c2 need to be sufficiently small to
guarantee that the respective minimal distances of {e, g} and {de, g}, which we
know in terms of the ci’s and the bi’s, resp., by Theorem 4.1, are at least (2n2)1/3.
Multiplying the just obtained equation by c2b2, we get that

c1b2 ≡ c2b1 (mod n/d).

We now prove that c1b2 and c2b1 are in fact equal. Assume to the contrary that
they are not equal. It follows that at least one of b1, b2, c1, c2 is at least (n/d)1/2.
If it is b1 or b2, we get

min∆({de, g}) = min∆({de, dg}) =
n/d− b1 − b2

b1b2
< (n/d)1/2 ≤ n1/2 < (2n2)1/3,

a contradiction. So, assume it is c1 or c2. This yields

min∆({e, g}) =
n− c1 − c2

c1c2
<

n

(n/d)1/2
= (nd)1/2.

This does not right away give a contradiction, as so far we have no information on
the size of d relative to n. However, since min∆({de, g}) = min∆({de, dg}) and
{de, dg} is contained in a cyclic group of order n/d we have, by the general bound
(2.1), that min∆({de, g}) ≤ n/d− 2. Thus, it follows

min∆({e, g, de}) < min{(nd)1/2, n/d} ≤ n2/3,

contradicting our assumption.
We in fact thus have

c1b2 = c2b1.

Plugging this into (6.1), we get after some computation

d− kc2 =
c2
b2
.
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Since as just established c2/b2 = c1/b1, we also have (d − kc2) = c1/b1, implying
that

(d− kc2) | gcd(c1, c2).

So, d = d0 + kc2 for some divisor d0 of gcd(c1, c2). We point out that d0 | d, and
that bi = ci/d0 for i ∈ {1, 2}.

Thus we can rewrite

b =
n/d− b1

b2
=

n/d− c1/d0
c2/d0

and the minimal distance of {de, dg} and thus {de, g} as

D2 =
n/d− c1/d0 − c2/d0

c1c2/d20
=

d20
d

(
n− (c1 + c2)d/d0

c1c2

)
.

We put D1 = n−c1−c2
c1c2

, the minimal distance of {e, g}, and compute

D = d0D1 −
d

d0
D2.

Recall that the minimal distance of {e, de, g} divides gcd{D1, D2}, and thus D is a
multiple of min∆({e, de, g}).

We note that

D =
(d− d0)(c1 + c2)

c1c2
,

and this is at most 2d. Since as mentioned above min∆({de, g}) ≤ n/d − 2 and
(2n2)1/3 ≤ min∆({de, g}), we get that n/d ≥ (2n2)1/3 and thus 2d is less than
(2n2)1/3. So, the only way that D can be a multiple of min∆({e, de, g}) is that
D = 0. This means that d = d0. In view of d0 | gcd(c1, c2), as indicated above, the
claim follows. �

7. Main results

In this section, we formulate and prove our main results. We start with a lemma,
whose proof is mainly a summary of the preceding results; for clarity and to simplify
the subsequent discussion, we include a few redundant points.

Lemma 7.1. Let G be a finite cyclic group.

(i) For each divisor m of |G|, we have

I(m) ⊂ ∆∗(G).

(ii) We have the inclusion

∆∗(G) ∩ N>|G|1/2 ⊂
⋃

m||G|

J(m).

(iii) We have the inclusion

∆∗(G) ∩ N≥(2|G|2)1/3 ⊂ I(|G|) ∪
⋃

m||G|, m 6=|G|

J(m).

Proof. (i) It suffices to apply Proposition 6.3 for each subgroup of G.
(ii) Let G0 ⊂ G with min∆(G0) > |G|1/2. By our condition on min∆(G0)

we can apply Theorem 2.4 and thus get that there exists a subset G2 ⊂ G0 of
cardinality 2 that is not half-factorial. We are interested in the minimal distance
of G2. By Lemma 4.5 we may assume that the two elements of G2 have the
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same order; denote it by m. By Theorem 4.1 it follows that min∆(G2) equals
(m − c1 − c2)/(c1c2) for some (c1, c2,m) ∈ M(m). Since min∆(G0) | min∆(G2),
we get that min∆(G0) ∈ J(m), and the claim follows.

(iii) We start as in (ii). If G2 does not consist of two elements of order |G|, we
know that m as in (ii) is not n and min∆(G0) ∈ J(m) for a proper divisor m. If,
however, G2 consists of two elements of order |G|, we can apply Theorem 6.2 to get
min∆(G0) ∈ I(n). �

First, we give a description of the large elements of ∆∗(G) for G a cyclic group
of prime-power order; for earlier results see [15, Corollary 1] (essentially it asserts
the inclusion in 7.1.2).

Theorem 7.2. Let G be a cyclic group of prime-power order. Then,

∆∗(G) ∩ N≥(2|G|2)1/3 =
⋃

m||G|

I(m) ∩ N≥(2|G|2)1/3 .

Proof. Let n denote the order of G. The claim is trivial for n ≤ 6. One inclusion
is merely Lemma 7.1.1; we establish the other one. Let G0 ⊂ G with min∆(G0) ≥
(2|G|2)1/3, and we have to show that it is an element of I(m) for some m | |G|.

Again, by Theorem 2.4 G0 has a subset G2 = {f1, f2} of cardinality 2 that
is not half-factorial. Let G2 be chosen such that (ord f1, ord f2) is maximal in
the lexicographic order among all such two-element sets. Note that this implies
ord f2 ≤ ord f1.

First, we assert that G0 ⊂ 〈f1〉. Assume not. By the assumption on G, this
means there is some g ∈ G0 with ord g > ord f1.

By our assumption on (ord f1, ord f2) it follows that {g, f1} is half-factorial,
since (ord g, ordf1) is greater than (ord f1, ord f2). By Lemma 4.5 and Remark
4.6 it follows that, for d | n such that ord(dg) = ord f1, we have dg = f1. We
assert that {g, f2} is not half-factorial, which violates again the maximality as-
sumption on (ord f1, ord f2). To see this observe, for example, that by Lemma 4.5
min∆({g, f2}) = min∆({f1, f2}).

So, we have established that G0 ⊂ 〈f1〉. Suppose h ∈ G0 with ordh > ord f2.
It follows that {f1, h} is half-factorial. Thus, again, d′f1 = h for some d′ | n. It
follows that the set of all elements of G0 of order greater than f2, let us denote it
by G3, is contained in {df1 : d | n}. In particular, as n is a prime-power, it follows,
by repeated applications of Lemma 4.5, that the minimal distance of G0 is equal
to the one of G′

0 = (G0 \G3) ∪ {d′′f1} where d′′ | n such that the order of d′′f1 is
equal to the one of f2; of course d′′ might be equal to 1 (and G3 empty).

Yet, G′
0 fulfills the condition of Theorem 6.2 with respect to the group 〈G′

0〉. �

For finite cyclic groups of general order, the problem is more complex; the just
given argument does not carry over directly. We are only able to obtain a result
for a smaller range of values.

Theorem 7.3. Let G be a finite cyclic group of order at least 2000. Then

∆∗(G) ∩ N
≥ |G|

10

=
⋃

m||G|

I(m) ∩ N
≥ |G|

10

.

It would not be too complicated to determine ∆∗(G) ∩N≥c|G| with c somewhat
smaller than 1/10. It is not clear to us though until what point this type of result
does hold. It seems possible that at some point elements from J(m) \ I(m) for
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m 6= |G| will appear; this believe is based on the example given in Lemma 7.5, yet
as shown in Lemma 7.11 certainly not all those elements appear.

For the largest elements of ∆∗(G), the condition on |G| could be considerably
weakened (see Remark 7.4), and the problem of determining large elements of ∆∗(G)
for a fixed, not too large, cyclic group G is fairly manageable. It seems thus feasible,
though possibly very tedious, to remove this condition.

Proof. Let n denote the order of the group. We observe that by our assumption
on n, we have that n/10 ≥ (2n2)1/3. By Lemma 7.1 we already have considerable
knowledge on ∆∗(G), in particular regarding very large elements. Indeed, by this
result the only values that might be contained in ∆∗(G), yet of which we do not
yet know so are elements of J(m) \ I(m) for a proper divisor m of n.

We assert that the only integers of size at least n/10 fulfilling this are

n− 4

6
,

n− 4

8
,

n− 6

8
and

n− 6

9

(of course under the implicit assumption that these values actually are integers).
Since J(m)\I(m) contains only proper divisors of elements from I(m), it follows

that every element in this set is of size at most max I(m)/2 < m/2. Thus, it suffices
to consider m ∈ {n/2, n/3, n/4}.

First, consider m = n/2. We consider the set J(n/2) ∩ N≥ n
10
. We have the

elements (n− 4)/2, (n− 4)/4, (n− 4)/6, (n− 4)/8 from the choice c1 = c2 = 1 and
divisors. We have the elements (n − 6)/4, (n − 6)/8 corresponding to c1 = 1 and
c2 = 2, and a divisor of it. We have the elements (n− 8)/6, (n− 8)/8, (n− 10)/8,
corresponding to c1 = 1 and c2 = 3, c1 = c2 = 2, c1 = 1 and c2 = 4, respectively.
All but (n − 4)/4, (n − 4)/6, (n − 4)/8, (n − 6)/8 are clearly in I(n/2). Now,
(n− 4)/4 is also in I(n/2) stemming from (1, 1, n/4) ∈ M(n/2).

Now, consider m = n/3. We consider the set J(n/3) ∩ N≥ n
10
. We have the

elements (n− 6)/3, (n− 6)/6, (n− 6)/9, from the choice c1 = c2 = 1 and divisors.
We have the elements (n − 9)/6 corresponding to c1 = 1 and c2 = 2. We have
the elements (n − 12)/9 corresponding to c1 = 1 and c2 = 3. All but (n − 6)/6,
(n − 6)/9 are clearly in I(n/3). Now, (n − 6)/6 is also in I(n/3) stemming from
(1, 1, n/6) ∈ M(n/3).

Finally, consider m = n/4. We consider the set J(n/4) ∩ N≥ n
10
. We have the

elements (n − 8)/4 and (n − 8)/8, from the choice c1 = c2 = 1 and divisors. We
have the element (n − 12)/4 corresponding to c1 = 1 and c2 = 2. Except for
(n−8)/8, they are clearly in I(n/3), and (n−8)/8 is also in I(n/4) stemming from
(1, 1, n/8) ∈ M(n/4).

This shows our assertion. We proceed to investigate the remaining elements.
We see they are all in I(n). We have that (n − 6)/8 and (n − 6)/9 are in I(n)
stemming from (2, 4, n) and (3, 3, n), respectively, in M(n). We note that (n− 4)/8
is an element of I(n), too, as in this case 4 | n and (2, 2, n/4) ∈ M(n). Similarly
(n− 4)/6 is an element of I(n), as in this case 2 | n and (1, 3, n/2) ∈ M(n). �

The proof directly yields the more technical result (the condition c0 ≤ 0.5 is
there to exclude very small n).
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Remark 7.4. Let G be a finite cyclic group of order n and let 0.1 ≤ c0 ≤ 0.5. If
n ≥ 2c−3

0 , then

∆∗(G) ∩ N≥c0n =
⋃

m|n

I(m) ∩ N≥c0n.

With this remark at hand the proof of Theorem 2.1 is direct.

Proof of Theorem 2.1. The condition n ≥ 250 is the one implied by Remark 7.4 for
c0 = 1/5. The set is just

⋃
m|n I(m) ∩N≥n/5. �

In the following lemma we give an example of a set G0 with min∆(G0) =
(n− 6)/8 that differs from the one mentioned in the proof of Theorem 2.1.

Lemma 7.5. Let G be a finite cyclic group of order n and assume (n− 6)/8 is a
natural number. Let f denote a generating element of G. The minimal distance of

{f, 2f, (n/2)f,−4f}

is (n− 6)/8.

Proof. By Theorem 4.1, applied to the group generated by 2f we know that

min∆({2f,−4f}) =
n/2− 3

2
=

n− 6

4
.

Then, by Lemma 4.5 we know that min∆({f, 2f,−4f}) = min∆({2f,−4f}) and
also min∆({2f, (n/2)f,−4f}) = min∆({2f,−4f, 0}) = min∆({2f,−4f}); and,
also the simple fact min∆({f, (n/2)f}) = 0. We wish to apply Lemma 4.3. By the
just made reasoning, it suffices to consider minimal zero-sum sequences containing
both f and (n/2)f and at least one of the elements 2f,−4f . Of course, (n/2)f
thus has to appear exactly once.

Let

A = fu (2f)v (−4f)w ((n/2)f)

be such a minimal zero-sum sequence. If w = 0 it is easy to see that σf (A) = n.
Suppose w > 0. It follows that u + 2v < 4, since otherwise we would get a proper
zero-sum subsequence. Moreover, by the congruence condition on n, it follows that
in fact u+2v is congruent to 1 or 5 modulo 8, that is u+2v = 1. Since we now know
that u = 1 and v = 0, we also get that w = (n+2)/8. Therefore σf (A) = n(n+2)/8.
Consequently, by Lemma 4.3,

min∆({f, 2f, (n/2)f,−4f})

= gcd

{
σf (A)

n
− 1: A ∈ A

(
{f, 2f, (n/2)f,−4f}

)}

=
n− 6

8
.

�

We now turn to the inverse problem, that is the problem of characterization of
sets with a large minimal distance. We start with a result for groups of prime order
where the problem is simpler than in the general case. We note that the result is
void for groups of order at most 6.
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Theorem 7.6. Let G be a finite cyclic group of order n, and assume that n is
prime. Let G0 ⊂ G and d ∈ ∆∗(G) ∩ N≥(2n2)1/3 . Then min∆(G0) = d if and only
if

{f, ((n− c1)/c2)f} ⊂ G0 ⊂ {0, f, ((n− c1)/c2)f}

with c1, c2 ∈ N such that d = (n− c1 − c2)/(c1c2) and some f ∈ G \ {0}.

Proof. By Theorem 2.4 we know that G0 contains at least two non-zero elements
(that evidently have order n) and by Theorem 6.2 it cannot contain more than two
non-zero elements and the relation among these two non-zero elements is as claimed.
By Proposition 6.3 this condition is also sufficient. The claim is established. �

The following result for finite cyclic groups in general gives a complete char-
acterization of sets with minimal distance at least |G|/5. To avoid confusion, we
point out that we chose this formulation of the result, rather than an ‘if-and-only-if’
formulation, since in this way we can deal with congruence conditions on the order
of the group implicitly. The values that appear in this result are the elements in
∆∗(G) that exceed the threshold |G|/5, as determined in Theorem 2.1.

As can be seen by inspecting the proof, the difficulty of answering the inverse
problem is not at all uniform for all the values. Indeed, for certain considerably
smaller values we can also solve the inverse problem (see Lemmas 7.8, 7.9, and
7.10). In this sense, the value |G|/5 is not the limit of our method.

Theorem 7.7. Let G be a finite cyclic group of order n and let G0 ⊂ G. Suppose
n ≥ 250. For a suitable generating element f of G, the following assertions hold
true:

(i) If min∆(G0) = n− 2, then {f,−f} ⊂ G0 ⊂ {f,−f, 0}.
(ii) If min∆(G0) = (n−2)/2, then {f,−f, (n/2)f} ⊂ G0 ⊂ {f,−f, (n/2)f, 0}.
(iii) If min∆(G0) = (n− 3)/2, then {f,−2f} ⊂ G0 ⊂ {f,−2f, 0}.
(iv) If min∆(G0) = (n− 4)/2, then

{f,−2f} ⊂ G0 ⊂ {f, 2f,−2f, 0}

or

{2f,−2f} ⊂ G0 ⊂ {2f,−2f, 0},

or, in case 4 ∤ n,

{2f,−2f} ⊂ G0 ⊂ {2f,−2f, (n/2)f, 0}.

(v) If min∆(G0) = (n− 4)/3, then {f,−3f} ⊂ G0 ⊂ {f,−3f, 0}.
(vi) If min∆(G0) = (n− 6)/3, then

{f,−3f} ⊂ G0 ⊂ {f, 3f,−3f, 0}

or

{3f,−3f} ⊂ G0 ⊂ {3f,−3f, 0},

or, in case 9 ∤ n,

{3f,−3f} ⊂ G0 ⊂ {3f,−3f, (n/3)f, 0}.

(vii) If min∆(G0) = (n− 4)/4, then

{f, ((n− 2)/2)f} ⊂ G0 ⊂ {f, ((n− 2)/2)f, 2f,−2f, (n/2)f, 0}

or

{f,−2f, (n/2)f} ⊂ G0 ⊂ {f, 2f,−2f, (n/2)f, 0}
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or, in case 8 ∤ n,

{2f,−2f, (n/2)f} ⊂ G0 ⊂ {2f,−2f, (n/4)f, (n/2)f, 0}.

(viii) If min∆(G0) = (n− 5)/4, then {f,−4f} ⊂ G0 ⊂ {f,−4f, 0}.
(ix) If min∆(G0) = (n− 6)/4, then

{2f,−4f} ⊂ G0 ⊂ {2f,−4f, (n/2)f, 0}

or
{f,−4f} ⊂ G0 ⊂ {f, 2f,−4f, 0}

or

{f, ((n− 2)/2)f} ⊂ G0 ⊂ {f, 2f, ((n− 2)/2)f, (n/2)f, 0}.

(x) If min∆(G0) = (n− 8)/4, then

{jf,−4f} ⊂ G0 ⊂ {f, 2f, 4f,−4f, 0},

for j ∈ {1, 2, 4} or, in case 8 ∤ n,

{4f,−4f} ⊂ G0 ⊂ {4f,−4f, (n/4)f, (n/2)f, 0}.

Moreover, in all cases, the sets actually have these minimal distances, and there
are no other sets with this minimal distance (except for the choice of the generating
element).

The reason why in this result we only need to assume that the order is at least
250 as opposed to 2000 in Theorem 7.3 is explained in Remark 7.4; indeed, using
this remark we could specify bounds for each case.

We split off parts of the proof in technical lemmas. We point out that the
two lemmas below are void for groups of order at most 7, since we need at least
1 ≤ |G|1/3/2.

Lemma 7.8. Let G be a finite cyclic group of order n and G0 ⊂ G. Let q be a
divisor of n− 1 with q ≤ n1/3/2. The following statements are equivalent:

(i) min∆(G0) = (n− q − 1)/q.
(ii) {f,−qf} ⊂ G0 ⊂ {0, f,−qf} for some generating element f .

Proof. Suppose n ≥ 7 as the result is void otherwise. To see that (i) implies (ii),
suppose that G0 has the required minimal distance. By our assumption on the size
of q, and thus min∆(G0), we can apply Theorem 2.4. That is, there exists a subset
G2 = {f1, f2} ⊂ G0 such that ∆(G2) 6= ∅. Clearly,

min∆(G2) ≥ min∆(G0) ≥
n− q − 1

q
.

It follows by Lemma 4.5 and Theorem 4.1 that

n− q − 1

q

∣∣∣m− c1 − c2
c1c2

for some divisor m | n and c1, c2 ∈ [1,m]. Setting m = n/d, this yields

ℓc1c2
(n− q − 1)

q
= (n/d− c1 − c2)

for some integer ℓ, and further

(7.1)
n− d(c1 + c2)

dc1c2
=

l(n− q − 1)

q
.
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We assert that

(7.2) ℓc1c2(q + 1) = q(c1 + c2).

Indeed (7.1) implies

dc1c2l(q + 1) ≡ qd(c1 + c2) (mod n).

Let us show that both sides of this inequality are in the range [1, n], and thus equal
(as integers), which after division by d will imply (7.2). On the one hand, we have

n− dc1 − dc2
dc1c2

≥ min∆(G0) ≥
n− q − 1

q
≥ 2n2/3 − 1−

1

q
≥ 2n2/3 − 2 ≥ n2/3,

and thus

(7.3) dc1c2 ≤
n− dc1 − dc2

n2/3
< n1/3.

Moreover, (7.1) again implies

ℓ =
(n/d− c1 − c2)q

c1c2(n− q − 1)
≤

q(n− 2)

n− q − 1
≤ 2q − 1 ≤ n1/3 − 1

(here we use 2q + 1 ≤ n and n ≥ 7) and

q + 1 ≤
n1/3

2
+ 1 ,

thus

dc1c2l(q + 1) ≤ n1/3(n1/3 − 1)

(
n1/3

2
+ 1

)
< n

for n ≥ 7. On the other hand, by (7.3), d(c1+c2) ≤ 2dc1c2 < 2n1/3; and q ≤ n1/3/2,
thus finally

qd(c1 + c2) < n2/3 < n.

Equality (7.2) is proved.
From (7.2) it follows that c1c2 < (c1 + c2) which is only possible if c1 = 1 or

c2 = 1, say c1 = 1. It remains to determine c2. We know (q + 1)ℓc2 = q(1 + c2),
hence ℓc2 < (1 + c2), therefore ℓ = 1, implying c2 = q.

Thus we have m = n and {c1, c2} = {1, q}. By Lemma 6.6, we have, for any
element h ∈ G0 \ G2, that σf1(h) = σf2 (h) = d′ with d′f1 = d′f2; note that
gcd(c1, c2) = 1 shows that this case of the lemma occurs. Now, we can apply
Lemma 6.5 for any such element h = d′f1 and determine the minimal distance of
{f1, f2, h}. Since {c1, c2} = {1, q}, we obtain that the minimal distance is

(n− q − 1)d′

qn
.

Yet, this minimal distance must be at least (n − q − 1)/q. This is only the case
when d′ = n, and the claim is established.

The converse claim, that (ii) implies (i), is clear by Theorem 4.1. �

Lemma 7.9. Let G be a finite cyclic group of order n. Let q = 1 or a prime divisor
of n, less than n1/3/2. Let G0 ⊂ G. The following statements are equivalent:

(i) min∆(G0) = (n− 2q)/q.
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(ii) {qf,−qf} ⊂ G0 ⊂ {0, qf,−qf, df} where

d =

{
n/q if q2 ∤ n

n otherwise

or {f,−qf} ⊂ G0 ⊂ {0, f, qf,−qf} for some generating element f .

In case d = n we have of course df = 0, and in the first description the set on
the right-hand side is just of cardinality 3.

Proof. Suppose n ≥ 7 as the result is void otherwise. To see that (i) implies (ii),
suppose that G0 has the required minimal distance. By our assumption on the size
of q, we can apply Theorem 2.4 to get a subset G2 = {f1, f2} ⊂ G0 that is not
half-factorial. We thus have min∆(G2) ≥ min∆(G0) = (n− 2q)/q.

We assume without restriction that ord f1 ≥ ord f2. We assert

(ord f1, ord f2) ∈ {(n, n/q), (n/q, n/q)}.

By Lemma 4.5 and Theorem 4.1 it follows that

n− 2q

q

∣∣∣ m− c1 − c2
c1c2

for a divisor m of n, and more precisely m = gcd{ord f1, ord f2}, and (c1, c2,m) ∈
M(m). We assert that this is only possible ifm = n/q; in particular, also ord f2 = n
is impossible (except for q = 1).

Let ℓ ∈ N such that

(7.4) ℓ

(
n− 2q

q

)
=

m− c1 − c2
c1c2

and let d be the co-divisor of m in n, that is m = n/d. It follows from (7.4) that

ℓdc1c2n− 2ℓdc1c2q = qn− qd(c1 + c2),

and thus 2ℓdc1c2q equals qd(c1 + c2) modulo n. Yet, since q < n1/3/2, we have
that, say,

n− dc1 − dc2
dc1c2

≥
n− 2q

q
> n2/3,

so that dc1c2 < n1/3; also note that ℓ < n1/3. Thus, indeed, 2ℓdc1c2q = qd(c1+ c2),
and hence ℓdc1c2n = qn. In case, q = 1 it follows immediately that d = 1 and we
are done. Assume q > 1. We have that exactly one of c1, c2, ℓ, and d equals q while
the other quantities are equal to 1. We observe that (7.4) can only hold if q = d,
and are done again.

First, we assume that

(ord f1, ord f2) = (n/q, n/q)

and, for q 6= 1, we assume in addition that there does not exist a non half-factorial
subset {f ′

1, f
′
2} ⊂ G0 with {ordf ′

1, ord f
′
2) = {n, n/q}.

We first investigate G0 ∩ 〈f1〉. We assert that f1 = −f2 and that 〈f1〉 ∩ G0 ⊂
{f1, f2, 0}.

To this end we invoke Lemma 6.6 for the group 〈f1〉 and the two distinct
generating elements f1 and f2. It follows that σf1 (f2) = (n/q − c1)/c2 with
c1 = c2 = 1, as otherwise the minimal distance of {f1, f2}, which we recall is
given by (n/q − c1 − c2)/(c1c2), would be too small. That is, f2 = −f1.
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Let now that h ∈ 〈f1〉 ∩G0. Still by Lemma 6.6 it follows that σf1(h) or σf2(h)
is equal to some divisor d′ of n/q that verifies d′f1 = d′f2 or d′ = 1. The latter
condition, d′ = 1, just means that h ∈ {f1, f2}. Since f1 = −f2, the former gives
that d′ = n/q or d′ = n/(2q); of course the latter can only occur if 2 divides n/q.

The condition d′ = n/q, means that h = 0. It remains to consider the case
d′ = n/(2q). By Lemma 6.5 we get that the minimal distance of {f1, f2, (n/(2q)f1}
is (n/q − 2)/2, a contradiction. Thus 〈f1〉 ∩G0 ⊂ {f1, f2, 0}.

Now, suppose h ∈ G0 \ 〈f1〉; of course here we can assume q 6= 1. It follows by
Lemma 4.5 that

min∆(h, f1, f2, 0) = min∆(qh, f1, f2, 0).

Since qh ∈ 〈f1〉, the preceding argument shows that that qh ∈ {f1, f2, 0}.
If qh = f1, then the order of h is n and {f ′

1, f
′
2} with f ′

1 = h and f ′
2 = f2 is a

non-half-factorial subset of G0; by Lemma 4.5 its minimal distance equals the one
of {f1, f2}. This contradicts our assumption. For the same reason qh = f2 is not
possible.

Thus an element h ∈ G0 \ 〈f1〉 must verify qh = 0, that is, its order is q. We
observe that G \ 〈f1〉 contains an element of order q if and only if q2 ∤ n. Thus, the
case that q2 | n is complete.

It remains to consider how many elements of order q might be in G0 \〈f1〉 in case
q2 ∤ n. We observe that G0 cannot contain two distinct elements of order q. This
is clear for q = 2 as simply there is just one element of order q in G. For q > 2 we
can argue that two distinct elements h, h′ ∈ G0 of order q, yield a non-half-factorial
subset {h, h′} of G0, while we have asserted that all such subsets contain an element
of order n/q and q 6= n/q for example as q2 ∤ n.

Thus, we have established that G0 ⊂ {f1,−f1, h, 0} where f1 is an element of
order n/q and h is an element of order q. Since q2 ∤ n, we have that q and n/q
are co-prime and thus by the Chinese Remainder Theorem there exist a generating
element f of G such that f1 = qf and h = (n/q)f .

Second, assume

(ord f1, ord f2) = (n, n/q).

It follows by Lemma 4.5 that

min∆(f1, f2) = min∆(qf1, f2).

Furthermore, by Lemma 6.6 we get that f2 = −qf1.
In addition, we get that 〈f2〉 ∩ G0 ⊂ {qf1, f2, 0}; to see this, one applies again

Lemma 4.5 and then argues as above.
Suppose that h ∈ G0 \ 〈f2〉; of course here we can assume q 6= 1. It follows

that {f1, h} is half-factorial, since ordh 6= n/q and we established that every non-
half-factorial set of two elements contains an element of order n/q. Note that this
implies ordh 6= n (see Remark 4.6). We note that also {f2, h} is half-factorial as
ordh /∈ {n/q, n}, and we established above that n/q and n are the only admissible
orders of elements in non-half-factorial sets of cardinality 2. In particular, σf1(h) | n
and σf2(qh) | n/q, again see Remark 4.6. Thus, h = df1 and

qh = d′f2 = (−d′q)f1

for d | n and d′ | n/q. Moreover, since h /∈ 〈f2〉 it follows that q ∤ d and thus d | n/q.
Considering the two different representations for qh, we get that n | qd + qd′ and
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thus

n/q | (d+ d′).

So, d = d′ = n/(2q) or d = d′ = n/q.
Suppose first d = n/(2q). We then consider

A = hq f
n/(2q)
2 ,

which is a minimal zero-sum sequence. We note that

σf1(A)

n
− 1 =

n− 2q

2q
,

yielding a contradiction as it is not a multiple of the minimal distance of G0.
Suppose now that d = n/q. We consider another minimal zero-sum subsequence,

namely,

A′ = fx
1 h f

(x+n/q)/q
2

where x ∈ [0, q − 1] and x ≡ −n/q (mod q). We note that

σf1(A
′)

n
− 1 =

n+ xq − q2

q2
,

yielding a contradiction as it is not a multiple of the minimal distance of G0. In
any case, the structure of the set is as claimed.

It remains to show the converse, that is (ii) implies (i). Essentially, all arguments
were already given in this proof; we add some brief explanation. The sets {f,−qf}
and {qf,−qf} both have the required minimal distance (cf. above). By Lemma 4.5,
the minimal distance of {0, qf,−qf, df}, with d as in the result, is equal to the one
of {0, qf,−qf, qdf} = {0, qf,−qf}, which in turn is equal to the one of {qf,−qf}.
Similarly, the minimal distance of {f, qf,−qf, 0} is equal to the minimal distance of
{qf,−qf}. Of course, this also determines the minimal distance of all ‘intermediate’
sets, and the claim is established. �

It might be interesting to note that for other values of x in the above proof we
do not get another ‘large’ minimal distance, but a ‘small’ one since the greatest
common divisor of (n+ xq − q2)/q2 and (n− 2q)/q would be ‘small’.

We continue this type of investigations with another lemma. We note that the
lemma is void if the order of the group is less than 66. The condition that q is odd
below is necessary as can be seen by comparing the result to the one for (n− 4)/4
in Theorem 7.7.

Lemma 7.10. Let G be a finite cyclic group of order n. Let q | n be a prime
greater than 2 and at most n1/6/2, and let G0 ⊂ G. The following statements are
equivalent:

(i) min∆(G0) = (n− 2q)/q2.
(ii) We have:

– G0 ⊂ {0, f, qf,−qf, (n/q)f, ((n− q)/q)f},
– G0 contains {f,−qf, (n/q)f} or {f, ((n− q)/q)f}, and
– n/q ≡ 2 (mod q).

Proof. Suppose n ≥ 66 as the result is void otherwise. To prove that (i) implies
(ii), assume that G0 has the claimed minimal distance. We assert that G0 has a
subset G2 of cardinality 2 with minimal distance (n − 2q)/q2 or (n − 2q)/q, and
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that these two values are the only two values that can occur as minimal distance
of a non-half-factorial subset of G0 of cardinality 2.

By Theorem 2.4 we know that G0 has a non-half-factorial subset G2 = {f1, f2}
of cardinality 2. And, its minimal distance is a multiple of (n− 2q)/q2.

By Lemma 4.5 and Theorem 4.1 it follows that

min∆(G2) =
m− c1 − c2

c1c2

for a divisor m of n, and more precisely m = gcd{ord f1, ord f2}, and (c1, c2,m) ∈
M(m).

We write m = n/d and let ℓ be the integer such that

(7.5) ℓ
n− 2q

q2
=

n/d− c1 − c2
c1c2

.

It follows that

(7.6) ℓdc1c2n− 2ℓdc1c2q = q2n− q2d(c1 + c2)

and so
2ℓdc1c2q ≡ q2d(c1 + c2) (mod n).

We assert that in fact this congruence is an equality in the integers. Clearly both
sides are positive and it thus suffices to show that each of them does not exceed n.

We start by considering 2ℓdc1c2q. We recall that q is at most n1/6/2. By (7.5)
we get that ℓc1c2(n − 2q)/q2 < n. By our assumption on the size of n and q it
follows readily that n − 2q ≥ n/2, and therefore ℓc1c2 < 2q2. Also from (7.5) we
get that d ≤ q2. Thus, 2ℓdc1c2q ≤ 4q5 < n. From ℓc1c2 < 2q2, it follows that
c1 + c2 < 4q2. Thus, q2d(c1 + c2) < 4q6 < n. Therefore the equality

2ℓdc1c2q = q2d(c1 + c2)

holds true. Combining this with (7.6), we obtain that

ℓdc1c2n = q2n

and so
ℓdc1c2 = q2.

Therefore, either exactly one of ℓ, d, c1, and c2 equals q2 and the other three 1,
or exactly two of the four equal q and the other two 1.

Checking all possibilities we get that c1 = c2 = q and ℓ = d = 1, yielding
min∆(G2) = (n − 2q)/q2, and c1 = c2 = 1 and ℓ = d = q, yielding min∆(G2) =
(n− 2q)/q, are the only choices for which (7.5) holds, implying the claim.

We distinguish cases according to (ord f1, ord f2), and we assume that G2 is
chosen in such a way that this pair is maximal in the lexicographic order among all
subsets of G0 of cardinality 2 that are not half-factorial. By the above argument,
specifically as we asserted that d is equal to 1 or to q, we get that this pair of orders
is equal to (n/q, n/q), (n, n), or (n, n/q).

First, assume
(ord f1, ordf2) = (n/q, n/q),

that is d = q and thus as established above c1 = c2 = 1, yielding a minimal
distance of (n − 2q)/q. The argument is similar to the one in Lemma 7.9. We
note that f2 = ((n/q − c1)/c2)f1 = −f1. We show that 〈f1〉 ∩ G0 ⊂ {f1, f2, 0}.
For h ∈ 〈f1〉 ∩G0, by Lemma 6.6 it follows that σf1 (h) or σf2(h) is equal to some
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divisor d′ of n/q that verifies d′f1 = d′f2 or d′ = 1. The latter condition, d′ = 1,
just means that h ∈ {f1, f2}. Since f1 = −f2, the former gives that d′ = n/q or
d′ = n/(2q). The latter yields a minimal distance of (n − 2q)/(2q), which is not a
multiple of (n− 2q)/q2 as q is odd, and thus cannot occur. The condition d′ = n/q,
means that h = 0. Thus, 〈f1〉 ∩G0 ⊂ {f1, f2, 0}.

For h ∈ G0 \ 〈f1〉, it follows by Lemma 4.5 that

min∆(h, f1, f2, 0) = min∆(qh, f1, f2, 0).

The preceding argument yields qh ∈ {f1, f2, 0}.
If qh = f1, then ordh = n and {h, f2} is a non-half-factorial subset of G0; by

Lemma 4.5 its minimal distance equals the one of {f1, f2}. This contradicts our
assumption on the maximality of (ord f1, ord f2) and is thus impossible. For the
same reason qh = f2 is not possible.

Thus each h ∈ G0 \ 〈f1〉 must verify qh = 0, that is, its order is q. We note
in passing that q2 ∤ n and thus G \ 〈f1〉 contains elements of order q. We observe
that G0 cannot contain two distinct elements of order q, as two distinct elements
h, h′ ∈ G0 of order q, yield a non-half-factorial subset {h, h′} of G0 while we have
asserted that all such subsets contain an element of order n/q or n, and q 6= n/q
for example as q2 ∤ n.

Thus, we have established that G0 ⊂ {f1,−f1, h, 0} where f1 is an element of
order n/q and h is an element of order q. Since q and n/q are co-prime the Chinese
Remainder Theorem shows that there exists a generating element f of G such that
f1 = qf and h = (n/q)f . Thus, we proved that in this case {−qf, qf} ⊂ G0 ⊂
{−qf, qf, 0, (n/q)f} for some generating element f . Note that this set is not of the
form given in the result, yet, also note that we did not actually assert that such a
set G0 has the required minimal distance; indeed, we show later it does not have
it.

Second, assume

(ord f1, ord f2) = (n, n/q).

The argument is again similar to the one in the proof of Lemma 7.9. By Lemma
4.5

min∆(f1, f2) = min∆(qf1, f2).

and as established above c1 = c2 = 1, and thus f2 = −qf1. Again, we get that
〈f2〉 ∩ G0 ⊂ {qf1, f2, 0}; one applies again Lemma 4.5 and argues as in the case
(ord f1, ord f2) = (n/q, n/q).

Now, suppose that h ∈ G0 \ 〈f2〉. If ordh = n, then {f1, h} is not half-
factorial (see Remark 4.6), and this contradicts our assumption on the maximality
of (ord f1, ordf2). Thus, ordh 6= n, and since ordh 6= n/q, it follows that {f1, h}
is half-factorial, as the only possible order of elements in non-half-factorial sets of
cardinality 2 are n and n/q. Consequently, {f2, h} is also half-factorial. In par-
ticular, σf1(h) | n and σf2 (qh) | n/q, again see Remark 4.6. Thus, h = df1 and
qh = d′f2 = (−d′q)f1 for d | n and d′ | n/q.

As in the proof of Lemma 7.9 we get that, since h /∈ 〈f2〉 it follows that q ∤ d and
thus d | n/q. Considering the two different representations for qh, it follows that
n | qd+ qd′. Thus, again n/q | (d+ d′) and d = d′ = n/(2q) or d = d′ = n/q.

For d = n/(2q), we consider

A = hq f
n/(2q)
2 ,
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which is a minimal zero-sum sequence with

σf1(A)

n
− 1 =

n− 2q

2q
,

yielding a contradiction as it is not a multiple of the minimal distance of G0, since
q is odd. It follows that G0 ⊂ {f1, qf1,−qf1, (n/q)f1, 0}.

Third, assume

(ord f1, ord f2) = (n, n).

We have d = 1 and c1 = c2 = q, that is f2 = ((n−q)/q)f1. We know by Proposition
6.4 that G0 cannot contain a third element of order n. Let h ∈ G0 be an element
of order less than n. First, assume its order is not n/q. Let us denote its order by
n/d′. Since {f1, h} and {f2, h} are both half-factorial, since we established that the
only admissible orders of elements in non-factorial sets of cardinality 2 are n and
n/q, it follows that d′f1 = h = d′f2. Thus, d

′ and d′(n−q)/q are congruent modulo
n. This implies, after some calculation, that n | 2qd′. That is, d′ is a multiple of
n/(2q), and thus equal to n, n/2, n/q, or n/(2q).

We show that d′ cannot be equal to n/2 or n/(2q). To this end it suffices to
consider the following two minimal zero-sum sequences:

A1 =
(n
2
f1

) (n− q

q
f1

)n/2

and

A2 =

(
n

2q
f1

)2q−1 (
n− q

q
f1

)n/(2q)

.

Since σf1(A1)/n − 1 = (n − 2q)/(2q) and σf1(A2)/n − 1 = (n − 2q)/(2q2) are
not multiples of (n − 2q)/q2, we see that these values of d are impossible. Thus,
h = (n/q)f1 or h = nf1 = 0.

Now, suppose h ∈ G0 is an element of order n/q. We consider the sets {f1, h}.
By Lemma 4.5

min∆(f1, h) = min∆(qf1, h).

If h 6= qf1, then the set is not half-factorial by Remark 4.6. Thus, the argument at
the beginning of the lemma shows that h = (n/q − 1)(qf1), which is just −qf1. In
any case h ∈ {qf1,−qf1}.

Thus, we get that

G0 ⊂ {f1, qf1, (n/q)f1,−qf1, ((n− q)/q)f1, 0}.

So, we see that in each case we get a subset of {f1, qf1,−qf1, (n/q)f1, ((n −
q)/q)f1, 0}. To complete the proof it thus suffices to investigate which subsets
of this set have the required minimal distance. Recall that since we need that
(n − 2q)/q2 is an integer, we have that n/q is congruent 2 modulo q. As always,
the presence of 0 in a set does not have an effect on the minimal distance so we
actually can reduce to studying subsets of {f1, qf1,−qf1, (n/q)f1, ((n− q)/q)f1}.

Let

G′
0 ⊂ {f1, qf1,−qf1, (n/q)f1, ((n− q)/q)f1}

be a subset with min∆(G′
0) = (n− 2q)/q2.

Since, by Lemma 4.5,

min∆({qf1,−qf1, (n/q)f1}) = min∆({qf1,−qf1, 0})
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and min∆({qf1,−qf1, 0}) =
n
q − 2 we see that G′

0 contains an element of order n.

We thus may assume it contains f1; note that the set {f1, qf1,−qf1, (n/q)f1, ((n−
q)/q)f1} is symmetric under change of the ‘basis element’ f1 to ((n− q)/q)f1.

The set {f1, qf1, (n/q)f1} is half-factorial (see Proposition 5.9). Thus, we get
that G′

0 contains −qf1 or ((n− q)/q)f1.
Assume first it does not contain ((n − q)/q)f1, and thus contains −qf1. By

Lemma 7.9, we get that {f1, qf1,−qf1} has minimal distance (n − 2q)/q, thus
G′

0 contains (n/q)f1. We continue by asserting that {f1,−qf1, (n/q)f1} and also
{f1, qf1,−qf1, (n/q)f1} have the required minimal distance (n − 2q)/q2, i.e. G′

0

could be either of these two sets.
We proceed as in the proof of Lemma 7.9. Let A be a minimal zero-sum

sequences over {f1,−qf1, (n/q)f1} or over {f1, qf1,−qf1, (n/q)f1}. We investi-
gate σf1(A)/n − 1. We assert that we can reduce to the case that A contains
f1,−qf1, (n/q)f1. Note that this means that it does not contain qf1, as oth-
erwise (qf1)(−qf1) would be a proper zero-sum subsequence of A. To see this
it suffices to recall that min∆({f1, qf1,−qf1}) = min∆({qf1,−qf1}) = n/q −
2n that min∆({qf1,−qf1, (n/q)f1}) = min∆({qf1,−qf1}) = n/q − 2, and that
{f1, qf1, (n/q)f1} all of which were established in this proof already.

Let us write

A = fu
1 ((n/q)f1)

v(−qf1)
w.

Since A is a minimal zero-sum sequence it follows that u+ vn/q < n; moreover it is
a multiple of q. Also note that u, v ≤ q − 1. We have w = (u + vn/q)/q and, since
n/q ≡ 2 (mod q), that u+2v ≡ 0 (mod q). It follows that in fact u = q− 2v, that
is v < q/2, since otherwise

f1 ((n/q)f1)
(q−1)/2 (−qf1)

(1+n(q−1)/(2q))/q

would be a zero-sum subsequence of A. From this we get that

σf1(A)

n
− 1 =

q − 2v + v(n/q) + (n− q)(q − 2v + vn/q)/q

n
− 1 =

(n− 2q)v

q2
.

This shows that σf1(A)/n− 1 is always a multiple of (n− 2q)/q2. Moreover, note
that the choice v = 1 actually yields a minimal zero-sum sequence, and the the
minimal distance of the set under consideration thus equals (n− 2q)/q2.

Assume now the subset does contain ((n − q)/q)f1. The set {f1, ((n− q)/q)f1}
has the required minimal distance it thus suffices to show that

{f1, qf1,−qf1, (n/q)f1, ((n− q)/q)f1}

does not have a smaller minimal distance.
To this end we consider σf1(A)/n − 1 for all minimal zero-sum sequences, and

show this is always a multiple of (n− 2q)/q2.
We first mention for completeness two cases that we more or less considered

already.
If A only contains f1, qf1, −qf1, and (n/q)f1, then the claim follows by the

argument given just above.
If A only contains ((n− q)/q)f1, qf1, −qf1, and (n/q)f1, then the claim follows

first considering σ((n−q)/q)f1 in combination with the above claim, and expressing
σ((n−q)/q)f1 in terms of σf1 using (3.1) (note that f1 = ((n− q)/q)(((n− q)/q)f1) ).

So, we can reduce to considering A that actually contains both f1 and ((n −
q)/q)f1. It follows that A cannot contain both qf1 and −qf1. Without restriction
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we can assume it does not contain −qf1; otherwise, we could exchange the role of
f1 and (n− q)/q)f1, and use again (3.1) to complete the argument.

If A contains only f1, ((n− q)/q)f1, and (n/q)f1 the claim follows from Lemma
6.5 as the minimal distance of the set {f1, ((n − q)/q)f1, (n/q)f1} is (n − 2q)/q2.
So, we can assume A contains qf1, too.

This implies that the multiplicity of ((n − q)/q)f1 is less than q; otherwise
(qf1)(((n− q)/q)f1)

q would be a proper zero-sum subsequence of A.
If A does not contain (n/q)f1, this implies σf1 (A) = n, since there is no zero-

sum-free sequence over f1, qf1 with σf1 -value greater than n while the contribution
of the elements ((n− q)/q)f1 to σf1 is at most ((n− q)/q)(q − 1) < n.

So, we can assume that A contains all of f1, qf1, ((n − q)/q)f1, and (n/q)f1.
We denote the multiplicities of the elements by v, vq, w and u respectively. As
mentioned above we have w < q. Of course, u < ord((n/q)f1) = q, too. Moreover,
we can assume that v < q; otherwise we could pass from A to the minimal zero-sum
sequences (qf1)f

−q
1 A, which does not change σf1 . Finally, vq < ord(qf1) = n/q.

This directly implies that

σf1(A) ≤ (q − 1) + (n/q − 1)q + (q − 1)n/q + (q − 1)(n− q)/q < 3n.

Since σf1 (A) is a multiple of n, and if it is equal to n we are done, it remains to
exclude the case that it is 2n. So, assume σf1(A) = 2n. We show that A cannot be
a minimal zero-sum sequence.

To this end it suffices to show that there exist

v1 + v2 = v, u1 + u2 = u, w1 + w2 = w,

all non-negative integers, such that

vi + ui
n

q
+ wi

n− q

q
≤ n and vi + ui

n

q
+ wi

n− q

q
≡ 0 (mod q) for i = 1, 2.

Recall that n/q is equal to 2 modulo q. So, we need vi + 2ui + wi ≡ 0 (mod q).
Furthermore, recall v + 2u + w ≡ 0 (mod q). Since u, v, w ≤ q − 1, we get that
v + 2u + w < 4q. If this sum equals q, it follows that v + un/q + w(n − q)/q ≤ n
and we are done, setting v2 = u2 = w2 = 0. So it remains to consider the cases
that the sum is 2q or 3q.

If the sum is 3q, we note that v + 2u ≥ 2q. Let u1 = u and v1 = 2q − 2u and
w1 = 0. Then vi + 2ui + wi ≡ 0 (mod q) and vi + uin/q + wi(n− q)/q ≤ n.

If the sum is 2q, then just let v1 ≤ v, u1 ≤ u, w1 ≤ w such that v1+2u1+w1 = q;
they clearly exist as v, w are not (both) 0. Then also v2 +2u2 +w2 = q. And since

vi + uin/q + wi(n− q)/q ≤ n/q(vi + 2ui + wi),

the claim follows. �

We are now ready to prove Theorem 7.7; some of the points are direct by the
already obtained lemmas, some need additional work though.

Proof of Theorem 7.7. For each of the ten assertions, suppose that n is such that
the value for the minimal distance is integral – otherwise the claim is vacuously
true – and suppose G0 ⊂ G is a subset with the given minimal distance. We know
by Theorem 2.1 that such a subset exists provided that the given value is integral.
We observe that by our assumption on n, we have that n/5 ≥ (2n2)1/3.

We start with some general remarks. By Theorem 2.4 there exists a subset
G2 = {f1, f2} ⊂ G0 that is not half-factorial.
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Suppose that (ord f1, ord f2) is maximal in the lexicographic order among all
non-half-factorial subsets of cardinality 2 of G0. By Lemma 4.5 and (2.1), we get
that min∆(G2) ≤ ord f2 − 2.

Further, by Lemma 7.1 and Theorem 6.2 it follows that if min∆(G0) /∈ J(m) for
some particularm | n, then every subset {f ′

1, f
′
2} of G0 with gcd{ord f ′

1, ordf
′
2} = m

is half-factorial.
Now, we give a definition useful for what follows. We say below that the minimal

distance is contained only in J(m1), . . . , J(mk), for some specified mi | n, if it is
not contained in J(m′) for each m′ | n not equal to one of the mi while contained
in J(mi) for each i.

We start by observing that our lemmas allow to treat several cases directly.
Specifically, Lemma 7.8 with q equal to 1, 2, 3, 4 yields (i), (iii), (v), (viii), respec-
tively. And, Lemma 7.9 with q equal to 2 and 3 yields (iv) and (vi), respectively.

It thus remains to consider (ii), (vii), (ix), (x).

Proof of (ii): We have min∆(G0) = (n − 2)/2. This is only contained in J(n).
So, we have ord f1 = ord f2 = n. By Theorem 6.2 we get that f1 = −f2 – note
that c1 = c2 = 1 is the only possibility that yields a multiple of (n − 2)/2 – and
G0 contains no other element of order n. By Lemma 6.6 it follows that the only
element other than those two in G0 is (n/2)f1 = (n/2)f2. By Lemma 6.5 indeed
min∆({f1,−f1, (n/2)f1}) = (n− 2)/2. Since min∆({f1,−f1}) = n− 2, the claim
follows.

Proof of (vii): We have min∆(G0) = (n− 4)/4. This is only contained in J(n) and
J(n/2). Thus, we get that (ord f1, ord f2) ∈ {(n, n), (n, n/2), (n/2, n/2)}. We now
distinguish these three cases.

a.) Suppose (ord f1, ord f2) = (n, n). By Theorem 6.2, we get that f1 = ((n −
2)/2)f2 – note that c1 = c2 = 2 is the only possibility that yields a multiple of
(n− 4)/4 – and G0 contains no other element of order n. Moreover, by Lemma 6.6,
we get that

G0 ⊂ {f1, f2, 0, (n/2)f1, (n/4)f1, 2f1, 2f2}.

Note that (n/4)f1 only satisfies (n/4)f1 = (n/4)f2 when n/4 is odd. Yet, also in
this case Lemma 6.5 gives that min∆({f1, f2, (n/4)f1}) = (n− 4)/8. Thus,

G0 ⊂ {f1, f2, 0, (n/2)f1, 2f1, 2f2} = G1.

We assert that this set indeed has the right minimal distance. Let A be a minimal
zero-sum sequence over G1. We need to show that σf1(A)/n − 1 is a multiple of
(n− 4)/4.

We start by asserting that it suffices to consider A containing f1 and f2. Assume
not, say it does not contain f2. Since (n− 4)/4 is integral we have that (n/2)f1 ∈
〈2f1〉. By Lemma 4.5, the minimal distance of {f1, 0, (n/2)f1, 2f1, 2f2} is equal to
the minimal distance of {0, (n/2)f1, 2f1, 2f2} and thus of {(n/2)f1, 2f1, 2f2}. We
can apply Proposition 6.3 with the group 〈2f1〉 – the order of the group is n/2, the
coefficients c1 and c2 are both 1, as 2f2 = −2f1, and d is n/4 – to obtain that this
minimal distance is (n− 4)/4, completing this argument.

We observe that if A contains both f1 and f2 at least with multiplicity 2, then
A = f2

1 f
2
2 and σf1 (A)/n − 1 = 0. Suppose that A contains f2 with multiplicity 1.

Then, it contains f1 with an odd multiplicity, too (all other elements are contained
in the subgroup 〈2f1〉). The same argument works when we assume that f1 appears
with multiplicity 1. In any case the multiplicity of both f1 and f2 is odd.
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Now, suppose 2fi appears in A for i ∈ {1, 2}. Let A′ = f2
i (2fi)

−1A. We claim
that A′ is still a minimal zero-sum sequence. Assume that C′ is a proper zero-
sum subsequence of A′. If C′ contains fi with multiplicity 1, then C′ is a proper
subsequence of A as fi occurred in A. If C′ contains fi with multiplicity at least 2,
then C = (2fi)f

−2
i C′ a proper subsequence of A that also has sum 0. Thus, each

proper zero-sum subsequence of A′ would yield a proper zero-sum subsequence of
A.

Observe that such a replacement does not affect σf1 , that is σf1 (A) = σf1(A
′).

Now repeatedly applying this replacement, we obtain a minimal zero-sum sequence
A′′ with the same value under σf1 as A that neither contains 2f1 nor 2f2 and is thus
in fact a minimal zero-sum sequence over {f1, f2, 0, (n/2)f1}. By Proposition 6.3 we
know that the minimal distance of {f1, f2, (n/2)f1}, and thus of {f1, f2, 0, (n/2)f1},
is (n− 4)/4; the order of the group is n, the coefficients c1 and c2 equal 2 and d is
n/2. Consequently, σf1 (A

′′)/n− 1 is a multiple of (n− 4)/4.

b.) Suppose (ord f1, ord f2) = (n, n/2). By Lemma 4.5 we get that the minimal
distance of {f1, f2} is equal to the minimal distance of {2f1, f2}. By Theorem 6.2 it
follows that 2f1 = −f2. Moreover, it follows, applying Lemma 4.5 and then Lemma
6.6 to {f1} ∪ (G0 ∩ 〈2f1〉), that

G0 ∩ 〈2f1〉 ⊂ {0, 2f1,−2f1, (n/2)f1}.

Let h ∈ G0 \ (〈2f1〉 ∪ {f1}). We note that ordh 6= n as otherwise {f1, h} would
contradict the choice of f1 and f2. Since ordh cannot be n/2 either, it follow that
{f1, h} is half-factorial, as argued in general at the very start of the proof. Thus,
h = d′f1 for some d′ | n.

Moreover, applying Lemma 4.5 we get that the minimal distance of {h, f2} is
equal to that of {2h, f2}. Thus, {2h, f2} is either half-factorial or its minimal
distance is (n − 4)/2, since these are the only two possibilities how a subset of
cardinality at most 2 of a cyclic group of order n/2 can have a minimal distance
that is a multiple of (n − 4)/4. In the latter case it follows by Theorem 6.2 that
2h = −f2 and thus

2d′f1 = 2h = −f2 = 2f1.

In the former case it follows that 2h = d′′f2 with some d′′ | n/2 and thus

2d′f1 = 2h = d′′f2 = −2d′′f1.

This means that 2d′ − 2 or 2d′ + 2d′′ for some d′′ | n/2 is a multiple of n.
Since 2d′ − 2 is certainly not a multiple of n, we get that 2(d′ + d′′) is a multiple

of n. The only way in which this is possible is that that d′ = d′′ = n/4; to see this
note that d′ 6= n/2 as h /∈ 〈2f1〉 and 4 | n. Moreover, we observe that this can only
happen if 8 ∤ n, since otherwise h ∈ 〈2f1〉.

Yet, considering the minimal zero-sum sequence

f1 ((n/4)f1) ((n− 2)f1)
(n+4)/8,

and σf1 of it, it follows that (n/4)f1 /∈ G0. Thus

G0 ⊂ {f1, 2f1,−2f1, (n/2)f1, 0} and {f1,−2f1, (n/2)f1} ⊂ G0;

note that we must have (n/2)f1 in G0, since {f1, 2f1,−2f1, 0} has minimal dis-
tance n/2 − 2. Finally note that {f1, 2f1,−2f1, (n/2)f1, 0} indeed has a mini-
mal distance of (n − 4)/4; by Lemma 4.5 it is equal to the minimal distance of
{2f1,−2f1, (n/2)f1, 0} – recall that (n/2)f1 ∈ 〈2f1〉 as 4 | n – and the minimal



CONGRUENCE HALF-FACTORIAL KRULL MONOIDS 47

distance of {2f1,−2f1, (n/2)f1, 0} is (n− 4)/4 by Lemma 6.5 (note we consider the
group 〈2f1〉 whose order is n/2 and (n/2)f1 = (n/4)(2f1)).

c.) Suppose (ord f1, ord f2) = (n/2, n/2). We get by Theorem 6.2 applied to a
group of order n/2 that f1 = −f2. Moreover, it follows by Lemma 6.6 that

G0 ∩ 〈f1〉 ⊂ {0, (n/4)f1, f1,−f1}.

Let h ∈ G0 \ 〈f1〉. By Lemma 4.5 and the just given argument it follows that
2h ∈ {0, (n/4)f1, f1,−f1}. We note that h cannot have order n, as then {h, f1} or
{h,−f1} would be a non-half-factorial subset of G0 contradicting our assumption
on the maximality of (ord f1, ord f2). Thus, 2h ∈ {0, (n/4)f1}. However, h cannot
have order 2 either as the only element of order 2 is contained in the subgroup
generated by 〈f1〉. Thus, it follows that 2h = (n/4)f1. That is h is an element of
order 4; note that this is only possible if 8 ∤ n, since otherwise all element of order
4 would be contained in 〈f1〉. Of course, G0 contains at most one element of order
4, as the minimal distance of a set of two elements of order 4 is 2. Thus,

G0 ⊂ {f1,−f1, (n/4)f1, h, 0}

where h is an element of order 4, and it follows that

G0 ⊂ {2f,−2f, (n/2)f, (n/4)f, 0}

for some generating element f .

Proof of (ix): We have min∆(G0) = (n − 6)/4. This is only contained in J(n/2).
So, we get that (ord f1, ord f2) ∈ {(n, n/2), (n/2, n/2)}.

a.) First, suppose (ord f1, ord f2) = (n/2, n/2). It follows by Theorem 6.2 and
symmetry that we may assume f2 = −2f1. And, moreover, by Lemma 6.6, G0 ∩
〈f1〉 ⊂ {f1, f2, 0}. Let h ∈ G0 \ 〈f1〉. It follows by Lemma 4.5 and the argument
just above that 2h ∈ {f1, f2, 0}. Yet, ordh 6= n, since this would contradict the
maximality of (ord f1, ord f2) and thus 2h = 0. Thus,

G0 ⊂ {2f,−4f, (n/2)f, 0}

for some generating element f . By Lemma 4.5 – note that n/2 is odd and thus
(n/2)f1 is not in 〈2f〉 – the minimal distance of this set is equal to the one of
{2f,−4f, 0} and that set actually has the required minimal distance by Proposition
6.3.

b.) Now, suppose (ord f1, ord f2) = (n, n/2). It follows by Lemma 4.5 and
Theorem 6.2 for a group of order n/2 that f2 = −2(2f1) = −4f1 or f2 = ((n/2 −
1)/2)(2f1) = ((n− 2)/2)f1. Moreover, by Lemma 6.6, G0 ∩ 〈f2〉 ⊂ {2f1, f2, 0}. Let
h ∈ G0 \ (〈f2〉 ∪ {f1}). It follows that 2h ∈ {2f1, f2, 0}. Since ordh 6= n, it follows
that 2h = 0 and thus h = (n/2)f1. Thus

G0 ⊂ {f1, 2f1,−4f1, (n/2)f1, 0} or G0 ⊂ {f1, 2f1, ((n− 2)/2)f1, (n/2)f1, 0}.

It remains to check whether or not the sets have the required minimal distance.
We first consider {f1, 2f1,−4f1, (n/2)f1, 0}. We consider the minimal zero-sum
sequence

fx
1 ((n/2)f1) (−4f1)

(n+2x)/8

where x ∈ {1, 3} depending on the congruence class of n modulo 8. In any case, its
value under σf1(·)/n − 1 is not a multiple of (n − 6)/4, showing that in this case
we cannot have (n/2)f ∈ G0.
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Now, we consider {f1, 2f1, ((n − 2)/2)f1, (n/2)f1, 0}. Since {f1, 2f1, (n/2)f1, 0}
is half-factorial by Proposition 5.9, and both {2f1, ((n − 2)/2)f1, (n/2)f1, 0} and
{f1, 2f1, ((n− 2)/2)f1, 0} have the required minimal distance (to see this note that
by Lemma 4.5 they have the same minimal distances as {2f1, ((n− 2)/2)f1}, which
we determined already), it suffices to consider minimal zero-sum sequences contain-
ing f1, ((n− 2)/2)f1, and (n/2)f1. The only one is however

f1 (((n− 2)/2)f1) ((n/2)f1),

and its value under σf1 (·)/n−1 is 0. It follows that the set has the required minimal
distance.

Proof of (x): We have min∆(G0) = (n − 8)/4. This is only contained in J(n/4).
So, we get that (ord f1, ord f2) ∈ {(n, n/4), (n/2, n/4), (n/4, n/4)}.

a.) Suppose that (ord f1, ord f2) = (n/4, n/4). It follows by Theorem 6.2 that
f1 = −f2. By Lemma 6.6 G0 ∩ 〈f1〉 ⊂ {f1,−f1, 0}. Now, let h ∈ G0 \ 〈f1〉. We
note that h cannot be of order n or n/2; if it would either {h, f1} or {h, f2} would
not be half-factorial, and we get a set violating our assumption on f1 and f2.

Let a be minimal such that ah ∈ 〈f1〉; note that a ∈ {2, 4}. Since ordh /∈
{n/2, n}, it follows that ah = 0. Clearly G0 cannot contain two elements of order
4 as the minimal distance of this set would be 2.

It follows that

G0 ⊂ {f1,−f1, 0, h2, h4}

where h2 is an element of order 2 and h4 is an element of order 4. We note that h2

and h4 can only be elements of G0 if 〈f1〉 does not contain an element of order 2
and elements of order 4, respectively.

If 16 | n, then 〈f1〉 contains elements of order 4 and 2, and thusG0 ⊂ {f1,−f1, 0},
that is, G0 ⊂ {4f,−4f, 0} for a generating element f of G, and the claim is estab-
lished in this case.

If 8 ∤ n, then 〈f1〉 does not contain an element of order 2 or 4 and in this case by
the Chinese Remainder Theorem there exists some generating element f of G such
that

G0 ⊂ {4f,−4f, 0, (n/2)f, (n/4)f}.

By Lemma 4.5, applied twice, we get that the sets {4f,−4f, 0, (n/2)f, (n/4)f} and
{4f,−4f, 0} have the same minimal distance, which is indeed (n − 8)/4, and the
claim follows for 8 ∤ n.

It remains to consider the case that 8 | n yet 16 ∤ n, say, n = 8n′ for an odd
n′. In this case, 〈f1〉 does not contain an element of order 4 yet it does contain an
element of order 2. Thus,

G0 ⊂ {f1,−f1, 0, h4}.

However, in this case 2h4 is already and element of 〈f1〉, that is a = 2, yet 2h4 6= 0,
and thus h4 is not in G0. Thus, also in this case G0 ⊂ {4f,−4f, 0} for a generating
element f of G.

b.) Suppose that (ord f1, ord f2) = (n/2, n/4). It follows by Lemma 4.5 and
Theorem 6.2 that f2 = −2f1. Moreover, by Lemma 6.6, G0 ∩ 〈f2〉 ⊂ {f2,−f2, 0}.
Let h ∈ G0 \ (〈f2〉 ∪ {f1}). First, suppose h ∈ 〈f1〉, that is 2h ∈ 〈f2〉. We
note that the set {2h, f2} is either half-factorial and in this case it follows that
2h = d′f2 = −2d′f1 for some d′ | n/4, or that its minimal distance is a multiple of
(n− 8)/4 and in this case 2h = −f2 = 2f1.
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However, {f1, h} must be half-factorial, as it does not contain an element of
order n/4, and it follows that h = d′′f1 for some d′′ | n/2. Note that this implies
that 2h = −2f1 is impossible.

We find that −2d′f1 = 2d′′f1 and thus 2(d′ + d′′) is a multiple of n/2. This
implies that h = (n/4)f1 or h = (n/8)f1 (note that h is non-zero and thus not
(n/2)f1. Let d equal n/8 or n/4, respectively. We consider the minimal zero-sum
sequence

A = f1 (df1) (−2f1)
(d+1)/2

(note that d is odd as h /∈ 〈f2〉). We compute σf1(A)/(n/2)− 1 = (d − 1)/2 (note
that we divide by n/2 as ord f1 = n/2), and see that this is not a multiple of
(n− 8)/4.

Second, suppose h /∈ 〈f1〉. It follows that 2h ∈ 〈f1〉. By Lemma 4.5 the minimal
distance of {f1, h} and {f1, 2h} are equal. Since considering the orders it is clear
that 2h 6= −2f1, it follows that {f1, 2h} is half-factorial as this is the only way
for its minimal distance to be a multiple of (n − 8)/4. Thus, 2h = d′′f1 for some
d′′ | n/2.

Again, by Lemma 4.5 the minimal distance of {f2, h} and {f2, 4h} are equal.
Since 4h = 2d′′f1 6= −f2, it follows that {f2, 4h} is necessarily half-factorial. That
is, 4h = d′f2 = −2d′f1 for some d′ | n/4. This implies that 4h = (n/4)f1 or
4h = (n/8)f1, yielding a contradiction as above.

Thus, G0 ⊂ {f1, 2f1,−2f1, 0}; by Lemma 4.5 and Proposition 6.3 the latter set
has the required minimal distance. Note that G0 is of the claimed form with j = 2.

c.) Suppose that (ord f1, ordf2) = (n, n/4). Again, by Lemma 4.5 and Theorem
6.2 it follows that f2 = −4f1 and G0∩〈f2〉 ⊂ {f2,−f2, 0}. Let h ∈ G0\(〈f2〉∪{f1}).

It follows that {h, f1} is half-factorial since this is the only way how its minimal
distance can be a multiple of (n− 8)/4. That is, h = d′f1 with d′ | n.

Let b ∈ {2, 4} minimal such that bh ∈ 〈f2〉. Considering {h, f2}, which by
Lemma 4.5 has the same minimal distance as {bh, f2}, it follows that bh = −f2 or
{bh, f2} is half-factorial and bh = d′′f2 for some d′′ | n/4. In the former case it
follows that h = 2f1.

In the latter case it follows that bd′ + 4d′′ is a multiple of n. For b = 4, this
implies that d′ ∈ {n/4, n/8} (note that d′ = n/2 is not compatible with b = 4, and
thus 2h /∈ 〈f2〉), and for b = 2, this implies d′ ∈ {n/2, n/4}.

Let x ∈ N be minimal such that 4 | x + d′. We consider the minimal zero-sum
sequence

A = fx
1 (d′f1) (−4f1)

(d′+x)/4.

Since σf1 (A)/n−1 = (d′+x−1)/4, is not a multiple of (n−8)/4, such an h cannot
exist.

Thus, G0 ⊂ {f1, 2f1, 4f1,−4f1, 0} and the latter set has the required minimal
distance by Lemma 4.5, applied twice, and Theorem 6.2. �

The following result is mainly intended to further investigate the possibility of
extending Theorem 7.3.

Lemma 7.11. Let G be a finite cyclic group and G0 ⊂ G. For |G| ≥ 2000 we have
min∆(G0) 6= (|G| − 4)/10.

Proof. Evidently we only need to consider the case that (|G| − 4)/10 is an integer.
Note that (|G|−4)/10 is contained in J(|G|/2) but no other set J(m) form | |G|. By
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Theorem 2.4, we get that there exists a non-half-factorial subset G2 of cardinality
2, whose minimal distance is (|G|−4)/2. By Lemma 7.1 and Theorem 6.2 we know
that G2 = {f,−2f} or G2 = {2f,−2f} for some generating element f of G.

First, suppose the latter is the case and G0 does not contain a subset of the
former form. By Lemma 6.6 applied to the group 〈2f〉 it follows that G0 ∩ 〈2f〉 ⊂
{2f,−2f, 0}. Moreover, it follows that for h ∈ G0 \ 〈2f〉 we have 2h ∈ {2f,−2f, 0}.
By our assumption that G0 does not contain a subset of the form {f,−2f}, we
get that 2h = 0. Thus G0 \ 〈2f〉 contains at most one element, and the minimal
distance of G0 is (|G| − 4)/2, a contradiction.

Second, suppose G0 contains {f,−2f}. We note that by Lemma 4.5 and Lemma
6.6 〈2f〉 ∩G0 ⊂ {0, 2f,−2f}.

Suppose there exists an element h ∈ G0 \ ({f} ∪ 〈2f〉). It follows that {f, h}
is half-factorial and thus h = df for some odd d | n. Moreover, it follows that
{2df,−2f} is half-factorial, too. By Lemma 4.5 this implies that {2df,−2df} is half-
factorial, which is only possible if 2df = −2df , that is, n | 4d. So, d ∈ {n/4, n/2}.
We consider A = f(df)(−2f)(d+1)/2, which is a minimal zero-sum sequence. Since
σf1(A) = ((d + 1)/2)n, it follows by Lemma 4.3 that min∆(G0) | (d − 1)/2, a
contradiction to min∆(G0) = (n− 4)/10.

Consequently, we get that G0 ⊂ {f, 2f,−2f, 0}, and so its minimal distance is
(n− 4)/2 by Proposition 6.3, again a contradiction. �

8. Applications to congruence half-factorial structures

In this section we detail how our results can be applied to questions related to
congruence half-factorial structures. To some extent this was already discussed at
the beginning of the paper. In view of known results, the results below are fairly
direct consequences of the results in the preceding sections; however, there are some
subtleties that we believe are worthwhile to be stressed.

As mentioned in Section 3 for a Krull monoid H it is well known that

L(H) = L(B(G0))

where G0 is the subset of classes containing prime divisors. In view of the fact
recalled in Section 3.5 that d-congruence half-factoriality is equivalent to d divid-
ing min∆(H) and so d dividing min∆(G0) a close link between the present and
preceding problems is evident. There is however one additional point to consider.
Namely, for a subset G0 of G we need to know that there actually exists a Krull
monoid having that class group and that subset of classes containing prime divisors.

This has one, but only one, implication for the set G0. We recall the relevant
result (see [20, Theorem 2.5.4]).

Theorem 8.1. Let G be an abelian group and G0 ⊂ G. There exists a Krull
monoid with class group isomorphic to G such that the set of classes containing
prime ideals corresponds to G0 if and only if G0 generates G as a semi-group.

In case G is a torsion group (with at least two elements), the condition that
G0 generates G as a semi-group is of course equivalent to the condition that G0

generates G as a group.
Such a result not only holds for Krull monoids but even for Dedekind domains;

we refer to [27] for a refined version mainly concerned with the number of prime
divisors in the classes in the domain case. By contrast for Krull monoids there is less
restriction on the number of prime divisors in each class. That there is a difference
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between the domain and monoid case is actually a somewhat rare phenomenon in
this context. In possibly more classical terms, one can understand this difference
by recalling that Dedekind domains have the approximation property while a Krull
monoid might not have it. An arithmetic result where this difference is visible and
crucial is the work of Coykendall and Smith [10] on ‘other half-factorial structures’
(a notion we do not recall here).

A half-factorial structure is d-congruence half-factorial for each d. Since it is
well-known that half-factorial Krull monoids with finite cyclic class group of any
order exist (see for example Section 5), the mere question for which d it is true that
d-congruence half-factorial Krull monoids exist, does not make much sense. Yet,
restricting to non-half-factorial structures it becomes interesting. An additional
natural question is to ask for the d such that there exists a d-congruence half-
factorial Krull monoid which is not d′-congruence half-factorial for any multiple of
d′ (that is d is maximal with respect to divisibility); in this case, we say that the
monoid is truly d-congruence half-factorial.

The following result is not surprising and it might even seem obvious, yet there
is one subtle point making it in the end not as obvious as it might seem. Indeed,
we do not know how to prove the result for general finite abelian groups and it is
not clear whether it holds; note that we use Lemma 4.7.

Theorem 8.2. Let d and n be positive integers.

(i) There exists a truly d-congruence half-factorial Krull monoid with finite
cyclic class group of order n if and only if d ∈ ∆∗(Cn).

(ii) There exists a non-half-factorial d-congruence half-factorial Krull monoid
with finite cyclic class group of order n if and only if d divides an element
of ∆∗(Cn).

These results as well as the subsequent ones are also true for Dedekind domains
instead of Krull monoids, as can be seen from the discussion above.

Proof. We start by proving the first part. Suppose H is a truly d-congruence half-
factorial Krull monoid with finite cyclic class group of order n. And, let G0 be the
subset of ideal classes containing prime divisors. It is known (cf. Section 3.5) that
d = min∆(H) and that min∆(H) = min∆(G0). Now, basically by definition of
∆∗(Cn), we have min∆(G0) ∈ ∆∗(Cn). This establishes one part of the proof.

Now, suppose that d ∈ ∆∗(Cn). Merely from the definition, it follows that
there exist a subset G0 ⊂ Cn such that min∆(G0) = d and thus B(G0) is truly
d-congruence half-factorial. However, this is not sufficient to obtain our claim by
Theorem 8.1, since we have no guarantee thatG0 is a generating set. Yet, by Lemma
4.7 there exists a generating set G′

0 ⊂ Cn such that min∆(G′
0) = min∆(G0) and

the claim follows.
We now turn to the second part. Suppose H is d-congruence half-factorial, it

follows that there exists some multiple d′ of d such that H is truly d′-congruence-
half-factorial. Since H is not half-factorial d′ 6= 0. By the first part, we know
that d′ ∈ ∆∗(Cn) and the claim follows. Conversely, if d divides an element of
∆∗(Cn), denote this element by d′, we get by the first part that there exist a
truly d′-congruence-half-factorial Krull monoid. Now, this monoid is d-congruence
half-factorial, establishing the claim. �
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To reiterate the point that in part motivated the formulation of this result, we
note that it can be restated as follows (for brevity we only discuss the first part of
the theorem, yet essentially the same remarks apply to the second):

For n and d positive integers, there exists a Krull monoid H with cyclic class
group of order n with min∆(H) = d if and only if d ∈ ∆∗(Cn).

Yet, to the best of our knowledge it is not known if this results holds for all finite
abelian groups. For G a finite abelian group and d a positive integer it follows
directly from the definition of ∆∗(G) and the standard transfer argument that if
there exists a Krull monoidH with class group isomorphic to G with min∆(H) = d,
then d ∈ ∆∗(G). However, the converse does not follow directly. Of course, by
the very definition of ∆∗(G) for each d ∈ ∆∗(G) there is some G0 ⊂ G with
min∆(G0) = d. Yet, if G0 is not a generating set of G, then there is no Krull
monoid with class group isomorphic to G that corresponds to this set; in particular,
the class group of B(G0) is not G in this case (to avoid a confusion, we recall that
the class group of B(G0) is not necessarily G for a generating set G0, either, but
this does not affect the argument above).

This motivates the following definition. Let G be an abelian group. Then

∆∗
g(G) = {min∆(G0) : G0 ⊂ G generates G as a semi-group and ∆(G0) 6= ∅}.

In view of the arguments recalled in the proof of Theorem 8.2, it is then easy to
see that for G an abelian group and d a positive integer there exists a truly d-
congruence half-factorial monoid with class group isomorphic to G if and only if
d ∈ ∆∗

g(G).
What we effectively did in the proof of Theorem 8.2, or rather in Lemma 4.7 is

to assert that ∆∗
g(G) = ∆∗(G) for G a finite cyclic group. Yet, we do not know if

∆∗
g(G) = ∆∗(G) holds in general.
We do not further pursue this problem here, and only remark that there are var-

ious other types of groups for which this equality can be established. For example,
this is true by an abstract argument for elementary p-groups (it suffices to note
that every subset can be extended to a generating one with independent elements).
We also convinced ourselves that it is true for finite abelian groups whose rank
exceeds their exponent. The argument in this case is that ∆∗(G) = [1, r(G) − 1]
(see [25]) and it then suffices to find a generating set Gj with min∆(Gj) = j for
each j ∈ [1, r(G)−1], which is possible by slightly modifying the standard construc-
tion for sets with prescribed minimal distance in [1, r(G) − 1] (see [20, Proposition
6.8.2.3]). Similar arguments should work in further cases where ∆∗(G) is explicitly
known.

Evidently, Theorem 8.2 can now be combined with the results on ∆∗(G) ob-
tained in Section 7, or any other result for ∆∗(G) for finite cyclic groups, to obtain
more ‘explicit’ versions. We only phrase one such result, since due to a fortunate
coincidence it is much stronger than what one might expect in view of the results
of Section 7.

Theorem 8.3. Let d and n be integers with d > n1/2. There exists a non-half-
factorial d-congruence half-factorial Krull monoid with finite cyclic class group of
order n if and only if

d ∈
⋃

m|n

J(m).



CONGRUENCE HALF-FACTORIAL KRULL MONOIDS 53

Proof. Let d be of the form given in the result. This means that m | n and that
c1, c2 are integers such that

m− c1 − c2
c1c2

is integral and a multiple of d. Let G be a finite cyclic group of order n, and e a
generating element of G. The set G0 = {e, (n/m)e, m−c1

c2
((n/m)e)} has, by Lemma

4.5, the same minimal distance as
{
(n/m)e,

m− c1
c2

((n/m)e)

}
.

By Theorem 4.1, applied to 〈(n/m)e〉, a cyclic group of order m, it is (m − c1 −
c2)/(c1c2). By Theorem 8.1 there exists a Krull monoid with class group isomorphic
to G such that the subset of classes containing prime divisors is G0. By standard
results recalled in Section 3.5 the minimal distance of this Krull monoid is the
minimal distance of G0. And, thus it is d-congruence half-factorial.

To see the converse claim suppose that a certain Krull monoid with class group
G, a finite cyclic group of order n, is d-congruence half-factorial. We know that
its minimal distance d′ is a multiple of d. Since d′ is non-zero we also have that
d′ ≥ logn. Again by Section 3.5 we know that d′ is equal to the minimal distance
of G0 ⊂ G the subset of classes containing prime divisors. Now, by Theorem 2.4
we know that there exists a non-half-factorial subset G2 ⊂ G0 of cardinality 2.
By Lemma 4.5 we may assume without restriction that the two elements in G2

have the same order m | n. Now, it follows by Theorem 4.1 that d′ is of the form
(m− c1 − c2)/(c1c2) establishing the claim. �

We now address the other question, that is we give a precise characterization
of Krull monoids with finite cyclic class group of order n that are d-congruence
half-factorial or truly d-congruence half-factorial Krull monoids, for d ≥ n/5 in the
general case and for d ≥ (2n2)1/3 for n prime. The result follows quite directly from
Theorems 7.6 and 7.7. However, we stress that the sets here must be generating
thus not every set appearing in Theorem 7.7 is admissible.

Theorem 8.4. Let H be a non-half-factorial Krull monoid with finite cyclic class
group of order n. Suppose d is one of the elements appearing in Theorem 7.7 (and
n is such that d is integral). Then:

(i) H is truly d-congruence half-factorial if and only if the subset of classes
containing prime divisors is equal to a generating set fulfilling the condition
for this d in Theorem 7.7.

(ii) H is d-congruence half-factorial if and only if the subset of classes con-
taining prime divisors is equal to a generating set fulfilling the condition
for a multiple of this d in Theorem 7.7.

Proof. Let G denote the class group and G0 the subset of classes containing prime
divisors. By Section 3.5 we know that H is d-congruence half-factorial if and only
if d is a divisor of min∆(G0). Likewise, H is truly d-congruence half-factorial if
and only if d equals min∆(G0). By Theorem 8.1 we know that G0 is a generating
set of G. Now, the claim follows by Theorem 7.7. �

One could extend the second part of this result to the case of those d for which
one knows by results on ∆∗(G), such as Theorem 7.3, that all multiples of d that
are in ∆∗(G) are at least of size n/5, and thus covered by Theorem 7.7.
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For completeness, we end this section by giving the proofs of the two results
mentioned at the beginning of the paper, which are now extremly short.

Proof of Theorem 2.2. The proof is analogous to the one of Theorem 8.4 except for
applying Theorem 7.6 instead of Theorem 7.7. �

Proof of Theorem 2.3. This is just a special case of Theorem 8.4. �

9. Number theoretic applications

In this final section, we discuss some applications to questions of quantitative
problems on factorizations, specifically in rings of algebraic integers, yet they apply
verbatim in other or more general context as well (holomorphy rings of function
fields and quasi-formations, resp., see the introduction to Chapter 9 of [20]).

First we recall the abstract description for a and b mentioned in Section 3.5; we
refer to [20, Theorem 9.4.10] and surrounding results for details. It is known that
a is equal to the maximal cardinality of certain subsets of G. We recall a notation:
for a set G0 ⊂ G, a (possibly empty) sequence S ∈ F(G \G0), and ℓ ∈ N0, let

Ω(G0, S, ℓ)

denote the set of all zero-sum sequences SF such that F ∈ F(G0) with vg(F ) ≥ ℓ
for each g ∈ G0.

Then a is the maximum over all G0 ⊂ G such that for some S ∈ F(G \G0) and
some ℓ ∈ N0 one has

(9.1) ∅ 6= β−1(Ω(G0, S, ℓ)) ⊂ P(H,D,M).

For clarity, note that the condition that the set is nonempty merely means that
σ(S) ∈ 〈G0〉. To stress that a just depends on D and G, we denote it by aD(G).
For completeness, we recall that b is the maximal length of a sequence S for which
(9.1) holds for some G0 with maximal cardinality, i.e., cardinality aD(G); it also
just depends on D and G, and we denote it by bD(G)

While this cannot be the place to recall how these results are obtained in any
detail, we still give some very rough indications, in the hope that they clarify a bit
why the constants are of this form. The discussion below is limited to obtaining
the order of the counting functions, as already recalled in (3.4), which can even
be obtained in the case of quasi-formations, the context in which [20, Theorem
9.4.10] is formulated. Yet, for example, for rings of algebraic integers much more
precise results are known (see, e.g., [36, Theorem 1.1] for further details), and
even generally for arithmetical formations not only the order but, introducing an
additional suitable constant, an asymptotic equality can be obtained (see, e.g., [20,
Remark 9.4.4]).

One can show P(H,D,M) is a finite union of sets of the form β−1(Ω(G0, S, ℓ)).
The order of the counting function of these special sets can be determined via
expressing the associated Dirichlet series as a suitable combination of L-series,
and then applying an appropriate Tauberian theorem. The order of the counting
function of a set β−1(Ω(G0, S, ℓ)) is

x

(log x)1−|G0|/|G|
(log log x)|S|−ε

with ε equal to 0 or 1 depending on whether G0 is non-empty or empty. Finally,
note that for the dominant terms the sets G0 are non-empty. Thus, one obtains
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that

(9.2) P(H,D,M)(x) ≍
x

(log x)1−aD(G)/|G|
(log log x)bD(G).

In the following result we determine aD(G) as it appears in the formula just
above for the special case that D = {0, d} for finite cyclic G and large d; the case
d = n− 2 appeared already in [36].

Theorem 9.1. Let G be a finite cyclic group of order n ≥ 250.

(i) If d ∈ N ∩ {n− 2, (n− 3)/2, (n− 4)/3, (n− 5)/4}, then a{0,d}(G) = 3.
(ii) If d ∈ N ∩ {(n− 2)/2, (n− 4)/2, (n− 6)/3}, then a{0,d}(G) = 4.
(iii) If d ∈ N ∩ {(n− 6)/4, (n− 8)/4}, then a{0,d}(G) = 5.
(iv) If d = (n− 4)/4 is integral, then a{0,d}(G) = 6.

Proof. From the description of aD(G) recalled above one can derive, using well-
known arguments, that for D = {0, d} with d ∈ ∆∗(G) one has

max{|G0| : min∆(G0) = d, G0 ⊂G} ≤

a{0,d}(G) ≤ max{|G0| : d | min∆(G0), G0 ⊂ G}.

Now, from Theorem 7.7 we see that in all cases the maximum cardinality on the
right hand side is actually attained for d (as opposed to a proper multiple) and we
thus get an equality, and the exact value. �

We now determine aD(G), appearing in (9.2), in some further cases.

Theorem 9.2. Let G be a finite cyclic group of order n and let q | n be an odd
prime.

(i) If d = (n− q − 1)/q is integral and q ≤ n1/3/2, then a{0,d}(G) = 3.

(ii) If d = (n− 2q)/q is integral and q ≤ n1/3/2, then a{0,d}(G) = 4.

(iii) If d = (n− 2q)/q2 is integral and q ≤ n1/6/2 , then a{0,d}(G) = 6.

Proof. The argument is identical to the one of the preceding result, except that we
use Lemmas 7.8, 7.9, and 7.10 instead of Theorem 7.7. �

Moreover, it is not hard to see that the values of a{0,d}(G), for the d we consid-
ered, are upper bounds for aD(G) for every {0, d} ⊂ D ⊂ [0, d] such that the period
D is aperiodic, i.e., there exists no x ∈ Z \ dZ such that the image of D and x+D
in Z/dZ are equal.

It could be interesting to pursue these ideas further, including an analysis of bD,
yet we do not do so here.

Acknowledgment

The authors thank the referees for several valuable and detailed remarks that
helped to improve the paper.

References

[1] N. R. Baeth and A. Geroldinger. Monoids of modules and arithmetic of direct-sum decom-
positions. Pacific J. Math., 271(2):257–319, 2014.

[2] L. Carlitz. A characterization of algebraic number fields with class number two. Proc. Amer.
Math. Soc., 11:391–392, 1960.

[3] S. Chang, S. T. Chapman, and W. W. Smith. Elasticity in certain block monoids via the
Euclidean table. Math. Slovaca, 57(5):415–454, 2007.



56 A. PLAGNE AND W. A. SCHMID

[4] S. Chang, S. T. Chapman, and W. W. Smith. On minimum delta set values in block monoids
over cyclic groups. Ramanujan J., 14(1):155–171, 2007.

[5] S. T. Chapman. On the Davenport constant, the cross number, and their application in
factorization theory. In Zero-dimensional commutative rings (Knoxville, TN, 1994), volume
171 of Lecture Notes in Pure and Appl. Math., pages 167–190. Dekker, New York, 1995.

[6] S. T. Chapman and A. Geroldinger. Krull domains and monoids, their sets of lengths and as-
sociated combinatorial problems. In Factorization in Integral Domains, volume 189 of Lecture
Notes in Pure and Appl. Math., pages 73–112. Dekker, New York, 1997.

[7] S. T. Chapman, U. Krause, and E. Oeljeklaus. On Diophantine monoids and their class
groups. Pacific J. Math., 207(1):125–147, 2002.

[8] S. T. Chapman and W. W. Smith. Factorization in Dedekind domains with finite class group.
Israel J. Math., 71(1):65–95, 1990.

[9] S. T. Chapman and W. W. Smith. On a characterization of algebraic number fields with class
number less than three. J. Algebra, 135(2):381–387, 1990.

[10] J. Coykendall and W. W. Smith. On unique factorization domains. J. Algebra, 332:62–70,
2011.

[11] K. Cziszter, M. Domokos, and A. Geroldinger. The interplay of invariant theory with multi-
plicative ideal theory and with arithmetic combinatorics. In Multiplicative Ideal Theory and
Factorization Theory, pages 43 – 95, Springer, 2016.

[12] G. Freiman and A. Geroldinger. An addition theorem and its arithmetical application. J.
Number Theory, 85(1):59–73, 2000.

[13] W. Gao and A. Geroldinger. Systems of sets of lengths. II. Abh. Math. Sem. Univ. Hamburg,
70:31–49, 2000.
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