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Dynamics of a Cubic Nonlinear Vibration Absorber

SHAFIC S. OUEINI, CHAR-MING CHIN, and ALI H. NAYFEH
Department of Engineering Science and Mechanics (MC 0219), Virginia Polytechnic Institute and State
University, Blacksburg, VA 24061, U.S.A.

Abstract. We study the dynamics of a nonlinear active vibration absorber. We consider a plant model possessing
curvature and inertia nonlinearities and introduce a second-order absorber that is coupled with the plant through
user-defined cubic nonlinearities. When the plant is excited at primary resonance and the absorber frequency is
approximately equal to the plant natural frequency, we show the existence of a saturation phenomenon. As the
forcing amplitude is increased beyond a certain threshold, the response amplitude of the directly excited mode
(plant) remains constant, while the response amplitude of the indirectly excited mode (absorber) increases. We
obtain an approximate solution to the governing equations using the method of multiple scales and show that the
system possesses two possible saturation values. Using numerical techniques, we perform stability analyses and
demonstrate that the system exhibits complicated dynamics, such as Hopf bifurcations, intermittency, and chaotic
responses.

Keywords: Vibration absorber, saturation, internal resonance, bifurcations.

1. Introduction

Nonlinearities are responsible for unusual phenomena in the presence of internal and/or ex-
ternal resonances. Of particular interest are systems coupled with quadratic nonlinearities and
possessing a two-to-one internal resonance. Sethna [1] was one of the first researchers to study
such systems. He conducted theoretical studies, performed analog simulations, and showed
that nonperiodic motions may exist. Theoretical and experimental studies by Nayfeh et al. [2],
Haddow et al. [3], and Balachandran and Nayfeh [4] on L-shaped structures have shown that,
when two degree-of-freedom systems coupled with quadratic nonlinearities possess a two-to-
one internal resonance and the higher mode is subjected to a primary resonance, there exists
a saturation phenomenon. When the forcing amplitude exceeds a certain threshold, the amp-
litude of the directly excited mode remains constant, and the excitation energy is channeled to
the unexcited lower mode. As the forcing amplitude increases, the response amplitude of the
lower mode increases, while the response amplitude of the higher mode saturates. Bajaj et al.
[5] and Banerjee et al. [6] investigated the response of a pendulum mounted on an oscillating
mass. They used first- and second-order averaging methods to analyze the dynamics of the
system. In addition to reporting the occurrence of periodic and chaotic motions, they found
that the saturation phenomenon predicted by the first-order averaging technique is lost when
the effect of higher-order nonlinearities is included in the model.

Recently, Oueini et al. [7] and Pratt et al. [8] exploited the saturation phenomenon in
devising an active vibration suppression technique. They introduced a second-order absorber
and coupled it with the plant through a user-defined quadratic feedback control law. Once the
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Table 1. Possible feedback signals.

Sensor Ff (t) Fc(t)

Position u1u
2
2, ü1u

2
2 u2u

2
1, u2u̇

2
1, u2ü

2
1, u2u1ü1

Velocity u1u̇
2
2, ü1u̇

2
2 u̇2u1u̇1, u̇2u̇1ü1

Acceleration u1ü
2
2, ü1ü

2
2 ü2u

2
1, ü2u̇

2
1, ü2ü

2
1, ü2u1ü1

coupling between the plant and the absorber is established through a sensor and an actuator,
effective vibration suppression is achieved by tuning the natural frequency of the absorber to
one-half the excitation frequency.

Unlike previous studies that investigated the saturation phenomenon in quadratic systems,
we propose to ‘reverse-engineer’ the saturation phenomenon using cubic terms. We consider
a plant modeled by a second-order nonlinear differential equation and introduce an active
vibration absorber coupled with the plant via a specific set of cubic nonlinearities. We analyze
the resulting equations using the method of multiple scales and show that a saturation phe-
nomenon occurs when a one-to-one internal resonance is imposed between the plant and the
absorber. To our knowledge, this is the first instance in which the saturation phenomenon is
encountered in cubicly coupled systems.

2. System Model and Perturbation Solution

The plant is a cantilever beam whose response is governed by a nonlinear partial-differential
equation. We consider a mode that is not involved in an internal resonance with any of the
other modes. Then, application of a single-mode discretization scheme yields the ordinary-
differential equation

ü2+ 2ε2µ̃2u̇2+ ω2
2u2+ δ̃1u

3
2+ δ̃2ü2u

2
2+ δ̃3u̇

2
2u2 = ε3F cos(�t)+ α̃2Fc(t), (1)

whereu2 is the generalized coordinate of the mode under consideration,µ̃2 is a damping
coefficients,ω2 is the natural frequency, thẽδi are constants,F and� are the forcing amp-
litude and frequency, respectively,α̃2 is a constant gain,Fc(t) is a control signal, andε is a
dimensionless bookkeeping parameter. The model includes the curvature nonlinearityu3 and
the inertia nonlinearities̈u2u

2
2 andu̇2

2u2.
We introduce a second-order absorber and couple it with the plant through a user-defined

cubic feedback control law. Then, the equation governing the dynamics of the absorber is
given by

ü1+ 2ε2µ̃1u̇1+ ω2
1u1 = α̃1Ff (t), (2)

whereu1 is the absorber coordinate andµ̃1 andω1 are the absorber’s damping coefficient and
frequency, respectively,̃α1 is a constant gain, andFf (t) is a feedback signal. The feedback
and control signals may take different forms depending on the available sensor. We list all
possible combinations in Table 1. Furthermore, we choose the absorber’s frequency such that
ω1 ≈ ω2 (i.e., one-to-one internal resonance).
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We consider the case of primary resonance (i.e.,� ≈ ω2) and position feedback and
analyze, without loss of generality, the system of equations

ü1+ 2ε2µ̃1u̇1+ ω2
1u1 = α1ü1u

2
2, (3)

ü2+ 2ε2µ̃2u̇2+ ω2
2u2+ δ̃1u

3
2+ δ̃2ü2u

2
2+ δ̃3u̇

2
2u2 = α2u̇

2
1u2+ ε3F cos(�t). (4)

Using the method of multiple scales [9], we obtain an approximate solution to Equations (3)
and (4) in the form

u1 ≈ A1(T2)eiω1T0 + A1(T2)e−iω1T0, (5)

u2 ≈ A2(T2)eiω2T0 + A2(T2)e−iω2T0, (6)

whereT0 = t , T2 = ε2t , and

2i

(
dA1

dT2
+ µ̃1A1

)
+ 8α̂1(2A2A2A1 + A1A

2
2 e2iσ̃1T2) = 0, (7)

2i

(
dA2

dT2
+ µ̃2A2

)
+ 8δeA

2
2A2+ 8α̂2(−2A1A1A2+ A2

1A2 e−2iσ̃1T2)− f eiσ̃2T2 = 0. (8)

Here,

α̂1 = 1

8
ω1α1, α̂2 = 1

8
ω1α2, σ̃1T2 = (ω2− ω1)T0, σ̃2T2 = (ω2−�)T0,

δe = 1

8ω2

[
3δ̃1− ω2

2(3δ̃2+ δ̃3)
]

and f = F

2ω2
.

To facilitate the analysis, we reduce the number of the parameters in Equations (7) and (8)
by introducing the scalings

A1 = c1B1, A2 = c2B2, and T2 = c3T , (9)

where theci are constants. Then, Equations (7) and (8) become

2i(B ′1+ µ1B1)+ 8α̂1c
2
2c3(2B2B2B1+ B1B

2
2 e2iσ1T ) = 0, (10)

2i(B ′2 + µ2B2)+ 8c2
2c3δeB

2
2B2

+ 8α̂2c
2
1c3(−2B1B1B2+ B2

1B2 e−2iσ1T )− c3f

c2
eiσ2T = 0, (11)

where

µi = c3µ̃i and σi = c3σ̃i, (12)

and the prime represents differentiation with respect to the time variableT . To keep the forcing
amplitudef as a bifurcation parameter, we setc2 = c3. Furthermore, we let

α̂1c
3
3 = 1 and α̂2c

2
1c3 = 1. (13)
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Solving for the constants, we obtain

c1 =
√
|α̂1|1/3
|α̂2| and c2 = c3 = |α̂1|−1/3. (14)

Moreover, we define

δ = δe

α̂1
. (15)

Next, we expressB1(T ) andB2(T ) in the polar form

B1 = 1

2
a1(T )eiβ1(T ) and B2 = 1

2
a2(T )eiβ2(T ). (16)

Substituting Equations (14–16) into Equations (10) and (11) and separating real and imaginary
parts yields

a′1 = −µ1a1 − a1a
2
2 sinθ1, (17)

a′2 = −µ2a2 + a2
1a2 sinθ1+ f sinθ2, (18)

a1β
′
1 = a1a

2
2(2+ cosθ1), (19)

a2β
′
2 = δa3

2 + a2
1a2(cosθ1− 2)− f cosθ2, (20)

where

θ1 = 2(β2 − β1+ σ1T ) and θ2 = σ2T − β2. (21)

3. Equilibrium and Dynamic Solutions

In this section, we study the equilibrium and dynamic solutions of Equations (17–21) and their
bifurcations. To determine the equilibrium solutions, we seta′1 = a′2 = 0 andθ ′1 = θ ′2 = 0 and
obtain the algebraic equations

µ1a1 = −a1a
2
2 sinθ1, (22)

µ2a2 = a2
1a2 sinθ1+ f sinθ2, (23)

ν1a1 = a1a
2
2(2+ cosθ1), (24)

ν2a2 = δa3
2 + a2

1a2(cosθ1− 2)− f cosθ2, (25)

where

ν1 = σ1+ σ2 and ν2 = σ2. (26)

There are two possibilities:a1 = 0 anda1 6= 0. Whena1 = 0, it follows from Equations (23)
and (25) that

[µ2
2+ (ν2− δa2

2)
2]a2

2 − f 2 = 0. (27)
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This is the single-modesolution. Equation (27) is similar to the frequency-response equation
of the forced Duffing oscillator. The unexcited mode does not oscillate while the directly
excited mode oscillates with an amplitude that is dependent on the detuningν2, the magnitude
of the forcingf , and the system’s initial conditions [10]. Whena1 6= 0, it follows from
Equations (22–25) that

µ2
1+ (ν1− 2a2

2)
2− a4

2 = 0, (28)

(µ1a
2
1 + µ2a

2
2)

2+ [ν2a
2
2 − a2

1(ν1− 4a2
2)− δa4

2]2− a2
2f

2 = 0, (29)

which is a two-mode solution. The solutions of Equation (28) are

a
(1)
2 =

√√√√2ν1−
√
ν2

1 − 3µ2
1

3
and a

(2)
2 =

√√√√2ν1 +
√
ν2

1 − 3µ2
1

3
. (30)

Thus, the directly excited mode may oscillate at two distinct amplitudes that are functions of
the detuning parameterν1 and the damping coefficientµ1, but independent of the excitation
amplitudef . In contrast, the amplitude of the indirectly excited mode is dependent on the
excitation amplitude.

To study the stability of the equilibrium solutions, we expressB1 andB2 in the form

B1 = 1

2
(p1− iq1)eiν1T and B2 = 1

2
(p2− iq2)eiν2T , , (31)

where thepn andqn are real and write the modulation equations in Cartesian form as

p′1 = −µ1p1− ν1q1+ q1(p
2
2 + 3q2

2)+ 2p1p2q2, (32)

q ′1 = −µ1q1 + ν1p1− p1(q
2
2 + 3p2

2)− 2q1q2p2, (33)

p′2 = −µ2p2− ν2q2− q2(q
2
1 + 3p2

1)+ 2p1p2q1+ δq2(p
2
2 + q2

2), (34)

q ′2 = −µ2q2 + ν2p2+ p2(p
2
1 + 3q2

1)− 2p1q1q2 − δp2(p
2
2 + q2

2)+ f. (35)

The stability of a particular equilibrium solution is ascertained by investigating the eigenvalues
of the Jacobian matrix of the right-hand sides of Equations (32–35). Then, a pseudo-arclength
scheme is used to trace branches of the equilibrium solutions [10, 11].

The purpose of this study is to investigate active implementation of the vibration absorber.
In this case, the frequency at which the plant oscillates can be measured, and, accordingly, the
frequency of the absorber can be adjusted. Guided by the fact that the amplitudesa

(1)
2 anda(2)2

in Equation (30) are only functions ofµ1 andν1, we chooseν1 to be a small non-zero number.
Consequently, the magnitude ofa2 will be constant in both the frequency- and force-response
curves. Furthermore, we set the absorber damping coefficient equal to a small but non-zero
value.

In Figure 1, we show the frequency-response curves whenµ1 = 0.0005,µ2 = 0.001,
ν1 = 0.01, δ = −1, andf = 0.0001. The plant exhibits a softening-type behavior. In
Figure 1b, we illustrate an enlargement of the boxed area labeled ‘I’ in Figure 1a. Initially,
the response consists of the single-mode solution. Asσ2 is increased beyond the value at point
F , shown in Figure 1b, and in the presence of large disturbances, a jump to a high-amplitude
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Figure 1. Frequency-response curves whenµ1 = 0.0005,µ2 = 0.001,ν1 = 0.01, δ = −1, andf = 0.0001.
(a) Overall frequency-response curves and (b) an enlargement of area ‘I’. Solid (dotted) lines denote stable nodes
(saddles).

plant response is possible. In this case, the response consists of the two-mode solution along
the branchFG, and the amplitude of the plant isa(2)2 . The two-mode solution experiences
a supercritical pitchfork bifurcation atG, where the single-mode solution is reached. It is
maintained until pointH , where it undergoes a subcritical pitchfork bifurcation, leading to a
jump to the single-mode solution along the branchEA. In the absence of large disturbances,
the response consists of the single-mode solution, which is stable. AtA, the single-mode
solution undergoes a saddle-node bifurcation, and the response jumps toB where the two-
mode solution is sustained. Asσ2 is increased, the response traces the curveBC. Here, the
amplitude of the plant is equal toa(1)2 . At C, the response undergoes a supercritical pitchfork
bifurcation after which only the single-mode solution exists. Whenσ2 is decreased from a
high value, the single-mode response experiences a supercritical pitchfork bifurcation atC,
and the resulting two-mode solution traces the curveCBD. At D, the solution undergoes
a saddle-node bifurcation, leading to a jump to pointE where the response consists of the
single-mode solution thereafter. Ifσ2 is set at a value between the pointsH andF and a
large disturbance is imparted to the system, single- or two-mode solutions may be possible, as
discussed previously.

In Figure 2, we show the frequency-response curves whenµ1 = 0.0005,µ2 = 0.001,
ν1 = 0.01, δ = 1, andf = 0.0001. The plant exhibits a hardening-type behavior. In
Figure 2b, we illustrate an enlargement of the boxed area labeled ‘II’ in Figure 2a. Asσ2

is increased, the response consists of the single-mode solution, which is stable. At point
A (σ2 = 0.001935458), the response undergoes a subcritical pitchfork bifurcation, which
leads to a jump to a two-mode dynamic solution. The dynamic solution is maintained until
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0.0
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-0.02 0.00 0.02

0.0

0.1
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0.005
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F
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Figure 2. Frequency-response curves whenµ1 = 0.0005,µ2 = 0.001, ν1 = 0.01, δ = 1, andf = 0.0001.
(a) Overall frequency-response curves and (b) an enlargement of area ‘II’. Solid (dotted) lines denote stable nodes
(saddles) and bold-dashed lines denote unstable foci.

E is reached, after which the response jumps to the single-mode solution. The branchEF is
unstable (saddle) and, therefore, cannot be attained. Similarly to the case whenδ = −1, there
exists a region between pointsH andK where high-amplitude single- or two-mode solutions
may be reached in the presence of large disturbances. In the case of reverse sweep and in
the absence of large disturbances, the single-mode solution is initially stable. It experiences a
saddle-node bifurcation atG (σ2 = 0.003878544), leading to a jump to a two-mode dynamic
solution. Whenσ2 is in the regionAD, the dynamic solution coexists with the single-mode
solution. Whenσ2 is less than the value atD, only the single-mode solution exists.

In Figure 3, we illustrate the loci of the unstable eigenvalues of the two-mode solution
shown in Figure 2a asσ2 is varied. In Figure 3a, we show the locus of the eigenvalues along
the branchABCD. At pointA, a single eigenvalue goes through zero, indicating a subcritical
pitchfork bifurcation. It remains real and positive asσ2 is decreased. As pointB is approached,
two complex conjugate eigenvalues move to the right-hand side of the complex plane. Asσ2

is decreased further, the real eigenvalue moves to the right until pointC is reached, where
it reverses direction. At pointD, it crosses to the left-hand plane through zero, indicating
a turning point. Two complex eigenvalues remain in the right-hand side, and the equilibrium
solution becomes an unstable focus. In Figure 3b, we illustrate the locus of the unstable eigen-
values for branchDEF . As σ2 is increased, the imaginary parts of the eigenvalues decrease
until they become zero beyond pointE, where the fixed point becomes a saddle. Then, the
remaining two positive real eigenvalues split and move in opposite directions. At pointF ,
one eigenvalue is equal to zero, and a non-classical pitchfork bifurcation occurs where the
branches of the unstable single and two-mode solutions meet.

7



λi

λr λr

0.000 0.003
-0.01

0.00

0.01

0.000 0.003

(a) (b)

B

B

B

A

C E

D

D

D

D

D

D

F F

C

C

Figure 3. Loci of the unstable eigenvalues of the two-mode solution whenµ1 = 0.0005,µ2 = 0.001,ν1 = 0.01,
f = 0.0001, andδ = 1. (a) Locus along branchABCD and (b) locus along branchDEF .
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Figure 4. Two-dimensional projections of the phase portraits and Poincaré sections of the response whenδ = 1,
µ1 = 0.0005,µ2 = 0.001,ν1 = 0.01, andf = 0.0001. (a)σ2 = 0.002 and (b)σ2 = 0.0036.
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0.08

a2
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Figure 5. Time responses whenδ = 1, µ1 = 0.0005, µ2 = 0.001, ν1 = 0.01, f = 0.0001, and
σ2 = 0.001740453. Initial conditions on the unstable manifold of branchAB.

To investigate the nature of the dynamic solutions, we numerically integrated Equa-
tions (32–35) betweenA andG and found that the response is chaotic. Therefore, we analyzed
the system between and in the neighborhood of pointsA andG. In Figure 4, we show two-
dimensional projections of the phase portraits and Poincaré sections for two values ofσ2 that
lie in the region between pointsA andG. Clearly, the system exhibits high-amplitude chaotic
responses.

Next, we studied the system dynamics near pointA. Whenσ2 is increased beyondA, the
response jumps to a chaotic attractor. However, whenσ2 is decreased, the chaotic response is
maintained for a small region to the left of pointA. Further decreases inσ2 lead to the single-
mode solution. Here, the chaotic attractor may be destroyed through a Shilnikov scenario or
a boundary crisis [10]. In the presence of orbits homoclinic to a saddle-focus, Shilnikov’s
theorem predicts chaotic behavior on the outer side of the orbit if the ratio

r = |ρ|
λ1

is less than one, whereρ is the value of the real part of the stable complex conjugate eigen-
values andλ1 is the value of the unstable real eigenvalue. We looked for orbits homoclinic to
the saddle-focus close to point A. To this end, we searched for limit cycles by choosing initial
conditions in both directions on the unstable manifolds of the saddle-focus on branchAB. In
Figure 5, we show time traces of the responses. All initial conditions lead to the single-mode
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Table 2. Values of the ratior on branchAB.

σ2 0.001872 0.001899 0.001918 0.001930 0.001935

r 1.10 1.59 2.74 7.42 242

0

0.02

0.04

0.06

0.08

0.1

(a)

a
2

(b)

0

0.02

0.04

0.06

0.08

0.1

a
2

(c)

Time Time

(d)

Figure 6. Time evolution of the plant amplitude whenδ = 1, µ1 = 0.0005,µ2 = 0.001, ν1 = 0.01, and
f = 0.0001. (a)σ2 = 0.003878056, (b)σ2 = 0.00387801, (c)σ2 = 0.0038775, and (d)σ2 = 0.003876.

solution. In the event that a homoclinic orbit existed, we monitored the ratior. In Table 2,
we list the value of the ratior asA is approached. Since the value is greater than one and
increasing, we concluded that a Shilnikov scenario is not possible. Therefore, the chaotic
attractor is destroyed by a boundary crisis.

Finally, we investigated the system dynamics near pointG, where the single-mode re-
sponse undergoes a saddle-node bifurcation atσ2 = 0.003878544. BeyondG, the system
exhibits an intermittent response. The response of the plant alternates between two single-
mode states: the old (ghost) solution nearG and the unstable solution on branchAH . As
σ2 is decreased, the frequency of intermittency increases, as illustrated in Figure 6. Chaos is
reached through a type I intermittency.

Based on the frequency-response analysis, it appears that it is possible to implement the
proposed absorber whenδ < 0 and the forcing amplitude is small. Consequently, we study
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Figure 7. Force-response curves whenµ1 = 0.0005,µ2 = 0.001, andν1 = 0.01. (a)δ = −1 and σ2 = −0.005
and (b)δ = 1 andσ2 = 0.005. Solid (dotted) lines denote stable nodes (saddles) and bold-dashed lines denote
unstable foci.

the effect of varying the forcing amplitude on the response of the system. In Figure 7, we
display the force-response curves whenµ1 = 0.0005,µ2 = 0.001, andν1 = 0.01. The
system exhibits a two-valued saturation phenomenon.

First, we analyze the case whenδ = −1 and σ2 = −0.005, which is shown in Figure 7a.
Initially, as f is increased from zero and in the absence of large disturbances, the response
consists of the single-mode solution, which is stable. The solution goes through a saddle-
node bifurcation atA, leading to a stable two-mode solution atB. As f is increased beyond
fB , the response of the directly excited mode saturates at the valuea

(1)
2 , and the response

of the unexcited mode increases. At pointH , the response experiences a subcritical Hopf
bifurcation leading to a jump to a dynamic solution. Whenf > fC, the system may be
attracted to either the constant single-mode solution or to a two-mode dynamic solution. When
f is decreased, there are two possible paths for the solutions. If the initial conditions are small,
the system response will consist of the single-mode solution. This solution loses stability
through a subcritical pitchfork bifurcation atf = fC. Whenf < fC, the responses of both
modes undergo jumps and are attracted to a dynamic solution. If the initial conditions are large,
the system may be attracted directly to a dynamic solution. Because the Hopf bifurcation at
H is subcritical, a dynamic solution may coexist with the stable two-mode solution when
f < fH . If the constant two-mode solution is reached, then asf is decreased, the solution
will trace the curveBD and will undergo a saddle-node bifurcation atD, leading to a jump to
the single-mode solution atE.

In Figure 7b, we show force-response curves whenδ = 1 andσ2 = 0.005. We note the
emergence of a new region of dynamic solutions between the pointsH1 andH2. Furthermore,
the subcritical pitchfork bifurcation atC is replaced with a supercritical pitchfork bifurcation.
When 0< f < fA and in the absence of large disturbances, the response consists of the

11



0.000 0.001
-5

0

5

δ

ν1 0 01= . ν1 0 02= .

0.000 0.002
-1

0

1

2

ff

ν1 0 01= . ν1 0 02= .

(a) (b)

Figure 8. Projection of the Hopf bifurcation loci on theδ–f plane whenµ1 = 0.0005 andµ2 = 0.001.
(a)σ2 = −0.005 and (b)σ2 = 0.005. Solid (dotted) lines denote supercritical (subcritical) bifurcations.

single-mode solution. Whenf > fA and depending on the initial condition, the response may
be attracted to either a dynamic or a constant solution in the regionBH1. In this case, the
plant’s amplitude may saturate at the valuea(2)2 . Subsequently, the solution undergoes a su-
percritical Hopf bifurcation atH1. At H2, the system experiences a reverse supercritical Hopf
bifurcation after which the two-mode solution is attained. Then, the single-mode solution is
reached through a supercritical pitchfork bifurcation atC. Similar results are expected when
f is decreased. However, a stable two-mode constant solution may be attained along branch
H1D.

Based on the results of the force-response analysis, we conclude that implementation of the
absorber is possible only for small forcing amplitudes whenδ < 0. In Figure 8, we display
the loci of the Hopf bifurcation points in theδ–f plane for different values of the detuning
parameterν1. It is clear that Hopf bifurcations that may lead to high-amplitude periodic or
chaotic motions are possible.

4. Summary

We study the dynamics of a nonlinear vibration absorber. The absorber is based on a cubic
feedback control law. We develop the equations of motion and obtain an approximate solution
to the nonlinear differential equations using the method of multiple scales. Then, we conduct
bifurcation analyses and investigate the performance of the control strategy. We show that a
saturation phenomenon exists, and that it can be used, in a very limited range, for successful
application of the technique. Additionally, we demonstrate the existence of dynamic solutions
that may lead to high-amplitude or chaotic responses.
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