N
N

N

HAL

open science

Dynamics of a Cubic Nonlinear Vibration Absorber
Shafic S. Oueini, Char-Ming Chin, Ali H. Nayfeh

» To cite this version:

Shafic S. Oueini, Char-Ming Chin, Ali H. Nayfeh. Dynamics of a Cubic Nonlinear Vibration Absorber.
Nonlinear Dynamics, 1999, 20 (3), pp.283-295. 10.1023/A:1008358825502 . hal-01580924

HAL Id: hal-01580924
https://hal.science/hal-01580924

Submitted on 3 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-01580924
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Dynamicsof a Cubic Nonlinear Vibration Absorber

SHAFIC S. OUEINI, CHAR-MING CHIN, and ALI H. NAYFEH

Department of Engineering Science and Mechanics (MC 0219), Virginia Polytechnic Institute and State
University, Blacksburg, VA 24061, U.S.A.

Abstract. We study the dynamics of a nonlinear active vibration absorber. We consider a plant model possessing
curvature and inertia nonlinearities and introduce a second-order absorber that is coupled with the plant through
user-defined cubic nonlinearities. When the plant is excited at primary resonance and the absorber frequency is
approximately equal to the plant natural frequency, we show the existence of a saturation phenomenon. As the
forcing amplitude is increased beyond a certain threshold, the response amplitude of the directly excited mode
(plant) remains constant, while the response amplitude of the indirectly excited mode (absorber) increases. We
obtain an approximate solution to the governing equations using the method of multiple scales and show that the
system possesses two possible saturation values. Using numerical techniques, we perform stability analyses and
demonstrate that the system exhibits complicated dynamics, such as Hopf bifurcations, intermittency, and chaotic
responses.
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1. Introduction

Nonlinearities are responsible for unusual phenomena in the presence of internal and/or ex-
ternal resonances. Of particular interest are systems coupled with quadratic nonlinearities and
possessing a two-to-one internal resonance. Sethna [1] was one of the first researchers to study
such systems. He conducted theoretical studies, performed analog simulations, and showed
that nonperiodic motions may exist. Theoretical and experimental studies by Nayfeh et al. [2],
Haddow et al. [3], and Balachandran and Nayfeh [4] on L-shaped structures have shown that,
when two degree-of-freedom systems coupled with quadratic nonlinearities possess a two-to-
one internal resonance and the higher mode is subjected to a primary resonance, there exists
a saturation phenomenon. When the forcing amplitude exceeds a certain threshold, the amp-
litude of the directly excited mode remains constant, and the excitation energy is channeled to
the unexcited lower mode. As the forcing amplitude increases, the response amplitude of the
lower mode increases, while the response amplitude of the higher mode saturates. Bajaj et al.
[5] and Banerjee et al. [6] investigated the response of a pendulum mounted on an oscillating
mass. They used first- and second-order averaging methods to analyze the dynamics of the
system. In addition to reporting the occurrence of periodic and chaotic motions, they found
that the saturation phenomenon predicted by the first-order averaging technique is lost when
the effect of higher-order nonlinearities is included in the model.

Recently, Oueini et al. [7] and Pratt et al. [8] exploited the saturation phenomenon in
devising an active vibration suppression technique. They introduced a second-order absorber
and coupled it with the plant through a user-defined quadratic feedback control law. Once the



Table 1. Possible feedback signals.

Sensor Fe(t) Fc(t)
Position ulu%, it'lu% uzu%, uzb't%, uzii%, upu1iil
Velocity upi3, iiqii3 liouity, tioliqiiy

Acceleration wuyii3, ii1ii  iipu?, i, iigii, iipu1iil

coupling between the plant and the absorber is established through a sensor and an actuator,
effective vibration suppression is achieved by tuning the natural frequency of the absorber to
one-half the excitation frequency.

Unlike previous studies that investigated the saturation phenomenon in quadratic systems,
we propose to ‘reverse-engineer’ the saturation phenomenon using cubic terms. We consider
a plant modeled by a second-order nonlinear differential equation and introduce an active
vibration absorber coupled with the plant via a specific set of cubic nonlinearities. We analyze
the resulting equations using the method of multiple scales and show that a saturation phe-
nomenon occurs when a one-to-one internal resonance is imposed between the plant and the
absorber. To our knowledge, this is the first instance in which the saturation phenomenon is
encountered in cubicly coupled systems.

2. System Model and Perturbation Solution

The plant is a cantilever beam whose response is governed by a nonlinear partial-differential
equation. We consider a mode that is not involved in an internal resonance with any of the
other modes. Then, application of a single-mode discretization scheme yields the ordinary-
differential equation

o+ 282[121/22 + wguz{— Slug + gzl:izu% + ggb't%uz =&3F co92t) + ax F (1), (l)

whereu, is the generalized coordinate of the mode under consideraiipiis a damping
coefficients,w, is the natural frequency, th® are constantsF and 2 are the forcing amp-
litude and frequency, respectively, is a constant gainF,(z) is a control signal, and is a
dimensionless bookkeeping parameter. The model includes the curvature nonlingarity
the inertia nonlinearitiesiu3 andiisus.

We introduce a second-order absorber and couple it with the plant through a user-defined
cubic feedback control law. Then, the equation governing the dynamics of the absorber is
given by

iiy + 262ty + wfur = &1 Fy (1), 2

whereu is the absorber coordinate afid andw; are the absorber’'s damping coefficient and
frequency, respectivelyy; is a constant gain, an#;(z) is a feedback signal. The feedback

and control signals may take different forms depending on the available sensor. We list all
possible combinations in Table 1. Furthermore, we choose the absorber’s frequency such that
w1 ~ wy (i.e., one-to-one internal resonance).



We consider the case of prary resonance (i.eQ ~ w,) and position feedback and
analyze, without loss of generality, the system of equations

i1 + 262 fugiiy + wiug = agiigud, (3)
.. 2~ 2 S 3, R 2 F .2 .2 3
lip + 2e°[lotty + whup + S1u3 + Sotigus + Szuisur = apuifus + €°F COYQ1). (4)

Using the method of multiple scales [9], we obtain an approximate solution to Equations (3)
and (4) in the form

uy ~ A1(Ty) €170 1A (Ty) e7'e1T0, (5)
up = Ap(Tp) €270 4 Ay(Ty) €270, (6)

whereTy = t, T, = %, and

dA _ _ .
2i <d—Tl + ﬂ1A1> + 841(2A2A2A1 + A1 A3 €47172) = O, (7)
2
 (dAz o N - 2T L —2iT 52T
2i d_T + [2Az ) + 886142142 + 8ao(—2A1A1A, + AlAze 12y — f €922 = Q. (8)
2
Here,
. 1 . . .
@y = gmion, Ay = goap, 0112 = (w2 — w1)To, 0212 = (w2 — )Ty,
5, = — [38 2(35 +S)] and f = —
¢ = By LN w5(382 + 03 = 20,

To facilitate the analysis, we reduce the number of the parameters in Equations (7) and (8)
by introducing the scalings

A1 =c1B1, Ax=cBy, and T, =c3T, )
where ther; are constants. Then, Equations (7) and (8) become

2i (B} + p1B1) + 841¢5¢3(2B2B2B1 + B1B; €#717) = 0, (10)

2i(Bé + w2B) + 80%0356822§2

+ 8G2c5c3(—2B1B1 By + BB, e 21Ty — caf gt _ 0, (12)
c2

where
ui = c3ft; and o; = c30;, (12)

and the prime represents differentiation with respect to the time vaffafdle keep the forcing
amplitudef as a bifurcation parameter, we get= c3. Furthermore, we let

qic3=1 and dacics3 =1 (13)



Solvingfor the constantsyve obtain

~ 11/3
o1 A=
= | |A| | and ¢, = c3 = a1 Y5 (14)
az

Moreover, we define
Se
§=—. (15)
oy
Next, we expres®,(T) andB,(T) in the polar form
1 . 1 ,
By = Sax(T) ghn® and B, = >a2(T) ghm), (16)

Substituting Equations (14-16) into Equations (10) and (11) and separating real and imaginary
parts yields

ay = —pia1 — alag siné.q, a7

ay = —aaz + a%az sind, + f sind,, (18)

a1p} = a1a5(2 + cosdy), (19)

axBy = 8a3 + atay(Cosy — 2) — f COShy, (20)
where

61 =2(B2— Brt+o1T) and 6, = 02T — pa. (21)

3. Equilibrium and Dynamic Solutions

In this section, we study the equilibrium and dynamic solutions of Equations (17-21) and their
bifurcations. To determine the equilibrium solutions, wesget a;, = 0 andd; = 6, = 0 and
obtain the algebraic equations

n1ag = —alag sinéy, (22)

Uody = a%az siné, + f sinG,, (23)

via; = a1a2(2 4 cosby), (24)

Voty = 8a3 + a2as(COSHy — 2) — f COShy, (25)
where

vi=o01+0 and vy, =oo. (26)

There are two possibilities; = 0 anda; # 0. Whena; = 0, it follows from Equations (23)
and (25) that

(15 + (v — 8a3)°las — = 0. (27)



This is the single-modsolution. Equation (27) is similar to the frequency-response equation
of the forced Duffing oscillator. The unexcited mode does not oscillate while the directly
excited mode oscillates with an amplitude that is dependent on the detynihg magnitude

of the forcing f, and the system’s initial conditions [10]. Whesn # O, it follows from
Equations (22-25) that

15+ (v — 2a5)* — a3 = 0, (28)
(n1af + p2a3)? + [voa3 — af (vy — 4a5) — az1> — a5 f> =0, (29)

which is a two-mode solution. The solutions of Equation (28) are

/.2 2 /.2 2
o 2v1 — /vi — 3u] 2 2v1 + /vi — 3u]

a,’ = 3 and a,” = 3 . (30)

Thus, the directly excited mode may oscillate at two distinct amplitudes that are functions of
the detuning parameter and the damping coefficient,, but independent of the excitation
amplitude f. In contrast, the amplitude of the indirectly excited mode is dependent on the
excitation amplitude.

To study the stability of the equilibrium solutions, we expr8ssand B, in the form

By = %(Pl —iq) €™’ and B, = %(pz —igp) €™, (31)
where thep,, andg, are real and write the modulation equations in Cartesian form as
Py = —pip1 — vigr + q1(p3 + 3q3) + 2p1p2ge. (32)
g1 = —pmaq1 + vip1 — pi(as +3p3) — 214212, (33)
Py = —Hap2 — vag2 — q2(g5 + 3pD) + 2p1pag + 8q2(p5 + 45), (34)
4o = —1ag2 + v2p2 + pa(pf + 345) — 2p191q2 — 8pa(p3 + 45 + - (35)

The stability of a particular equilibrium solution is ascertained by investigating the eigenvalues
of the Jacobian matrix of the right-hand sides of Equations (32—35). Then, a pseudo-arclength
scheme is used to trace branches of the equilibrium solutions [10, 11].

The purpose of this study is to investigate active implementation of the vibration absorber.
In this case, the frequency at which the plant oscillates can be measured, and, accordingly, the
frequency of the absorber can be adjusted. Guided by the fact that the ampiéjddﬂsjaf)
in Equation (30) are only functions gf; andv;, we choose; to be a small non-zero number.
Consequently, the magnitude @f will be constant in both the frequency- and force-response
curves. Furthermore, we set the absorber damping coefficient equal to a small but non-zero
value.

In Figure 1, we show the frequency-response curves whes- 0.0005, u, = 0.001,
vy = 0.01,8 = —1, andf = 0.0001. The plant exhibits a softening-type behavior. In
Figure 1b, we illustrate an enlargement of the boxed area labeled ‘I' in Figure la. Initially,
the response consists of the single-mode solutionrAs increased beyond the value at point
F, shown in Figure 1b, and in the presence of large disturbances, a jump to a high-amplitude
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Figure 1. Frequency-response curves when = 0.0005,u2 = 0.001,v1 = 0.01,6 = —1, andf = 0.0001.
(a) Overall frequency-response curves and (b) an enlargement of area ‘I'. Solid (dotted) lines denote stable nodes
(saddles).

plant response is possible. In this case, the response consists of the two-mode solution along
the branchF G, and the amplitude of the plant a'ézz). The two-mode solution experiences
a supercritical pitchfork bifurcation af, where the single-mode solution is reached. It is
maintained until point, where it undergoes a subcritical pitchfork bifurcation, leading to a
jump to the single-mode solution along the brarch. In the absence of large disturbances,
the response consists of the single-mode solution, which is stabld, #&te single-mode
solution undergoes a saddle-node bifurcation, and the response jumpwtere the two-
mode solution is sustained. As is increased, the response traces the ci#@e Here, the
amplitude of the plant is equal tél). At C, the response undergoes a supercritical pitchfork
bifurcation after which only the single-mode solution exists. Wheris decreased from a
high value, the single-mode response experiences a supercritical pitchfork bifurcafipn at
and the resulting two-mode solution traces the cut\@D. At D, the solution undergoes
a saddle-node bifurcation, leading to a jump to pdintvhere the response consists of the
single-mode solution thereafter. 46 is set at a value between the poisand F and a
large disturbance is imparted to the system, single- or two-mode solutions may be possible, as
discussed previously.

In Figure 2, we show the frequency-response curves whea- 0.0005, 1, = 0.001,
vy, = 001, = 1, andf = 0.0001. The plant exhibits a hardening-type behavior. In
Figure 2b, we illustrate an enlargement of the boxed area labeled ‘II' in Figure 2a; As
is increased, the response consists of the single-mode solution, which is stable. At point
A (o, = 0.001935458), the response undergoes a subcritical pitchfork bifurcation, which
leads to a jump to a two-mode dynamic solution. The dynamic solution is maintained until



0.005 (b)

0.1+

| // i \
0.0 - o | —

0.000 o-------cm-ooooo-

0.10005

0.09979
-0.02 0.00 0.02 0.00985 0.01010

0, 0,

Figure 2. Frequency-response curves whep = 0.0005,4»> = 0.001,v; = 0.01,§ = 1, andf = 0.0001.
(a) Overall frequency-response curves and (b) an enlargement of area ‘II'. Solid (dotted) lines denote stable nodes
(saddles) and bold-dashed lines denote unstable foci.

E is reached, after which the response jumps to the single-mode solution. The BrArish
unstable (saddle) and, therefore, cannot be attained. Similarly to the casé whef, there

exists a region between points and K where high-amplitude single- or two-mode solutions

may be reached in the presence of large disturbances. In the case of reverse sweep and in
the absence of large disturbances, the single-mode solution is initially stable. It experiences a
saddle-node bifurcation &t (o, = 0.003878544), leading to a jump to a two-mode dynamic
solution. Wherv; is in the regionA D, the dynamic solution coexists with the single-mode
solution. Wheny;, is less than the value &, only the single-mode solution exists.

In Figure 3, we illustrate the loci of the unstable eigenvalues of the two-mode solution
shown in Figure 2a as; is varied. In Figure 3a, we show the locus of the eigenvalues along
the branclA BC D. At point A, a single eigenvalue goes through zero, indicating a subcritical
pitchfork bifurcation. It remains real and positivesss decreased. As poiilt is approached,
two complex conjugate eigenvalues move to the right-hand side of the complex plasg. As
is decreased further, the real eigenvalue moves to the right until poistreached, where
it reverses direction. At poinD, it crosses to the left-hand plane through zero, indicating
a turning point. Two complex eigenvalues remain in the right-hand side, and the equilibrium
solution becomes an unstable focus. In Figure 3b, we illustrate the locus of the unstable eigen-
values for branctDE F. As o5 is increased, the imaginary parts of the eigenvalues decrease
until they become zero beyond poiat where the fixed point becomes a saddle. Then, the
remaining two positive real eigenvalues split and move in opposite directions. At point
one eigenvalue is equal to zero, and a non-classical pitchfork bifurcation occurs where the
branches of the unstable single and two-mode solutions meet.
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Figure 3. Loci of the unstable eigenvalues of the two-mode solution whee- 0.0005,4» = 0.001,v; = 0.01,
f =0.0001, ands = 1. (a) Locus along branch BC D and (b) locus along brancRE F.
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Figure 4. Two-dimensional projections of the phase portraits and Poinsactions of the response whes- 1,
w1 = 0.0005, 45 = 0.001,v; = 0.01, andf = 0.0001. (a)o» = 0.002 and (bl» = 0.0036.
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Figure 5. Time responses wheéi = 1, u1 = 0.0005, u» = 0.001, v = 0.01, f = 0.0001, and
o2 = 0.001740453. Initial conditions on the unstable manifold of braaéh

To investigate the nature of the dynamic solutions, we numerically integrated Equa-
tions (32—-35) between andG and found that the response is chaotic. Therefore, we analyzed
the system between and in the neighborhood of poindG. In Figure 4, we show two-
dimensional projections of the phase portraits and Poincaré sections for two vatyeh atf
lie in the region between points andG. Clearly, the system exhibits high-amplitude chaotic
responses.

Next, we studied the system dynamics near pdintWheno, is increased beyond, the
response jumps to a chaotic attractor. However, when decreased, the chaotic response is
maintained for a small region to the left of poiat Further decreases i lead to the single-
mode solution. Here, the chaotic attractor may be destroyed through a Shilnikov scenario or
a boundary crisis [10]. In the presence of orbits homoclinic to a saddle-focus, Shilnikov's
theorem predicts chaotic behavior on the outer side of the orbit if the ratio

g
y = —
A1
is less than one, wheeis the value of the real part of the stable complex conjugate eigen-
values and.; is the value of the unstable real eigenvalue. We looked for orbits homoclinic to
the saddle-focus close to point A. To this end, we searched for limit cycles by choosing initial
conditions in both directions on the unstable manifolds of the saddle-focus on btéhdh
Figure 5, we show time traces of the responses. All initial conditions lead to the single-mode



Table 2. Values of the ratio on branchA B.

op 0.001872 0.001899 0.001918 0.001930 0.001935
r 1.10 1.59 2.74 7.42 242
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Figure 6. Time evolution of the plant amplitude wheén= 1, u7 = 0.0005, x> = 0.001,v; = 0.01, and
f =0.0001. (a)op = 0.003878056, (by», = 0.00387801, (cy> = 0.0038775, and (dy» = 0.003876.

solution. In the event that a homoclinic orbit existed, we monitored the ratio Table 2,

we list the value of the ratio as A is approached. Since the value is greater than one and
increasing, we concluded that a Shilnikov scenario is not possible. Therefore, the chaotic
attractor is destroyed by a boundary crisis.

Finally, we investigated the system dynamics near pGintvhere the single-mode re-
sponse undergoes a saddle-node bifurcatios, at 0.003878544. Beyonds, the system
exhibits an intermittent response. The response of the plant alternates between two single-
mode states: the old (ghost) solution néamand the unstable solution on brandtH. As
o, is decreased, the frequency of intermittency increases, as illustrated in Figure 6. Chaos is
reached through a type | intermittency.

Based on the frequency-response analysis, it appears that it is possible to implement the
proposed absorber whén< 0 and the forcing amplitude is small. Consequently, we study
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Figure 7. Force-response curves whegp = 0.0005,4» = 0.001, andv; = 0.01. (8)§ = —1 and @ = —0.005
and (b)s§ = 1 andoy = 0.005. Solid (dotted) lines denote stable nodes (saddles) and bold-dashed lines denote
unstable foci.

the effect of varying the forcing amplitude on the response of the system. In Figure 7, we
display the force-response curves when = 0.0005, u, = 0.001, andv; = 0.01. The
system exhibits a two-valued saturation phenomenon.

First, we analyze the case whér= —1 and ¢ = —0.005, which is shown in Figure 7a.
Initially, as f is increased from zero and in the absence of large disturbances, the response
consists of the single-mode solution, which is stable. The solution goes through a saddle-
node bifurcation a4, leading to a stable two-mode solution®&tAs f is increased beyond
fs, the response of the directly excited mode saturates at the U§Pueand the response
of the unexcited mode increases. At poftit the response experiences a subcritical Hopf
bifurcation leading to a jump to a dynamic solution. Whén> f¢, the system may be
attracted to either the constant single-mode solution or to a two-mode dynamic solution. When
f is decreased, there are two possible paths for the solutions. If the initial conditions are small,
the system response will consist of the single-mode solution. This solution loses stability
through a subcritical pitchfork bifurcation gt = f-. Whenf < f¢, the responses of both
modes undergo jumps and are attracted to a dynamic solution. If the initial conditions are large,
the system may be attracted directly to a dynamic solution. Because the Hopf bifurcation at
H is subcritical, a dynamic solution may coexist with the stable two-mode solution when
f < fu. If the constant two-mode solution is reached, thery as decreased, the solution
will trace the curveB D and will undergo a saddle-node bifurcation/gtleading to a jump to
the single-mode solution &.

In Figure 7b, we show force-response curves whiea 1 ando, = 0.005. We note the
emergence of a new region of dynamic solutions between the piraad H,. Furthermore,
the subcritical pitchfork bifurcation & is replaced with a supercritical pitchfork bifurcation.
When 0 < f < f4 and in the absence of large disturbances, the response consists of the

11
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Figure 8. Projection of the Hopf bifurcation loci on th&-f plane whenu; = 0.0005 anduy = 0.001.
(8) oo = —0.005 and (by> = 0.005. Solid (dotted) lines denote supercritical (subcritical) bifurcations.

single-mode solution. Whefi > f4 and depending on the initial condition, the response may
be attracted to either a dynamic or a constant solution in the reBidn In this case, the
plant's amplitude may saturate at the va@@. Subsequently, the solution undergoes a su-
percritical Hopf bifurcation aH;. At H,, the system experiences a reverse supercritical Hopf
bifurcation after which the two-mode solution is attained. Then, the single-mode solution is
reached through a supercritical pitchfork bifurcatiorCatSimilar results are expected when
f is decreased. However, a stable two-mode constant solution may be attained along branch
H.D.

Based on the results of the force-response analysis, we conclude that implementation of the
absorber is possible only for small forcing amplitudes wbBea 0. In Figure 8, we display
the loci of the Hopf bifurcation points in thie-f plane for different values of the detuning
parameten;. It is clear that Hopf bifurcations that may lead to high-amplitude periodic or
chaotic motions are possible.

4. Summary

We study the dynamics of a nonlinear vibration absorber. The absorber is based on a cubic
feedback control law. We develop the equations of motion and obtain an approximate solution
to the nonlinear differential equations using the method of multiple scales. Then, we conduct
bifurcation analyses and investigate the performance of the control strategy. We show that a
saturation phenomenon exists, and that it can be used, in a very limited range, for successful
application of the technigue. Additionally, we demonstrate the existence of dynamic solutions
that may lead to high-amplitude or chaotic responses.
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