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Abstract

This paper presents the LIG-CRIStAL
submission to the shared Automatic Post-
Editing task of WMT 2017. We propose
two neural post-editing models: a mono-
source model with a task-specific atten-
tion mechanism, which performs particu-
larly well in a low-resource scenario; and
a chained architecture which makes use of
the source sentence to provide extra con-
text. This latter architecture manages to
slightly improve our results when more
training data is available. We present and
discuss our results on two datasets (en-de
and de-en) that are made available for the
task.

1 Introduction

It has become quite common for human translators
to use machine translation (MT) as a first step, and
then to manually post-edit the translation hypoth-
esis. This can result in a significant gain of time,
compared to translating from scratch (Green et al.,
2013). Such translation workflows can result in
the production of new training data, that may be
re-injected into the system in order to improve it.
Common ways to do so are retraining, incremental
training, translation memories, or automatic post-
editing (Chatterjee et al., 2015).

In Automatic Post-Editing (APE), the MT sys-
tem is usually considered as a blackbox: a separate
APE system takes as input the outputs of this MT
system, and tries to improve them. Statistical Post-
Editing (SPE) was first proposed by Simard et al.
(2007). It consists in training a Statistical Machine
Translation (SMT) system (Koehn et al., 2007), to
translate from translation hypotheses to a human
post-edited version of those. Béchara et al. (2011)
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then proposed a way to integrate both the transla-
tion hypothesis and the original (source language)
sentence. More recent contributions in the same
vein are (Chatterjee et al., 2016; Pal et al., 2016).

When too little training data is available, one
may resort to using synthetic corpora: with sim-
ulated PE (Potet et al., 2012), or round-trip
translation (Junczys-Dowmunt and Grundkiewicz,
2016).

Recently, with the success of Neural Machine
Translation (NMT) models (Sutskever et al., 2014;
Bahdanau et al., 2015), new kinds of APE methods
have been proposed that use encoder-decoder ap-
proaches (Junczys-Dowmunt and Grundkiewicz,
2016, 2017; Libovický et al., 2016; Pal et al.,
2017; Hokamp, 2017), in which a Recurrent Neu-
ral Network (RNN) encodes the source sequence
into a fixed size representation (encoder), and an-
other RNN uses this representation to output a
new sequence. These encoder-decoder models are
generally enhanced with an attention mechanism,
which learns to look at the entire sequence of en-
coder states (Bahdanau et al., 2015; Luong et al.,
2016).

We present novel neural architectures for au-
tomatic post-editing. Our models learn to gener-
ate sequences of edit operations, and use a task-
specific attention mechanism which gives infor-
mation about the word being post-edited.

1.1 Predicting Edit Operations

We think that post-editing should be closer to
spelling correction than machine translation. Our
work is based on Libovický et al. (2016), who
train a model to predict edit operations instead of
words. We predict 4 types of operations: KEEP,
DEL, INS(word), and EOS (the end of sentence
marker). This results in a vocabulary with three
symbols plus as many symbols as there are possi-
ble insertions.



A benefit of this approach is that, even with little
training data, it is very straightforward to learn to
output the translation hypothesis as is (MT base-
line). We want to avoid a scenario where the APE
system is weaker than the original MT system and
only degrades its output. However, this approach
also has shortcomings, that we shall see in the re-
mainder of this work.

Example If the MT sequence is "The cats
is grey", and the output sequence of edit
ops is "KEEP DEL INS(cat) KEEP KEEP
INS(.)", this corresponds to doing the fol-
lowing sequence of operations: keep "The",
delete "cats", insert "cat", keep "is", keep
"grey", insert "." The final result is the post-
edited sequence "The cat is grey ."

We preprocess the data to extract such edit se-
quences by following the shortest edit path (sim-
ilar to a Levenshtein distance, without substitu-
tions, or with a substitution cost of +∞).

1.2 Forced Attention
State-of-the-art NMT systems (Bahdanau et al.,
2015) learn a global attention model, which helps
the decoder look at the relevant part of the input
sequence each time it generates a new word. It is
defined as follows:

attnglobal(h, st) =
A∑
i=1

atihi (1)

ati = softmax(eti) (2)

eti = vT tanh(W1hi +W2st + b2) (3)

where st is the current state of the decoder, hi is
the ith state of the encoder (corresponding to the
ith input word). A is the length of the input se-
quence. W1, W2 and b2 are learned parameters of
the model. This attention vector is used to gener-
ate the next output symbol wt and to compute the
next state of the decoder st+1.

However, we don’t predict words, but edit op-
erations, which means that we can do stronger as-
sumptions as to how the output symbols align with
the input. Instead of a soft attention mechanism,
which can look at the entire input and uses the
current decoder state st to compute soft weights
ai; we use a hard attention mechanism which di-
rectly aligns t with i. The attention vector is then
attnforced(h, st) = hi.

The t → i alignment is pretty straightforward:
i is the number of KEEP and DEL symbols in the
decoder’s past output (w1, . . . , wt−1) plus one.

Task Train Dev
Test

Extra
2016

en-de
23k

1000 2000
500k

(12k + 11k) 4M
de-en 24k 1000 none none

Table 1: Size of each available corpus (number of
SRC, MT, PE sentence tuples).

Following the example presented earlier,
if the decoder’s past output is "KEEP DEL
INS(cat)", the next token to generate is nat-
urally aligned with the third input word (i = 3),
i.e., we’ve kept "The" and replaced "cats"
with "cat". Now, we want to decide whether
we keep the third input word "is", delete it, or
insert a new word before it.

If the output sequence is too short, i.e., the end
of sentence marker EOS is generated before the
pointer i reaches the end of the input sequence, we
automatically pad with KEEP tokens. This means
that to delete a word, there must always be a cor-
responding DEL symbol. This ensures that, even
when unsure about the length of the output se-
quence, the decoder remains conservative with re-
spect to the sequence to post-edit.

1.3 Chaining Encoders

The model we proposed does not make any use of
the source side SRC. Making use of this informa-
tion is not very straightforward in our framework.
Indeed, we may consider using a multi-encoder
architecture (Zoph and Knight, 2016; Junczys-
Dowmunt and Grundkiewicz, 2017), but it does
not make much sense to align an edit operation
with the source sequence, and such a model strug-
gles to learn a meaningful alignment.

We propose a chained architecture, which com-
bines two encoder-decoder models (see fig. 1). A
first model SRC → MT, with a global attention
mechanism, tries to mimic the translation process
that produced MT from SRC. The attention vectors
of this first model summarize the part of the SRC
sequence that led to the generation of each MT to-
ken. A second model MT → OP learns to post-edit
and uses a forced attention over the MT sequence,
as well as the attention vectors over SRC com-
puted by the first system. Both models are trained
jointly, by optimizing a sum of both losses.
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Figure 1: There are two bidirectional encoders
that read the SRC and MT sequences. We max-
imize two training objectives: a translation ob-
jective (SRC → MT) and a post-editing objec-
tive (MT → OP). The OP decoder does a forced
alignment with the MT encoder (t → i), and uses
the corresponding global attention context ci over
SRC: c′i = tanh(H1ci +H2h

′
i + b′). The MT de-

coder and MT encoder share the same embeddings.

2 Experiments

This year’s APE task consists in two sub-tasks: a
task on English to German post-editing in the IT
domain (en-de), and a task on German to English
post-editing in the medical domain (de-en). Ta-
ble 1 gives the size of each of the corpora avail-
able. The goal of both tasks is to minimize the
HTER (Snover et al., 2006) between our automatic
post-editing output, and the human post-editing
output.

The en-de 23k training set is a concatenation
of last year’s 12k dataset, and a newly released
11k dataset. A synthetic corpus was built and
used by the winner of last year’s edition (Junczys-
Dowmunt and Grundkiewicz, 2016), and is avail-
able this year as additional data (500k and 4M cor-
pora).

For the en-de task, we limit our use of external
data to the 500k corpus. For the de-en task, we
built our own synthetic corpus, using a technique
similar to (Junczys-Dowmunt and Grundkiewicz,
2016).

2.1 Synthetic Data

Desiderata We used similar data selection tech-
niques as Junczys-Dowmunt and Grundkiewicz
(2016), applied to the de-en task. However, we
are very reticent about using as much parallel

data as the authors did. We think that access to
such amounts of parallel data is rarely possible,
and the round-trip translation method they used
too cumbersome and unrealistic. To show a fair
comparison, this paper should show APE scores
when translating from scratch with an MT system
trained with all this parallel data.

To mitigate this, we decided to limit our use
of external data to monolingual English (common-
crawl). So, the only parallel data we use is the
de-en APE corpus.

PE side Similarly to Junczys-Dowmunt and
Grundkiewicz (2016) we first performed a coarse
filtering of well-formed sentences of common-
crawl. After this filtering step, we obtained about
500M lines. Then, we estimated a trigram lan-
guage model on the PE side of the APE corpus,
and sorted the 500M lines according to their log-
score divided by sentence length. We then kept the
first 10M lines. This results in sentences that are
mostly in the medical domain.

MT and SRC sides Using this English corpus,
and assuming its relative closeness to the PE side
of the APE corpus, we now need to generate SRC
and MT sequences. This is where our approach dif-
fers from the original paper.

Instead of training two SMT systems PE →
SRC and SRC → MT on huge amounts of paral-
lel data, and doing a round-trip translation of the
monolingual data, we train two small PE → SRC
and PE → MT Neural Machine Translation sys-
tems on the APE data only.

An obvious advantage of this method is that we
do not need external parallel data. The NMT sys-
tems are also fairly quick to train, and evaluation
is very fast. Translating 10M lines with SMT can
take a very long time, while NMT can translate
dozens of sentences at once on a GPU.

However, there are strong disadvantages: for
one, our SRC and MT sequences have a much
poorer vocabulary as those obtained with round-
trip translation (because we only get words that
belong to the APE corpus). Yet, we hope that the
richer target (PE) may help our models learn a bet-
ter language model.

TER filtering Similarly to Junczys-Dowmunt
and Grundkiewicz (2016), we also filter the triples
to be close to the real PE distribution in terms of
TER statistics. We build a corpus of the 500k clos-
est tuples. For each tuple in the real PE corpus,



Token Count Percentage
KEEP 326581 66.9%
DEL 76725 15.7%
" 5170 1.1%
, 3249 0.7%

die 2461 0.5%
der 1912 0.4%
zu 1877 0.4%

werden 1246 0.3%
KEEP 18367 90.4%
DEL 801 3.9%
" 199 1.0%
> 130 0.6%
, 93 0.5%
zu 63 0.3%

werden 37 0.2%
wird 30 0.1%

Table 2: Top 8 edit ops in the target side of the
training set for en-de (top), and most generated
edit ops by our primary (500k + 23k) system on
dev set (bottom).

we select a random subset of 1000 tuples from
the synthetic corpus and pick the tuple whose eu-
clidean distance with the real PE tuple is the low-
est. This tuple cannot be selected again. We loop
over the real PE corpus until we obtain a filtered
corpus of desirable size (500k).

2.2 Experimental settings

We trained mono-source forced models, as well
as chained models for both APE tasks. We also
trained mono-source models with a global atten-
tion mechanism, similar to (Libovický et al., 2016)
as a measure of comparison to our forced models.

For en-de, we trained two sets of models (with
the same configuration) on the 12k train set (to
compare with 2016 competitors), and on the new
(23k) train set.

The encoders are bidirectional LSTMs of size
128. The embeddings have a size of 128. The first
state of the decoder is initialized with the last state
of the forward encoder (after a non-linear transfor-
mation with dropout). Teacher forcing is used dur-
ing training (instead of feeding the previous gen-
erated output to the decoder, we feed the ground
truth). Like Bahdanau et al. (2015), there is a max-
out layer before the final projection.

We train our models with pure SGD with a
batch size of 32, and an initial learning rate of 1.0.

We decay the learning rate by 0.8 every epoch for
the models trained with real PE data, and by 0.5
every half epoch for the models that use additional
synthetic data. The models are evaluated periodi-
cally on a dev set, and we save checkpoints for the
best TER scores.

We manually stop training when TER scores on
the dev set stop decreasing, and use the best check-
point for evaluation on the test set (after about 50k
steps for the small training sets, and 120k steps for
the larger ones).

Unlike Junczys-Dowmunt and Grundkiewicz
(2016), we do not use subword units, as we found
them not to be beneficial when predicting edit op-
erations. For the larger datasets, our vocabularies
are limited to the 30,000 most frequent symbols.

Our implementation uses TensorFlow (Abadi
et al., 2015), and runs on a single GPU.1

2.3 Results & Discussion

As shown in table 3, our forced (contrastive 1) sys-
tem gets good results on the en-de task, in limited
data conditions (12k or 23k). It improves over the
MT and SPE baselines, and over the global atten-
tion baseline (Libovický et al., 2016). The chained
model, which also uses the source sentence, is able
to harness larger volumes of data, to obtain yet
better results (primary model). However, it lags
behind large word-based models trained on larger
amounts of data (Junczys-Dowmunt and Grund-
kiewicz, 2016, 2017; Hokamp, 2017).2

Figure 2 compares alignments performed by our
attention models. We see that the global attention
model struggles to learn a meaningful alignment
on a small dataset (12k). When more training data
is available (23k), it comes closer to our forced
alignment.

We see that our good results on en-de do not
transfer well to de-en (see table 4). The BLEU
scores are already very high (about 16 points
above those of the en-de data, and 10 points above
the best APE outputs for en-de). This is probably
due to the translation direction being reversed (be-
cause of its rich morphology, German is a much
harder target that English). The results obtained
with a vanilla SMT system (SPE) seem to confirm
this difficulty.

1Our source code, and the configurations used in the ex-
periments are available here: https://github.com/
eske/seq2seq/tree/APE

2More results are published on the web page of the task:
http://statmt.org/wmt17/ape-task.html

https://github.com/eske/seq2seq/tree/APE
https://github.com/eske/seq2seq/tree/APE
http://statmt.org/wmt17/ape-task.html


Model PE attention Data
dev test 2016 test 2017

Steps
TER BLEU

Baseline none 24.81 24.76 24.48 62.49
SPE 12k 24.64 24.69 62.97

Best 2016 (AMU) 4M + 500k + 12k 21.46 21.52
Best 2017 (FBK) 23k + ? 19.60 70.07

Mono-source
global

12k
24.15 24.26 29000

forced (contr. 1) 23.20 23.32 23.51 64.52 16600

Chained
forced (contr. 2) 23.40 23.30 23.66 64.46 23600
forced (primary) 500k + 12k 22.77 22.94 23.22 65.12 119200

Mono-source
global

23k
23.60 23.55 47200

forced (contr. 1) 23.07 22.89 23.08 65.57 38800

Chained
forced (contr. 2) 22.61 22.76 23.15 64.94 50400
forced (primary) 500k + 23k 22.03 22.49 22.81 65.91 121200

Table 3: Results on the en-de task. The SPE results are those provided by the organizers of the task (SMT
system). The AMU system is the winner of the 2016 APE task (Junczys-Dowmunt and Grundkiewicz,
2016). FBK is the winner of this year’s edition. We evaluate our models on dev every 200 training steps,
and take the model with the lowest TER. The steps column gives the corresponding training time (SGD
updates). 500k + 12k is a concatenation of the 500k synthetic corpus with the 12k corpus oversampled
20 times. 500k + 23k is a concatenation of 500k with 23k oversampled 10 times.

The only reason why our de-en systems are able
to not deteriorate the baseline, is that they only
learned to do nothing, by producing arbitrarily
long sequences of KEEP symbols. Furthermore,
we see that the best results are obtained very early
in training, before the models start to overfit and
deteriorate the translation hypotheses on the dev
set (see steps column).

The difference between our scores on the de-
en dataset is not statistically significant, therefore
we cannot draw conclusions as to which model is
the best. Furthermore, it turns out that our mod-
els output almost only KEEP symbols, resulting in
sequences almost identical to the MT input, which
explains why the scores are so close to those of the
baseline (see table 5).

Adding substitutions is not particularly useful
as it leads to even more data sparsity: it doubles
the vocabulary size, and results in less DEL sym-
bols, and less training feedback for each individual
insertion.

Future work One major problem when learning
to predict edit ops instead of words, is the class im-
balance. There are much more KEEP symbols in
the training data as any other symbol (see tables 2
and 5). This results in models that are very good at
predicting KEEP tokens (do-nothing scenario), but
very cautious when producing other symbols. This

also results in bad generalization as most symbols
appear only a couple of times in the training data.

We are investigating ways to get a broader train-
ing signal when predicting KEEP symbols. This
can be achieved either by weight sharing, or by
multi-task training (Luong et al., 2016).

Another direction that we may investigate, is
how we obtain sequences of edit operations (from
PE data in another form). Our edit operations
are extracted artificially by taking the shortest edit
path between MT and PE. Yet, this does not neces-
sarily correspond to a plausible sequence of oper-
ations done by a human. One way to obtain more
realistic sequences of operations, would be to col-
lect finer-grained data from human post-editors:
key strokes, mouse movements and clicks could
be used to reconstruct the ‘true’ sequence of edit
operations.

Finally, we chose to work at the word level,
when a human translator often works at the charac-
ter level. If a word misses a letter, he won’t delete
the entire word and write it back. However, work-
ing with characters poses new challenges: longer
sequences means longer training time, and more
memory usage. Also, it is easier to learn seman-
tics with words (a character embedding does less
sense). Yet, using characters means more train-
ing data, and less sparse data, which could be very
useful in a post-editing scenario.



Model PE attention Data
train-dev dev test 2017

Steps
TER BLEU

Baseline none 16.11 15.58 15.55 79.54
SPE 24k 15.74 79.28

Best 2017 (FBK) 24k + ? 15.29 79.82

Mono-source
global

24k
16.06 15.55 5200

forced (contr. 1) 16.05 15.57 15.62 79.48 3400

Chained
forced (contr. 2) 16.02 15.63 15.68 79.35 7000
forced (primary) 500k + 24k 15.98 15.67 15.53 79.46 27200

Table 4: Results on the de-en task. Because the test set was not available before submission, we used
a small part (1000 tuples) of the training set as a train-dev set. This set was used for selecting the best
models, while the provided dev set was used for final evaluation of our models. The 500k + 24k corpus
is a concatenation of our synthetic corpus with the 24k corpus oversampled 10 times.

(a) Global attention 12k train set (b) Global attention 23k train set (c) Forced attention

Figure 2: Alignments of predicted edit operations (OP) with translation hypothesis (MT), on en-de dev
set, obtained with different attention models.

Token Count Percentage
KEEP 382891 78.19%
DEL 51977 10.61%
the 2249 0.46%
, 1691 0.35%
of 1620 0.33%
to 1022 0.21%
a 952 0.19%
in 919 0.19%

Token Count Percentage
KEEP 17861 99.62%
DEL 52 0.29%
UNK 4 0.02%
: 3 0.02%
the 2 0.01%
Have 2 0.01%
A 1 0.01%
> 1 0.01%

Table 5: Top 8 edit ops in the target side of the training set for de-en (left), and most generated edit ops
by our primary system on train-dev (right).
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