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Abstract

Linear programming relaxations are central to MAP in-
ference in discrete Markov Random Fields. The ability to
properly solve the Lagrangian dual is a critical component
of such methods. In this paper, we study the benefit of us-
ing Newton-type methods to solve the Lagrangian dual of a
smooth version of the problem. We investigate their ability
to achieve superior convergence behavior and to better han-
dle the ill-conditioned nature of the formulation, as com-
pared to first order methods. We show that it is indeed pos-
sible to efficiently apply a trust region Newton method for a
broad range of MAP inference problems. In this paper we
propose a provably convergent and efficient framework that
includes (i) excellent compromise between computational
complexity and precision concerning the Hessian matrix
construction, (ii) a damping strategy that aids efficient opti-
mization, (iii) a truncation strategy coupled with a generic
pre-conditioner for Conjugate Gradients, (iv) efficient sum-
product computation for sparse clique potentials. Results
for higher-order Markov Random Fields demonstrate the
potential of this approach.

1. Introduction
Many computer vision problems can be modelled us-

ing Markov Random Fields (MRFs). Maximum a posteriori
(MAP) estimation in an MRF assigns labels to the nodes, in
order to maximize their joint probability distribution. How-
ever, MAP inference is NP-hard for a general graph and
several approaches exist to achieve approximate solutions
- graph cuts, belief propagation and LP relaxation based
methods [17]. In recent years, higher-order MRFs have
achieved excellent results in various applications, since they
model far-reaching interactions between the nodes. While
the topic of inference in pairwise MRFs is well studied, de-
velopment of scalable and efficient techniques for higher
order models is evolving [15], [21], [18], [10], [20], [40].

The LP relaxation approach has led to state-of-the-art al-
gorithms and also, provides a theoretical foundation to the

topic of MAP inference. An attractive property of this ap-
proach is that it readily lends itself to inference in higher-
order MRFs [21], [39]. Solving the LP relaxation in the
primal is not scalable and the better approach is to solve
the dual by exploiting the graph structure of the problem
[37], [41]. The various approaches to solve the dual can be
categorized into coordinate optimization and gradient based
methods. Block coordinate methods converge fast but can
get stuck in sub-optimal corners when optimizing the non-
smooth dual [39], [20]. Since, we can recover better integer
primal labels when closer to the optimum of the non-smooth
dual, this can lead to poor solutions. On the other hand, su-
pergradient methods can theoretically reach the global op-
timum [22]. However, they have an O( 1

ε2 ) rate of conver-
gence towards an ε-accurate solution.

These drawbacks can be addressed by approximating the
dual with a smooth version. Smoothing the dual and ap-
plying accelerated gradient techniques was introduced by
[16] and was further studied by [33], [34]. These algorithms
reach an ε-accurate solution in O( 1

ε ) iterations. Block co-
ordinate approaches can also work with a smooth objective
[26], [14], [28], which allows these algorithms to avoid sub-
optimal corners. Some of these methods [14] can still get
stuck, when the smoothing is reduced as we go closer to the
optimum, in order to get more accurate results. Also, the
scope for parallelization is more limited in block coordinate
optimization methods compared to gradient based methods.

Alternating Direction Method of Multipliers (ADMM)
inspired methods [25], [27] work with an augmented La-
grangian, which is also a smooth objective. However, con-
vergence rate analysis for many of these methods has not
been addressed and it is observed in practice, too. For exam-
ple, AD3 [25] works well for many medium sized problems
but can fail to converge in some instances. Also, scaling
these methods to large vision problems with higher order
cliques, has not been successful so far.

In recent years, Newton-type methods have led to state-
of-the-art results in various Machine Learning problems
[36], [24], [23]. These methods are able to take a bet-
ter direction by considering curvature information and have
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quadratic convergence rate when sufficiently close to the
optimum. One of the challenges while solving any opti-
mization problem, is the conditioning of the objective. In-
tuitively, a problem is ill-conditioned if the change in ob-
jective value, due to a perturbation in variable value, varies
radically depending on the direction of the perturbation.
People have found that first order methods are faster when
the condition number is small or moderate but second-
order Newton-type methods perform much better for ill-
conditioned problems [11]. In MAP inference, the smooth-
ing has to be reduced as one gets closer to the opimum,
leading to a considerably ill-conditioned dual objective.

The main disadvantage of Newton-type methods is the
need to compute the Hessian, which can be very costly.
However, it is worth investigating whether this is indeed
the case or not for the problem in hand. Moreover, quasi-
Newton methods which work with a Hessian approxima-
tion, can also lead to state-of-the-art results [36], [5].

Our contributions are summarized as follows: (i) We
show that for the smoothing based approach, it is possible
to efficiently compute the Hessian and Hessian-vector prod-
uct for a broad class of problems. (ii) We present a study of
how to adapt Newton-type methods for MAP inference in
higher-order MRFs. (iii) We demonstrate an efficient way to
perform sum-product inference in chains of sparse pattern-
based higher order cliques. This greatly enables the applica-
bility of smoothing based approach for inference in higher
order MRFs. (iv) We showcase how Newton-type methods
can beat first order methods for higher-order datasets. The
remainder of this paper is organized as follows: section 2
outlines the concept of MAP inference and the smoothing
based approach. The main contributions of the paper are
presented in sections 3 and 4, while experimental validation
is in section 5, with a concluding discussion.

2. MAP inference by optimizing a smooth dual

Consider a graph G, where V is the set of nodes, repre-
senting the random variables and C is the set of cliques,
which enforce a certain relationship (e.g., smoothness)
among the nodes they contain. Each node takes a label from
a discrete set l. For example, object detection can be for-
mulated using an MRF, where each node corresponds to a
part of the object, cliques represent geometric constraints
between the parts and the labels are locations in the im-
age. MAP inference is the task of finding the labeling that
maximizes the joint probability distribution of these random
variables. It can be formulated as an equivalent energy min-
imization problem, as follows,

minimize
∑
c∈C

θc(xc) +

n∑
i=1

θi(xi) (1)

where θi(xi) is the potential of node i for label xi and
θc(xc) is the potential of clique c for label xc. Cliques
having more than two nodes become higher-order cliques.

Further, this energy minimization problem can be repre-
sented as an Integer Linear Program (ILP) as follows,

minimize
∑
c

∑
xc

θc(xc)φc(xc) +
∑
i

∑
xi

θi(xi)φi(xi)

subject to
∑
xc\i

φc(xc) = φi(xi), ∀c, i ∈ c, xi∑
xi

φi(xi) = 1, ∀i;
∑
xc

φc(xc) = 1, ∀c

φi(xi) ∈ {0, 1},∀i, xi; φc(xc) ∈ {0, 1}∀c,xc.
(2)

Here, φi(xi) and φc(xc) are indicator vectors for a given
node i (resp., clique c) for a label xi (resp., xc) and they are
the discrete optimization variables. The constraints repre-
sent a polytope, called the Marginal polytope. Relaxing the
integrality constraint (last line), results in the LP relaxation,
which is defined over the Local polytope.

The Lagrangian dual of this LP relaxation is obtained
through dual decomposition [22], [38]. The underlying idea
is to decompose the graph into tractable sub-graphs, in order
to derive the Lagrangian. This results in a concave, uncon-
strained and non-smooth optimization problem. Especially,
if one treats each clique as the tractable sub-graph, then the
approach given in [38], leads to the following dual,

max.
δ

∑
c

min.
xc

(
θc(xc)−

∑
i:i∈c

δci(xi)
)

+
∑
i

min.
xi

(
θi(xi) +

∑
c:i∈c

δci(xi)
) (3)

Here the dual variables are δci(xi), for each label xi of each
node i within each clique c. If all the cliques have k nodes
each, with the nodes taking l labels, then the total number
of dual variables is |C|.k.l. We will denote this number as
N and δ ∈ RN , is the vector of dual variables. We note
that the size of the dual is much lesser than the primal (2),
hence, there has been considerable research effort towards
solving the MAP problem through the dual.

In MAP inference, there is an interplay between the sizes
of the graph and the sub-graphs within dual decomposi-
tion [21] [42]. For medium sized graphs, decomposing
into individual cliques, leads to excellent practical conver-
gence. However, for large graphs, only bigger sub-graphs
like chains of cliques lead to practical convergence [21],
[29]. We would like to emphasize that the formulation
shown in (3) decomposes the graph according to the cliques
but in general, the sub-graphs can be bigger regions.

2.1. Smooth dual

The optimization of the non-smooth dual (3) has slow
convergence and can stall at a point away from the opti-



mum. In order to reach closer to the optimum of the non-
smooth dual, optimization over smoother versions are car-
ried out. The smooth dual can be obtained by adding to
the primal objective (2), entropies corresponding to all the
nodes and cliques. The dual of this modified problem can
be derived based on duality theory (refer [28], [16] for fur-
ther details). The smooth dual looks very similar to the
non-smooth one, where each minimum operation in (3) is
replaced by the negative soft-max function. The smooth
optimization problem takes the following form,

max.
δ

∑
c

smin
xc

(
θc(xc)−

∑
i:i∈c

δci(xi); τ
)

+
∑
i

smin
xi

(
θi(xi) +

∑
c:i∈c

δci(xi); τ
) (4)

We will denote the smooth dual function as g(δ). The
negative soft-max function is defined as smin

x
(f(x); τ) =

−1
τ log

∑
x exp(−τf(x)). As τ increases, (4) is a closer

approximation of (3) and we get closer to the optimum of
the non-smooth dual. However, a smooth approximation
becomes increasingly ill-conditioned as it approaches the
shape of the non-smooth problem (§7, [31]). Hence, it is
costlier to optimize for larger values of τ . It is better to start
with a very smooth version and switch to less smoothness,
with warm start from the previous smoother version [34].

3. Trust-Region Newton for MAP Inference
The central concept in Newton-type methods is the use

of curvature information to compute the search direction.
In each iteration, a local quadratic approximation is con-
structed and a step towards the minimum of this quadratic
is taken. For the smooth dual g(δ), the equations to obtain
the Newton direction are shown below. In these equations,
B(δ) ∈ RNXN carries the curvature information and can
be either the exact Hessian (∇2g(δ)) or a modified Hessian
or a Hessian approximation (e.g., quasi-Newton).

g(δ + p) ≈ g(δ) +∇g(δ)Tp+ pTB(δ)p (5)

q(p) = ∇g(δ)Tp+ pTB(δ)p (6)

p∗ = argmin
p
∇g(δ)Tp+ pTB(δ)p (7)

∴ B(δ)p∗ = −∇g(δ) (8)

Here, the minimum p∗ of the quadratic approximation q(p)
will be a descent direction for positive definite B(δ) and a
line search along this direction determines the step size. For
unconstrained problems, the Newton direction is found by
solving the linear system (8). Since, N is large for com-
puter vision problems, we use Conjugate Gradients (CG) to
obtain the Newton direction in our work.

Figure 1. The two components of the Hessian. Within each compo-
nent, blocks of the same color have the same values. In component
one, there are as many unique blocks as cliques. In component
two, each block-row/column has the same blocks.

For a Newton-type method, if B(δ) is the exact Hessian
(∇2g(δ)) and if the backtracking line search tests full step
length first, quadratic convergence is achieved, when suffi-
ciently close to the optimum [4]. This is desirable, when
compared to first order methods. As mentioned in section
2.1, smoothing is reduced as the algorithm proceeds and
this results in ill-conditioning. Newton-type methods have
some robustness against ill-conditioning due their affine in-
variance, i.e., for some functions f(x) and f̄(x̄) = f(Ax),
where A is an invertible square matrix, the iterates of
Newton-type methods will be related as p̄k = Apk. Hence,
in theory, these methods are not affected by ill-conditioning
and in finite precision, the range of condition numbers in
which Newton-type methods exibit robust behavior is more
than that of first order methods. It is worth investigating
how Newton-type methods handle MAP inference.

3.1. Hessian related computations

Even though Newton-type methods have advantages, it
may be expensive to populate and solve the linear system
(8). The computationally heavy steps for the Conjugate
Gradient (CG) algorithm are: computing Hessian-vector
products and regularly constructing and applying a precon-
ditioning matrix. Generally, if the Hessian is difficult to
populate, Complex Step Differentiation (CSD) [1] can give
very accurate Hessian-vector products, with each product
costing roughly one gradient computation, which can be
costly to be used within CG. So, we investigate the pos-
sibility of efficiently populating the Hessian and obtaining
fast Hessian-vector products.

As mentioned in section 2, for medium sized problems it
is sufficient to decompose according to cliques and achieve
practical convergence. We will now show that for de-
compositions according to small sub-graphs like individual
cliques, the Hessian can be computed very efficiently. In
fact, it only takes time of about twice the gradient computa-
tion time to compute both gradient and Hessian together.

If we take a closer look at the Hessian, we observe that it
can be written as the sum of two components, as shown in



figure 1. Both components have a block structure. Consider
the following quantities,

µci(xi) =

∑
xc:xc(i)=xi

exp
[
τ.(θc(xc)−

∑
n:n∈c

δcn(xi))
]

∑
xc

exp
[
τ.(θc(xc)−

∑
n:n∈c

δcn(xn))
]

(9)

µi(xi) =

exp
[
τ.(θi(xi) +

∑
k:i∈k

δki(xi))
]

∑
xl

exp
[
τ.(θi(xl) +

∑
k:i∈k

δki(xl))
] (10)

The elements of component one can be written as
Hc,ij(xi, xj) = τ

(
µcij(xi, xj) − µci(xi)µcj(xj)

)
, where

µcij(xi, xj) can be calculated like µci(xi) by fixing the
labels of two nodes. This leads to a block diagonal ma-
trix, with as many unique symmetric blocks as there are
cliques. The elements of component two can be written as
Hst,i(xi, xi) = τµi(xi)(1 − µi(xi)) and Hst,i(xi, xj) =
−τµi(xi)µi(xj). It has as many unique symmetric blocks
as there are nodes and a given row or column has repeated
copies of the same block. Here c, s, t are cliques, i, j mem-
ber nodes, xi, xj node labels and xc clique labelling. Also,
it is component two, which contains off-diagonal blocks,
which is caused by overlapping cliques.

Hence, the elements of the Hessian can be computed by
only iterating once through all cliques and nodes. Iterations
corresponding to pairs of overlapping cliques is avoided.
For the gradient, arrays of values need to be computed by
iterating once through all cliques and nodes. For the Hes-
sian, we need to compute (symmetric) blocks of values at
each clique and node. Practically due to cache re-use, this
is achieved overall with the overhead time of one gradient
computation only. These blocks can be readily used for par-
allelizing Hessian-vector multiplication and we do it with
simple OpenMP code. Thus, efficient Hessian-vector prod-
ucts leads to an efficient CG routine in our case.

For several problems, the Hessian is sparse because a
clique overlaps only with a few other cliques. Neverthe-
less, because of the special structure, there is no need to
exploit this sparsity for computing the unique blocks of the
Hessian. Also, if there are many overlapping cliques, com-
puting Hessian-vector products is not adversely affected be-
cause we will only have more copies of the same block
along each row of the component two matrix, correspond-
ing to the shared node. Hence, data movement in computer
memory gets limited. Moreover, these data structures can
be readily used for constructing preconditioners.

3.2. Damping matrix approach

The smooth dual (4) is only strictly, not strongly, con-
vex, i.e., away from the optimum, the Hessian is only posi-
tive semidefinite. In such a situation a trust-region approach
is necessary to take meaningful Newton steps. Here, the

same quadratic approximation (6) is minimized with the
constraint ‖p‖ ≤ ∆, where ∆ is a trust radius. While devel-
oping our trust-region Newton method for MRF inference
(TRN-MRF), we addressed several issues: how to enforce
the trust-region, how to improve speed of convergence by
coping with the ill-conditioning and how to design a suit-
able preconditioner. It is a combination of these choices that
lead to an usable algorithm and we note that, what works for
MAP inference, may not work for other tasks and vice-versa.

The Steihaug method seems like the first method to try
for large problems. It has the nice property of shaping
the trust-region into an ellipsoid, according to the land-
scape. This is achieved by minimizing (6), with the con-
straint ‖p‖M ≤ ∆, where M is a preconditioner and
‖p‖M = pTMp [7]. However, in the absense of a good
preconditioner, in a given outer Newton iteration, the algo-
rithm quickly reaches the trust radius, before computing a
good direction, leading to several outer iterations.

The Levenberg-Marquardt algorithm, which is generally
used in least squares problems, offers another approach to
impose a trust-region. The idea that we borrow is the damp-
ing matrix, which is a regularizer to address the strict con-
vexity and the ill-conditioning. This matrix is added to the
Hessian to obtain the modified Hessian in 8. The damping
matrix restricts the Newton direction returned by CG to a
trust-region. The Levenberg-Marquardt algorithm uses the
scaled Hessian diagonal as the damping matrix. This choice
gave very poor results for MAP inference. Instead, we mod-
ify the Hessian as follows, B(δ) = ∇2g(δ) + λI , where
λ > 0. While Steihaug works explicitly with a trust ra-
dius ∆, we implicitly impose it through λ. This can be seen
through these equations that tie the damping parameter λ to
a trust radius ∆,

(∇2g(δ) + λI )p∗ = −∇g(δ)

λ(∆− ‖p∗‖) = 0
(11)

In a sufficiently positive definite region (close to the op-
timum), λ is close to zero and the Newton direction p∗ is
computed with the true Hessian. If λ > 0 then ‖p∗‖ = ∆,
i.e., the direction is restricted by the trust-region. In ill-
conditioned regions, λ will be large and the enforced trust
radius will be small. Thus, after every iteration, λ is adapted
and it can be done as follows,

ρ < 0.25 : λ← 2λ; 0.25 < ρ < 0.5 : λ← λ

0.5 < ρ < 0.9 : λ← 0.5λ; 0.9 < ρ : λ← 0.25λ

where, ρ =
g(δ + p)− g(δ)

q(p)− q(0)

(12)

ρ signifies how well the quadratic of equation (6) ap-
proximates the dual (g(δ)). As the algorithm approaches
the optimum, λ becomes vanishingly small and the algo-
rithm reaches the true optimum without any perturbation.



3.3. Forcing sequence for CG truncation

Having found out the suitability of damping matrix based
approach, it is still necessary to properly address the ill-
conditioning caused by annealing. Trust-region Newton
proceeds by taking approximate Newton steps, where in
each outer iteration the run of CG iterations is truncated by
a suitable criterion. However, as the algorithm approaches
optimality, it is critical to solve the linear systems to greater
accuracy and get better Newton steps [35]. Otherwise, the
algorithm will take too long to converge or will not con-
verge at all. Generally, at an outer iteration k, CG can be
truncated at iteration j according to the following condition,
‖rj‖ ≤ ηk‖∇g(δk)‖. Here, rj = B(δk)δjk + ∇g(δk), is
the residual of equation 8, at iteration j of CG and ηk is
referred to as the forcing sequence. Through ηk we reduce
the residual and achieve more accurate Newton direction.
For MAP inference, we found textbook choices of the forc-
ing sequence leading to Newton iterations not converging
because the residual never becomes low enough to achieve
the more accurate directions required for further progress.
Hence, for TRN-MRF, the following criterion has been de-
signed: ηk = min( ετk ,

√
‖∇g(δk)‖). This condition natu-

rally imposes stronger condition on the residual for later it-
erations and also, the term (ετ ), which takes smaller values
as the annealing progresses, ensures that sufficiently accu-
rate Newton steps are obtained, as smoothing reduces.

3.4. Clique based Preconditioner and Backtracking
search

In order to further improve the efficiency of TRN-MRF,
we will address one important aspect that influences trust-
region Newton methods. This concerns the computational
efficiency of the Conjugate Gradient routine. Convergence
of CG iterations is a function of the number of distinct eigen
value clusters of the linear system and a well preconditioned
system (M−1Ax = M−1b) will have fewer of clusters.
Matrix M should be as similar to A as possible and should
be efficient to construct and invert.

Standard preconditioning approaches like incomplete
Cholesky, quasi-Newton and multigrid, fail to cope
with generic MAP inference problems. A clique based
block diagonal preconditioner has along the diagonal,
clique specific blocks (Hc) of double derivative terms,
i.e., Hc

i,xi,j,xj
= ∂2g(δ)

∂δci(xi)∂δcj(xj)
, where i, j are nodes be-

longing to the clique and xi, xj are their labels. Since its
structure is closely related to the MAP inference problem, it
performs quite well. The computational cost is of comput-
ing and inverting these blocks individually. This is done at
the same time as computing the gradient and the Hessian.
Applying this preconditioner corresponds to matrix-vector
multiplications, involving the block inverses.

For sufficiently large values of λ, the modified Hessian is

automatically well-conditioned and CG will converge fast.
It is towards the optimum, when λ reduces to vanishing val-
ues, that CG runs for large number of iterations. We ob-
served considerable improvement in CG performance with
this preconditioner and the results shown in this paper are
based on this. Also, close to the optimum, there will be CG
runs taking the maximum allowed number of iterations. We
have set it as 250 for all our experiments.

The last aspect concerns backtracking search, once the
Newton direction has been computed by the CG routine.
When ρ in equation (12) is less than a small value (say, ερ),
it means a step of either very less decrease or an increase
in the function value. So, we cannot directly take a step
along this direction. However, it is desirable to take a step
of sufficient decrease in every outer iteration of TRN-MRF
and hence, we perform a backtracking search in these cases
[30]. The backtracking can be either done along a straight
line or along a curved path (a subset of CG iterations). Al-
though backtracking along a curved path gives good results
in other problems [24], we observed poor results for MAP
inference: the final direction was very close to the steepest
descent direction. On the other hand, performing a back-
tracking line search along the direction computed by CG,
gave a huge speed-up for TRN-MRF. We have implemented
a cubic interpolation based search, which is very efficient.

3.5. Annealing schedule and stopping condition

[34] suggests annealing τ by periodically computing the
primal-dual (PD) gap of the smooth problem. For interme-
diate dual variables, they recover feasible primal variables
by solving a small LP (called a transportation problem) for
each clique. Since, their approach is adapted to pairwise
graphs, they achieve results with less than thousand oracle
calls (an oracle call is either an iteration or computation of
the PD gap). However, for higher-order MRFs, computing
feasible primal variables and the primal objective is costly.
Hence, computing PD gap of the smooth problem, every
few iterations greatly affects computational efficiency.

We have used a simple but intuitive criterion for judg-
ing when to anneal. Since, we are working with a concave
function, regions with lesser values of gradient euclidean
norm are guaranteed to be closer to the optimum than re-
gions with much greater values. Hence, if ∇g(δk) signifies
the gradient after running k iterations with a given τ , we
update τ ← ατ, 1 < α, if ‖∇g(δk)‖2 < γτ . If we impose
a strong enough threshold γτ , we are guaranteed to achieve
sufficient improvement for that particular τ and annealing
can be performed. We have defined, γτ = β‖∇g(δ)‖, just
after τ is annealed. Similar to the proof in [34], this an-
nealing approach will work with any optimization algorithm
that will converge to the global optimum for a fixed value of
τ . All the algorithms tested by us, have this guarantee for
smooth, concave problems. Also, we ensure τ has reached a



large enough value τmax in order to obtain accurate results.
In order to exit the least smooth problem, [34] use the

non-smooth PD gap. We have observed that TRN-MRF, due
to its quadratic convergence rate, can exit based on classi-
cal gradient based condition itself. More precisely, with the
l∞ norm and a threshold of ζ = 10−3 (§8, [12]), TRN-MRF
achieves good exit behaviour. However, first order meth-
ods take too long a time to achieve this gradient based exit
condition and many times never do so. Hence, we have im-
plemented a PD gap based approach, so that all algorithms
can exit gracefully. The approach in [34], is available only
for pairwise graphs in the openGM library and implement-
ing small LP solvers for all the higher order cliques looks
challenging. [28] proposed a method involving only closed
form calculations and we have implemented their approach.

Our complete trust-region Newton method, within an an-
nealing framework, is described in Algorithm 1. In our
experiments, we set, λ0 = 1, α = 2, β = 1

6 , ερ =
10−4, ζ = 10−3, τmax = 213 and ετ = 0.1 if τ <
τmax

4 , 0.01 if τmax
4 < τ < τmax

2 , 0.001 if τmax
2 < τ .

Algorithm 1 TRN-MRF: Trust-region Newton for MAP in-
ference

1: Input: λ0, τ, τmax > 0; δ0 ∈ RN ;α > 1.
2: λ← λ0, γτ = β‖∇g(δ0)‖2
3: while ‖∇g(δk)‖∞ > ζ or τ < τmax do
4: if ‖∇g(δk)‖2 ≤ γτ and τ < τmax then
5: τ ← ατ ; γτ = β‖∇g(δk)‖2 ; adjust ετ
6: end if
7: B(δk) = ∇2g(δk) + λI
8: set ηk = min( ετk ,

√
‖∇g(δk)‖)

9: Run CG while ‖rj‖ > ηk‖∇g(δk)‖
10: obtain Newton direction p and calculate ρ
11: update λ according to equation (12)
12: if ρ < ερ then backtracking line search along p to

obtain Newton step pk
13: δk+1 = δk + pk
14: end while

4. Scalable Smoothing based approach
Even though smoothing based approach has been scaled

for large pairwise graphs [34], higher order MRFs with large
label spaces and/or large graphs are less studied. In this
section we show an efficient way to compute the smoothing
operation with large label spaces for a very useful class of
clique potentials. Next we demonstrate the use of quasi-
Newton methods for problems with large graphs.

4.1. Pattern-based Smoothing

In the smooth dual (4), we denote the first term as g1(δ).
It corresponds to cliques and involves log-sum-exp calcula-
tions over all possible labellings for each clique. This scales

exponentially (lk) with clique size k, where each node takes
l labels. Hence, computing the gradient of this dual is
computationally heavy, especially for higher order cliques.
[16] observed that these terms in the gradient correspond to
marginal probabilities in a suitably defined graphical model.
Hence, they can be computed using the sum-product algo-
rithm [19]. Still, O(lk) complexity remains.

Sparse, pattern-based clique potentials are very useful in
computer vision [21], [32]. In these potentials, a big ma-
jority of the labellings take a constant (usually high) value
and a small subset (of size s) take other significant values.
Many clique potentials fit this description. [21] showed an
efficient way to perform max-product computation in chains
of such cliques. It is not clear how to extend their work to
sum-product. [8] showed a sum-product approach in pair-
wise MRFs. They achieved a complexity of O(2l + s), in-
stead of O(l2). They mention that their idea can be used
for higher order cliques with a factor graph representation
but don’t go into details. We have found that with a fac-
tor graph representation, their approach has a complexity of
O(lk−1+l+s). Instead of a factor graph, if a clique tree rep-
resentation (§10, [19]) is used, it is possible to achieve much
better complexity ofO(lk−n+ln+s), where n is the size of
a subset of clique nodes. For individual cliques, these sub-
sets will be (nearly) equal sized partitions of the clique. For
clique chains, this is the separator set between two overlap-
ping cliques. The separator set is the nodes shared by two
cliques. For example, for cliques of size 4, with subset of
size 2, one can quickly see the efficiency gain.

In the following, we will consider clique chains. This is
for simple notation and these results are applicable to trees.
Also, these results can be reduced to the case of individual
cliques. While computing the gradient, the quantity ∂g1

∂δci(xi)

is equal to pci (xi), i.e., the marginal probability of node i
taking label xi in clique c of a suitably defined graphical
model. Let ψc(xc) and ψi(xi) denote the clique and node
potentials, respectively and a, b, c be three neighbouring
cliques in a chain, with m and n being the separator set be-
tween a and b, b and c, respectively. Sum-product message
is passed from b to c, as follows,

mbc(xn) =
∑
xb\n

ψb(xb)ν(xb\n)

where, ν(xb\n) =

( ∏
i∈b\n

ψi(xi)

)
mab(xb\n)

(13)

mab(xb\n) is derived from the message sent by clique a
to b. This message was for the nodes in m and mab(xb\n)
is obtained by marginalization (summation). Sometimes,
m = b \ n. Let ψ̄ denote the constant clique potential and
let Pat(xn) denote the pattern-based clique labellings cor-
responding to the seperator set labelling xn, then the first



equation of (13) can be written as,

mbc(xn) =
∑
xb\n

∈Pat(xn)

ψb(xb)ν(xb\n) +
∑
xb\n

/∈Pat(xn)

ψ̄ν(xb\n)

=
∑
xb\n

∈Pat(xn)

(
ψb(xb)− ψ̄

)
ν(xb\n) + ψ̄

∑
xb\n

ν(xb\n)

(14)
In (14), the second summation is computed only once

(O(lk−n)) and used for all elements of xn. With a loop of
complexity O(s), the set of first summations for each ele-
ment of xn can be computed. Then iterating once through
xn, gives the message in O(ln). Within this last loop to
compute the message, the probabilities pci (xi) of the corre-
sponding nodes are computed. Also, the Hessian requires
node pair marginals (µc,ij(xi, xj), section 3.1) and they are
calculated by parallelized sweeps of the sum-product algo-
rithm working on independent subsets of the cliques.

4.2. Quasi-Newton approach

In section 2, we pointed out the trade-off between the
sizes of the graph and the sub-graphs in dual decomposition.
This becomes critical for large problems like stereo, where
a decomposition based on individual cliques does not lead
to practical convergence [21], [29]. Larger sub-graphs are
needed and chains of higher order cliques is suitable for grid
graphs. As mentioned in section 4.1, the Hessian for MAP
inference requires node pair marginals and it is very costly
to calculate node pair marginals for clique chains. Hence,
it is not practical to populate the Hessian for problems
which require large sub-graphs. Since we have promising
results with trust-region Newton for medium sized prob-
lems with individual clique based decomposition, we ex-
plore quasi-Newton methods for large problems. Note that
quasi-Newton methods have only super-linear convergence
rate when sufficiently close to the optimum.

Quasi-Newton methods build an approximate Hessian
by low rank updates of an initial approximation (usually,
a scaled Identity matrix) with vector pairs, sk , δk+1 − δk
and yk , ∇g(δk+1) − ∇g(δk). For large problems a lim-
ited memory variant is required, based on the most recent
m pairs of vectors. One can either approximate the Hes-
sian or the Hessian inverse. For not strongly convex and/or
ill-conditioned problem, the Hessian inverse approximation
leads to large Newton steps. Downscaling them to a trust
region radius does not help, as the direction itself is poor
to start with. A trust-region based approach using the Hes-
sian approximation is the better choice. Hence, we take the
same approach as Algorithm 1 with an Hessian approxima-
tion (based on L-BFGS) in the place of∇2g(δk).

The Hessian approximation is of the form of an Identity
+ rank-r matrix. The Conjugate Gradient algorithm con-

verges in O(r) iterations for such a linear sytem (§11.3.4,
[13]). Morever, matrix-vector products in quasi-Newton
can be obtained through a compact representation [6]. Thus
the cost for the CG routine is a very small fraction of the
cost of computing the gradient (0.5% in our experiments).
Thus, given the iteration cost of quasi-Newton being com-
parable to first order methods, it is worthwhile to check
whether quasi-Newton converges faster to the optimum.

5. Experiments
We present results based on higher-order MRF models.

As our baseline, we used FISTA with backtracking line
search [3], Smooth Coordinate Descent (SCD) based on Star
update [28] and AD3 [25]. Note that Star update based
SCD, consistently performed better than Max-Sum Diffu-
sion based SCD in our experiments.

First, we tested on medium sized problems and com-
pared TRN-MRF, FISTA, SCD and AD3. We formulate the
problem of matching two sets of interest points as MAP in-
ference, based on [9]. For n points, each point in the source
can be matched to any of the points in the target, i.e., n
labels. The MRF is constructed by generating 4n triangles
in the source and each triangle in the source and target are
characterized by tuples of side length. For each source tu-
ple, we find the top 30K nearest neighbours among the tar-
get tuples. 30K is much lesser than all possible triangles
in the target and this is a sparse, pattern-based clique po-
tential. The higher-order cliques potentials are defined as
exp(−1γ ((sa− ta)2 + (sb− tb)2 + (sc− tc)2)), where s and
t refer to source and target, respectively and γ is the average
squared differences between source tuple and its 30K near-
est neighbours in the target. To get state-of-the-art results
additional terms to disallow many-to-one mapping will be
needed. For the sake of simplicity we ignore this issue.

We first tested with a synthetic problem, with n = 81 on
the 2D plane. We added Gaussian noise to these points to
create the target image. The unary potentials are defined by
assigning the value i to node i in both the images and taking
the absolute differences. The results are presented in table
1, where two levels of added noise were tested.

We next tested with matching points on the House
dataset [2]. n = 74 points are marked in all the frames
and the points in the first frame are matched with points in
later frames (110 being the last frame). The unaries are set
to zero. The camera rotates considerably around the object
and we show results for three frames in table 2.

The main reason for being able to tackle such problems
is the efficient computation of log-sum-exp (section 4.1).
TRN-MRF, FISTA and SCD, all benefit from this. AD3 can
also exploit sparse, pattern-based potentials, since, in its in-
ner loop, max-product computations take place. The same
steps shown for sum-product, can be used for max-product
by replacing summing operation by max operation. Since,



σ = 0.5 σ = 0.8
Algorithm TRN SCD FISTA AD3 TRN SCD FISTA AD3
time (seconds) 948.9 1742.7 4368.1 369.35 (738.7) 2513.8 6884.2 9037.1 No convergence
Non-smooth dual -279.69 -279.69 -279.69 -279.69 -259.28 -258.27 -258.7 -260.94
Non-smooth primal -279.67 -279.69 -279.66 N/A -261.04 -258.36 -258.86 N/A
Integer primal -279.69 -279.69 -279.69 -279.69 -247.86 -248.24 -250.3 -249.82

Table 1. Results for synthetic problem.

Frame 70 Frame 90 Frame 110
Algorithm TRN SCD FISTA AD3 TRN SCD FISTA AD3 TRN SCD FISTA AD3
time (seconds) 2374.5 3702.9 11964.5 1428.7 (2857.4) 4731.6 4206.4 12561.2 2303.05 (4606.1) 4451.8 10498.8 21171.1 No convergence
Non-smooth dual -368.59 -368.59 -368.59 -368.59 -337.81 -337.81 -337.81 -337.81 -333.03 -331.51 -331.31 -335.5
Non-smooth primal -368.56 -368.57 -368.37 N/A -337.77 -337.78 -337.36 N/A -336.16 -331.95 -330.65 N/A
Integer primal -368.59 -368.59 -368.59 -368.59 -337.81 -337.81 337.81 -337.81 -315.93 -317.69 -317.78 314.16

Table 2. Results for House dataset.

Figure 2. Matching 1st frame to 90th frame.

these modifications cannot be made to the AD3 version in
openGM, we show within brackets the actual time taken
by openGM’s AD3. Since, our current implementation of
sparse sum-product gives two times speed-up, the outside
figure is half that value.

An important observation is that TRN-MRF, FISTA and
SCD have reliable convergence compared to AD3 (an ADMM
based approach). Among these three, TRN-MRF is very
competitive and is the fastest in many cases. The quadratic
convergence rate guarantee of TRN-MRF is evident because
in many cases the stricter gradient based exit condition
is reached at the same time or before the PD gap based
exit condition. The gradient based exit condition is never
reached before the PD gap condition by any of the first or-
der methods. We do simple rounding of the primal vari-
ables to recover the labels. This rounding leads to energies
that can be slightly better or worse. The crux of this paper
is about getting closer to the global optimum of the non-
smooth dual. Improved rounding schemes based on local
search, will surely lead to better final labelling. AD3 has its
own rounding scheme and outputs its results.

Next, we present results for stereo with curvature prior
on 1× 3 and 3× 1 cliques. The clique energy is truncated,
i.e., pattern-based. The unaries are based on absolute differ-
ence. We present results for Tsukuba, image size 144×192,
16 depth levels. This is a large problem and pattern-based
sum-product was computed on clique chains. We compare
quasi-Newton with FISTA and AD3. For large problems, the
PD gap based criterion [28] never leads to convergence for

both quasi-Newton and FISTA. So, a simultaneous crite-
rion on function value difference, variable difference and
gradient has been used (adapted from §8.2.3.2 [12]). AD3
showed poor convergence behavior for this large problem.

Algorithm Quasi-Newton FISTA
Iterations 357 594
Non-smooth dual 29105.9 29105.5
Integer primal 29347 29282.5

Table 3. Stereo estimation: Tsukuba.

Figure 3. Tsukuba result for quasi-Newton.

6. Discussion

We presented Newton-type methods that offer conver-
gence guarantee and very good convergence rates, through
appropriate choices made concerning their algorithmic
components. Specifically, for problems in which sum-
product computation is efficient, these Newton-type meth-
ods are very suitable. We showed promising results with
higher-order MRFs of medium and large sizes. We hope this
work spurs further research on exploiting curvature infor-
mation within optimization algorithms for MAP inference.
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