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Affine Volterra processes∗

Eduardo Abi Jaber† Martin Larsson‡ Sergio Pulido§

August 29, 2017

Abstract

We introduce affine Volterra processes, defined as solutions of certain stochastic
convolution equations with affine coefficients. Classical affine diffusions constitute a
special case, but affine Volterra processes are neither semimartingales, nor Markov pro-
cesses in general. We provide explicit exponential-affine representations of the Fourier–
Laplace functional in terms of the solution of an associated system of deterministic
integral equations, extending well-known formulas for classical affine diffusions. For
specific state spaces, we prove existence, uniqueness, and invariance properties of so-
lutions of the corresponding stochastic convolution equations. Our arguments avoid
infinite-dimensional stochastic analysis as well as stochastic integration with respect
to non-semimartingales, relying instead on tools from the theory of finite-dimensional
deterministic convolution equations. Our findings generalize and simplify recent results
in the literature on rough volatility models in finance.

1 Introduction

We study a class of d-dimensional stochastic convolution equations of the form

Xt = X0 +

∫ t

0
K(t− s)b(Xs)ds+

∫ t

0
K(t− s)σ(Xs)dWs, (1.1)
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where W is a multi-dimensional Brownian motion, and the convolution kernel K and
coefficients b and σ satisfy regularity and integrability conditions that are discussed in
detail after this introduction. We refer to equations of the form (1.1) as stochastic Volterra
equations (of convolution type), and their solutions are always understood to be adapted
processes defined on some stochastic basis (Ω,F , (Ft)t≥0,P) satisfying the usual conditions.
Stochastic Volterra equations have been studied by numerous authors; see e.g. Berger and
Mizel (1980a,b); Protter (1985); Pardoux and Protter (1990); Zhang (2010) among many
others.

We are interested in the situation where a(x) = σ(x)σ(x)> and b(x) are affine maps
given by

a(x) = A0 + x1A
1 + · · ·+ xdA

d

b(x) = b0 + x1b
1 + · · ·+ xdb

d,
(1.2)

for some d-dimensional symmetric matrices Ai and vectors bi. In this case we refer to
solutions of (1.1) as affine Volterra processes. Affine diffusions, as studied in Duffie et al.
(2003), are particular examples of affine Volterra processes of the form (1.1) where the
convolution kernel K ≡ id is constant and equal to the d-dimensional identity matrix. In
this paper we do not consider processes with jumps.

Stochastic models using classical affine diffusions are tractable because their Fourier–
Laplace transform has a simple form. It can be written as an exponential-affine function
of the initial state, in terms of the solution of a system of ordinary differential equations,
known as the Riccati equations, determined by the affine maps (1.2). More precisely, let
X be an affine diffusion of the form (1.1) with K ≡ id. Then, given a d-dimensional row
vector u and under suitable integrability conditions, we have

E
[
exp (uXT )

∣∣∣ Ft] = exp (φ(T − t) + ψ(T − t)Xt) , (1.3)

where the real-valued function φ and row-vector-valued function ψ satisfy the Riccati equa-
tions

φ(t) =

∫ t

0

(
ψ(s)b0 +

1

2
ψ(s)A0ψ(s)>

)
ds

ψ(t) = u+

∫ t

0

(
ψ(s)B +

1

2
A(ψ(s))

)
ds,

with A(u) = (uA1u>, . . . , uAdu>) and B = (b1 · · · bd). Alternatively, using the variation
of constants formula on X and ψ, one can write the Fourier-Laplace transform as

E
[
exp (uXT )

∣∣∣ Ft] = exp

(
E[uXT | Ft] +

1

2

∫ T

t
ψ(T − s)a(E[Xs | Ft])ψ(T − s)>ds

)
.

(1.4)
For more general kernels K, affine Volterra processes are typically neither semimartin-

gales, nor Markov processes. Therefore one cannot expect a formula like (1.3) to hold in
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general. However, we show in Theorem 4.3 below that, remarkably, (1.4) does continue to
hold, where now the function ψ solves the Riccati–Volterra equation

ψ(t) = uK(t) +

∫ t

0

(
ψ(s)B +

1

2
A(ψ(s))

)
K(t− s) ds. (1.5)

Furthermore, it is possible to obtain an explicit expression that is exponential-affine in the
past trajectory {Xs, s ≤ t}.

For the state spaces Rd, Rd+, and R × R+, corresponding to the Volterra Ornstein–
Uhlenbeck, Volterra square-root, and Volterra Heston models, we establish existence and
uniqueness of global solutions of both the stochastic equation (1.1) and the associated
Riccati–Volterra equation (1.5), under general parameter restrictions. For the state spaces
Rd+ and R × R+ this involves rather delicate invariance properties for these equations.
While standard martingale and stochastic calculus arguments play an important role in
several places, the key tools that allow us to handle the lack of Markov and semimartingale
structure are the resolvents of first and second kind associated with the convolution kernel
K. Let us emphasize in particular that no stochastic integration with respect to non-
semimartingales is needed. Furthermore, by performing the analysis on the level of finite-
dimensional integral equations, we avoid the infinite-dimensional analysis used, for instance,
by Mytnik and Salisbury (2015). We also circumvent the need to study scaling limits of
Hawkes processes as in El Euch and Rosenbaum (2016); El Euch et al. (2016); El Euch
and Rosenbaum (2017).

Our motivation for considering affine Volterra processes comes from applications in
financial modeling. Classical affine processes arguably constitute the most popular frame-
work for building tractable multi-factor models in finance. They have been used to model
a vast range of risk factors such as credit and liquidity factors, inflation and other macro-
economic factors, equity factors, and factors driving the evolution of interest rates. In
particular, affine stochastic volatility models, such as the Heston (1993) model, are very
popular.

However, a growing body of empirical research indicates that volatility fluctuates more
rapidly than Brownian motion, which is inconsistent with standard semimartingale affine
models. Fractional volatility models such as those by Guennoun et al. (2017); Gatheral
et al. (2014); Bayer et al. (2016); El Euch and Rosenbaum (2016); Bennedsen et al. (2016)
have emerged as compelling alternatives, although tractability can be a challenge for these
non-Markovian, non-semimartingales models. Nonetheless, Guennoun et al. (2017) and
El Euch and Rosenbaum (2016, 2017) show that there exist fractional adaptations of the
Heston model where the Fourier–Laplace transform can be found explicitly, modulo the
solution of a certain fractional Riccati equation. These models are of the affine Volterra
type (1.1) involving singular kernels proportional to tα−1 for α ∈ (1

2 , 1). Our framework
subsumes and extends these examples.

The paper is structured as follows. Section 2 covers preliminaries on convolutions and
their resolvents, and in particular develops the necessary stochastic calculus. Section 3
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gives existence theorems for stochastic Volterra equations on Rd and Rd+. Section 4 intro-
duces affine Volterra processes on general state spaces and develops the exponential-affine
transform formula. Sections 5 through 7 contain detailed discussions for the state spaces
Rd, Rd+, and R × R+, which correspond to the Volterra Ornstein–Uhlenbeck, Volterra
square-root, and Volterra Heston models, respectively. Additional proofs and supporting
results are presented in the appendices. Our basic reference for the deterministic theory of
Volterra equations is the excellent book by Gripenberg et al. (1990).

Notation

Throughout the paper we view elements of Rm and Cm = Rm + iRm as column vectors,
while elements of the dual spaces (Rm)∗ and (Cm)∗ are viewed as row vectors. For any
matrix A with complex entries, A> denotes the (ordinary, not conjugate) transpose of A.
The symbol | · | is used to denote the Euclidean norm on Cm and (Cm)∗, as well as the
operator norm on Rm×n. We write Sm for the symmetric m × m matrices. The shift
operator ∆h, where h ≥ 0, maps any function f on R+ to the function ∆hf given by

∆hf(t) = f(t+ h).

If the function f on R+ is of bounded variation, its measure derivative is denoted by df ,
so that f(t) = f(0) +

∫
[0,t] df(s).

2 Stochastic calculus of convolutions and resolvents

For a measurable function K on R+ and a measure L on R+ of locally bounded variation,
the convolutions K ∗ L and L ∗K are defined by

(K ∗ L)(t) =

∫
[0,t]

K(t− s)L(ds), (L ∗K)(t) =

∫
[0,t]

L(ds)K(t− s) (2.1)

whenever these expressions are well-defined. We allow K and L to be matrix-valued, in
which case K ∗ L and L ∗ K may not both be defined (e.g. due to incompatible matrix
dimensions), or differ from each other even if they are defined (e.g. if K and L take values
among non-commuting square matrices). If F is a function on R+, we write K ∗ F =
K ∗ (Fdt), that is,

(K ∗ F )(t) =

∫ t

0
K(t− s)F (s)ds. (2.2)

Further details can be found in Gripenberg et al. (1990), see in particular Definitions 2.2.1
and 3.2.1, as well as Theorems 2.2.2 and 3.6.1 for a number of properties of convolutions.
In particular, if K ∈ L1

loc(R+) and F is continuous, then K ∗ F is again continuous.
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Fix d ∈ N and let M be a d-dimensional continuous local martingale. If K is Rm×d-
valued for some m ∈ N, the convolution

(K ∗ dM)t =

∫ t

0
K(t− s)dMs (2.3)

is well-defined as an Itô integral for every t ≥ 0 such that
∫ t

0 |K(t− s)|2dTr〈M〉s <∞. In
particular, if K ∈ L2

loc(R+) and 〈M〉s =
∫ s

0 audu for some locally bounded process a, then
(2.3) is well-defined for every t ≥ 0. We always choose a version that is jointly measurable
in (t, ω). Just like (2.1)–(2.2), the convolution (2.3) is associative, as the following result
shows.

Lemma 2.1. Let K ∈ L2
loc(R+,Rm×d) and let L be an Rn×m-valued measure on R+ of

locally bounded variation. Let M be a d-dimensional continuous local martingale with
〈M〉t =

∫ t
0 asds, t ≥ 0, for some locally bounded process a. Then

(L ∗ (K ∗ dM))t = ((L ∗K) ∗ dM)t (2.4)

for every t ≥ 0. In particular, taking F ∈ L1
loc(R+) we may apply (2.4) with L(dt) = Fdt

to obtain (F ∗ (K ∗ dM))t = ((F ∗K) ∗ dM)t.

Proof. By linearity it suffices to take d = m = n = 1 and L a locally finite positive measure.
In this case,

(L ∗ (K ∗ dM))t =

∫ t

0

(∫ t

0
1{u<t−s}K(t− s− u)dMu

)
L(ds).

Since∫ t

0

(∫ t

0
1{u<t−s}K(t− s− u)2d〈M〉u

)1/2

L(ds) ≤ max
0≤s≤t

|as|1/2‖K‖L2(0,t)L([0, t]),

which is finite almost surely, the stochastic Fubini theorem, see Veraar (2012, Theorem 2.2),
yields

(L ∗ (K ∗ dM))t =

∫ t

0

(∫ t

0
1{u<t−s}K(t− s− u)L(ds)

)
dMu = ((L ∗K) ∗ dM)t,

as required.

Under additional assumptions on the kernel K one can find a version of the convolu-
tion (2.3) that is continuous in t. We will use the following condition:

K ∈ L2
loc(R+,R) and there is γ ∈ (0, 2] such that

∫ h
0 K(t)2dt = O(hγ)

and
∫ T

0 (K(t+ h)−K(t))2dt = O(hγ) for every T <∞.
(2.5)
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Lemma 2.2. Assume K satisfies (2.5) and consider a continuous local martingale M
with 〈M〉t =

∫ t
0 asds for some locally bounded predictable process a. Then the process

{
∫ t

0 K(t − s)dMs, t ≥ 0} admits a continuous version, denoted K ∗ dM , which is Hölder
continuous of any order α < γ/2.

Proof. The proof is an application of Kolmogorov’s continuity theorem. Since a is contin-
uous, we may assume upon localizing M that a ≤ κ for some constant κ. It is enough to
prove continuity up to an arbitrary time T <∞. For any s < t ≤ T and p ≥ 1, we have

E [|(K ∗ dM)t − (K ∗ dM)s|p] ≤ 2p−1E
[∣∣∣∣∫ t

s
K(t− u)dMu

∣∣∣∣p]
+ 2p−1E

[∣∣∣∣∫ s

0
(K(t− u)−K(s− u))dMu

∣∣∣∣p] .
The BDG inequalities applied to the local martingale r 7→

∫ r
0 K(t− u)dMu for 0 ≤ r ≤ t,

the bound on a, and a change of variables yield

E
[∣∣∣∣∫ t

s
K(t− u)dMu

∣∣∣∣p] ≤ Cp E
[(∫ t

s
K(t− u)2audu

)p/2]

≤ Cp κp/2
(∫ t

s
K(t− u)2du

)p/2
= Cp κ

p/2

(∫ t−s

0
K(u)2du

)p/2
.

Similarly,

E
[∣∣∣∣∫ s

0
(K(t− u)−K(s− u))dMu

∣∣∣∣p] ≤ Cp κp/2(∫ s

0
(K(u+ t− s)−K(u))2du

)p/2
.

Therefore, due to (2.5),

E [|(K ∗ dM)t − (K ∗ dM)s|p] ≤ c (t− s)γp/2

for some constant c that depends on T , κ, and p, but not on s, t. For any p > 2/γ,
Kolmogorov’s continuity theorem, see Revuz and Yor (1999, Theorem I.2.1), then implies
that {

∫ t
0 K(t − s)dMs, t ≥ 0} has a version Y p that is Hölder continuous of any order

α < γ/2 − 1/p. Since any two continuous versions agree except on a nullset of paths, we
may find a nullset N such that Y p = Y q outside N for all integers p, q > 2/γ. In particular,
outside N , the paths of Y p are actually Hölder continuous of any order α < γ/2. Setting
K ∗ dM = Y p outside N and K ∗ dM = 0 on N therefore gives the stated properties.
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Remark 2.3. Other conditions than (2.5) have appeared in the literature. For non-
convolution kernels, Decreusefond (2002) considers dM = σdW defined on the Wiener
space with (one-dimensional) coordinate process W , and requires F 7→ K ∗ F to be contin-
uous from certain Lp spaces to appropriate Besov spaces. Whereas in Mytnik and Neuman
(2011), K is assumed to be a function of smooth variation and M is a semimartingale.
See also (Wang, 2008, Theorem 1.3).

Example 2.4. Let us list some examples of kernels that satisfy (2.5):

(i) Locally Lipschitz kernels K clearly satisfy (2.5) with γ = 1.

(ii) The fractional kernel K(t) = tα−1 with α ∈ (1
2 , 1) satisfies (2.5) with γ = 2α − 1.

Indeed, it is locally square integrable, and we have
∫ h

0 K(t)dt = h2α−1/(2α − 1) as
well as ∫ T

0
(K(t+ h)−K(t))2dt ≤ h2α−1

∫ ∞
0

(
(t+ 1)α−1 − tα−1

)2
dt,

where the constant on the right-hand side is bounded by 1
2α−1 + 1

5−2α . Note that the
case α ≥ 1 falls in the locally Lipschitz category mentioned previously.

(iii) If K1 and K2 satisfy (2.5), then so does K1 +K2.

(iv) If K1 satisfies (2.5) for some γ ∈ (0, 2] and K2 is locally Lipschitz, then K = K1K2

satisfies (2.5). Indeed, letting ‖K2
2‖∞,T denote the maximum of K2

2 over [0, T ] and
LipT (K2) the best Lipschitz constant on [0, T ], we have∫ h

0
K(t)2dt ≤ ‖K2

2‖∞,h
∫ h

0
K1(t)dt = O(hγ)

and ∫ T

0
(K(t+ h)−K(t))2dt ≤ 2‖K2‖2∞,T+h

∫ T

0
(K1(t+ h)−K1(t))2dt

+ 2‖K1‖2L2(0,T )LipT (K2)2h2

= O(hγ).

In particular, K again satisfies (2.5) with the same γ.

(v) By combining the above examples we find that, for instance, exponentially damped
and possibly singular kernels like the Gamma kernel K(t) = tα−1e−βt for α > 1

2 and
β ≥ 0 satisfy (2.5).

Under suitable moment bounds, the qualitative Hölder continuity statement in Lemma 2.2
can be improved to a quantitative estimate of the corresponding Hölder seminorms.
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Lemma 2.5. Assume K satisfies (2.5) and consider a continuous process X of the form
X = X0 + K ∗ (bdt + dM), where b is a predictable process and M is a continuous local
martingale with 〈M〉t =

∫ t
0 asds for some predictable process a. Then for T <∞ and p ≥ 2

one has

E

[(
sup

0≤s<t≤T

|Xt −Xs|
|t− s|α

)p]
≤ c sup

t≤T
E[|at|p + |bt|p]

for all α ∈ [0, γ/2− 1/p), where c is a constant that only depends on p, K, and T .

Proof. We assume that the right-hand side is finite since otherwise the statement is trivial.
For any p ≥ 2 and any s < t ≤ T <∞ we have

|Xt −Xs|p ≤ 4p−1

∣∣∣∣∫ t

s
K(t− u)budu

∣∣∣∣p + 4p−1

∣∣∣∣∫ s

0
(K(t− u)−K(s− u)) budu

∣∣∣∣p
+ 4p−1

∣∣∣∣∫ t

s
K(t− u)dMu

∣∣∣∣p + 4p−1

∣∣∣∣∫ s

0
(K(t− u)−K(s− u)) dMu

∣∣∣∣p
= 4p−1 (I + II + III + IV) .

Jensen’s inequality applied twice yields I ≤ (t−s)p/2 ‖K‖p−2
L2(s,t)

∫ t
s |bu|

pK(t−u)2du. Taking

expectations and changing variables we obtain

E[ I ] ≤ (t− s)p/2
(∫ t−s

0
K(u)2du

)p−1

sup
u≤T

E[|bu|p]. (2.6)

In a similar manner,

E[ II ] ≤ (t− s)p/2
(∫ s

0
(K(u+ t− s)−K(u))2du

)p−1

sup
u≤T

E[|bu|p]. (2.7)

Using in addition the BDG inequalities we get

E [ III ] ≤ Cp E

[(∫ t

s
K(t− u)2 au du

)p/2]

≤ Cp
(∫ t−s

0
K(u)2du

)p/2
sup
u≤T

E[|au|p]

(2.8)

and

E [ IV ] ≤ Cp
(∫ s

0
(K(u+ t− s)−K(u))2du

)p/2
sup
u≤T

E[|au|p]. (2.9)

Combining (2.6)–(2.9) with (2.5) yields

E [|Xt −Xs|p] ≤ c′ sup
u≤T

E[|au|p + |bu|p] (t− s)γp/2,
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where c′ is a constant that only depends on p, K, and T , but not on s or t. The state-
ment now follows from the Komogorov continuity theorem; see Revuz and Yor (1999,
Theorem I.2.1).

Consider a kernel K ∈ L1
loc(R+,Rm×m). The resolvent, or resolvent of the second kind,

corresponding to K is the kernel R ∈ L1
loc(R+;Rm×m) such that

K ∗R = R ∗K = K −R. (2.10)

The resolvent always exists and is unique, and a number of properties such as (local)
square integrability and continuity of the original kernel K are inherited by its resolvent;
see Gripenberg et al. (1990, Theorems 2.3.1 and 2.3.5).1 Another object related to K is its
resolvent of the first kind, which is an Rd×d-valued measure L on R+ of locally bounded
variation such that

K ∗ L = L ∗K ≡ id, (2.11)

see Gripenberg et al. (1990, Definition 5.5.1). Some examples of resolvents of the first
and second kind are presented in Table 1. A resolvent of the first kind does not always
exist. When it does, it has the following properties, which play a key role in several of our
arguments.

Lemma 2.6. Let X be a continuous process and Z =
∫
b dt+

∫
σ dW a continuous semi-

martingale with b, σ, and K ∗ dZ continuous. Assume that K admits a resolvent of the
first kind L. Then

X −X0 = K ∗ dZ ⇐⇒ L ∗ (X −X0) = Z. (2.12)

In this case, for any F ∈ L2
loc(R+,Cm×d) such that F ∗ L is of locally bounded variation,

one has
F ∗ dZ = (F ∗ L)(0)X − (F ∗ L)X0 + d(F ∗ L) ∗X. (2.13)

Proof. Assume X −X0 = K ∗ dZ. Apply L to both sides to get

L ∗ (X −X0) = L ∗ (K ∗ dZ) = (L ∗K) ∗ dZ = id ∗ dZ = Z,

where the second equality follows from Lemma 2.1. This proves the forward implication in
(2.12). Conversely, assume L ∗ (X −X0) = Z. Then,

id ∗ (X −X0) = (K ∗ L) ∗ (X −X0)

= K ∗ (L ∗ (X −X0))

= K ∗ Z
= K ∗ (id ∗ dZ)

= id ∗ (K ∗ dZ),

1Rather than (2.10), it is common to require K ∗R = R ∗K = R−K in the definition of resolvent. We
use (2.10) to remain consistent with Gripenberg et al. (1990).
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using Gripenberg et al. (1990, Theorem 3.6.1(ix)) for the second equality and Lemma 2.1
for the last equality. Since both X −X0 and K ∗ dZ are continuous, they must be equal.

To prove (2.13), observe that the assumption of locally bounded variation entails that

F ∗ L = (F ∗ L)(0) + d(F ∗ L) ∗ id.

Convolving this with K, using (2.11), and inspecting the densities of the resulting abso-
lutely continuous functions, we get

F = (F ∗ L)(0)K + d(F ∗ L) ∗K.

Using (2.4) and the fact that K ∗ dZ = X −X0 by assumption, it follows that

F ∗ dZ = (F ∗ L)(0)K ∗ dZ + d(F ∗ L) ∗ (K ∗ dZ)

= (F ∗ L)(0)X − (F ∗ L)X0 + d(F ∗ L) ∗X,

as claimed.

K(t) R(t) L(dt)

Constant c ce−ct c−1δ0(dt)

Fractional c t
α−1

Γ(α) ctα−1Eα,α(−ctα) c−1 t−α

Γ(1−α)dt

Exponential ce−λt ce−(c+λ)t c−1(δ0(dt) + λ dt)

Gamma ce−λt t
α−1

Γ(α) ce−λttα−1Eα,α(−ctα) c−1 1
Γ(1−α)e

−λt d
dt(t
−α ∗ eλt)(t)dt

Table 1: Some kernels K and their resolvents R and L of the second and first kind. Here
Eα,β(z) =

∑∞
n=0

zn

Γ(αn+β) denotes the Mittag–Leffler function, and the constant c may be
an invertible matrix.

3 Stochastic Volterra equations

Fix d ∈ N and consider the stochastic Volterra equation (1.1) for a given kernel K ∈
L2

loc(R+,Rd×d), initial condition X0 ∈ Rd, and coefficients b : Rd → Rd and σ : Rd → Rd×m,
where W is m-dimensional Brownian motion. The equation (1.1) can be written more
compactly as

X = X0 +K ∗ (b(X)dt+ σ(X)dW ).
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We will always require the coefficients b and σ as well as solutions of (1.1) to be contin-
uous in order to avoid problems with the meaning of the stochastic integral term. As for
stochastic (ordinary) differential equations, we call X a strong solution if it is adapted to
the filtration generated by W , and a weak solution otherwise.

The following moment bound holds for any solution of (1.1) under linear growth con-
ditions on the coefficients.

Lemma 3.1. Assume b and σ are continuous and satisfy the linear growth condition

|b(x)| ∨ |σ(x)| ≤ cLG(1 + |x|), x ∈ Rd, (3.1)

for some constant cLG. Let X be a continuous solution of (1.1) with initial condition
X0 ∈ Rd. Then for any p ≥ 2 and T <∞ one has

sup
t≤T

E[|Xt|p] ≤ c

for some constant c that only depends on |X0|, K|[0,T ], cLG, p and T .

Proof. Let τn = inf{t ≥ 0: |Xt| ≥ n} ∧ T , and observe that

|Xt|p1{t<τn} ≤
∣∣∣∣X0 +

∫ t

0
K(t− s)

(
b(Xs1{s<τn})ds+ σ(Xs1{s<τn})dWs

)∣∣∣∣p .
Routine application of the Jensen and BDG inequalities as well as the linear growth con-
dition (3.1) show that the expectations E[|Xt|p1{t<τn}] satisfy the inequality

fn ≤ c′ + c′|K|2 ∗ fn
on [0, T ] for some constant c′ that only depends on |X0|, ‖K‖L2(0,T ), cLG, p and T . Consider
now the scalar non-convolution Volterra kernel K ′(t, s) = |K(t− s)|21s≤t. For any interval
[u, v] ⊂ R+, Young’s inequality implies that∣∣∣∣∣∣K ′∣∣∣∣∣∣

L1(u,v)
≤ ‖K‖L2(0,v−u),

where ||| · |||L1(u,v) is defined in Gripenberg et al. (1990, Definition 9.2.2); see also Lemma C.1

below for related calculations. Thus −c′|K|2 is a nonpositive Volterra kernel of type L1 on
[0, T ] and, due to Gripenberg et al. (1990, Proposition 9.8.1), has a nonpositive resolvent
R′. The Gronwall type inequality in Gripenberg et al. (1990, Lemma 9.8.2) then yields
fn ≤ c′(1 − R′ ∗ 1) ≤ c′(1 − R′ ∗ 1)(T ) on [0, T ]. Sending n to infinity and using Fatou’s
lemma completes the proof.

Remark 3.2. It is clear from the proof that the conclusion of Lemma 3.1 holds also for
state- and time-dependent predictable coefficients b(x, t, ω) and σ(ω, t, x), provided they
satisfy a linear growth condition uniformly in (t, ω), that is,

|b(x, t, ω)| ∨ |σ(x, t, ω)| ≤ cLG(1 + |x|), x ∈ Rd, t ∈ R+, ω ∈ Ω,

for some constant cLG.
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The following basic existence result can be proved using techniques based on classical
methods for stochastic differential equations; the proof is given in Section A.

Theorem 3.3. Assume that K admits a resolvent of the first kind, that the components
of K satisfy (2.5), and that b and σ are continuous and satisfy the linear growth condition
(3.1). Then (1.1) admits a continuous weak solution for any initial condition X0 ∈ Rd.

Remark 3.4. At the cost of increasing the dimension, (1.1) also covers the superficially
different equation X = X0 +K1 ∗ (b(X)dt) +K2 ∗ (σ(X)dW ) where the drift and diffusion
terms are convolved with different kernels K1 and K2. Indeed, if one defines

K̃ =

(
K1 K2

0 K2

)
, b̃(x, y) =

(
b(x)

0

)
, σ̃(x, y) =

(
0 σ(x)
0 0

)
,

and obtains a solution Z = (X,Y ) of the equation Z = Z0 + K̃ ∗ (̃b(Z)dt + σ̃(Z)dW̃ ) in

R2d, where Z0 = (X0, 0) and W̃ = (W ′,W ) is a 2d-dimensional Brownian motion, then X
is a solution of the original equation of interest. If K1 and K2 admit resolvents of the first
kind L1 and L2, then

L̃ =

(
L1 −L1

0 L2

)
is a resolvent of the first kind of K̃, so that Theorem 3.3 is applicable.

Our next existence result is more delicate, as it involves an assertion about stochastic
invariance of the nonnegative orthant Rd+. This forces us to impose stronger conditions
on the kernel K along with suitable boundary conditions on the coefficients b and σ. We
note that any nonnegative and non-increasing kernel that is not identically zero admits a
resolvent of the first kind; see Gripenberg et al. (1990, Theorem 5.5.5).

Theorem 3.5. Assume that K is diagonal with scalar kernels Ki on the diagonal that
satisfy (2.5) as well as

Ki is nonnegative, non-increasing, not identically zero, and its
resolvent of the first kind Li is nonnegative and non-increasing
in the sense that 0 ≤ Li([s, s+ t]) ≤ Li([0, t]) for all s, t ≥ 0.

(3.2)

Assume also that b and σ are continuous and satisfy the linear growth condition (3.1) along
with the boundary conditions

xi = 0 implies bi(x) ≥ 0 and σi(x) = 0,

where σi(x) is the ith row of σ(x). Then (1.1) admits an Rd+-valued continuous weak
solution for any initial condition X0 ∈ Rd+.
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Example 3.6. If Ki is completely monotone on (0,∞) and not identically zero, then (3.2)
holds due to Gripenberg et al. (1990, Theorem 5.5.4). Recall that a function f is called
completely monotone on (0,∞) if it is infinitely differentiable there with (−1)kf (k)(t) ≥ 0
for all t > 0 and k = 0, 1, . . .. This covers, for instance, any constant positive kernel,
the fractional kernel tα−1 with α ∈ (1

2 , 1), and the exponentially decaying kernel e−βt with
β > 0. Moreover, sums and products of completely monotone functions are completely
monotone.

Proof of Theorem 3.5. Define coefficients bn and σn by

bn(x) = b
(
(x− n−1)+

)
, σn(x) = σ

(
(x− n−1)+

)
,

and let Xn be the solution of (1.1) given by Theorem 3.3, with b and σ replaced by bn

and σn. Note that bn and σn are continuous, satisfy (3.1) with a common constant, and
converge to b(x+) and σ(x+) locally uniformly. Lemmas A.2 and A.3 therefore imply
that, along a subsequence, Xn converges weakly to a solution X of the stochastic Volterra
equation

Xt = X0 +

∫ t

0
K(t− s)b(X+

s )ds+

∫ t

0
K(t− s)σ(X+

s )dWs.

It remains to prove that X is Rd+-valued and hence a solution of (1.1). For this it suffices
to prove that each Xn is Rd+-valued.

Dropping the superscript n, we are thus left with the task of proving the theorem under
the stronger condition that, for some fixed n ∈ N,

xi ≤ n−1 implies bi(x) ≥ 0 and σi(x) = 0. (3.3)

Define Z =
∫
b(X)dt+

∫
σ(X)dW and τ = inf{t ≥ 0: Xt /∈ Rd+}. On {τ <∞} we have

Xτ+h = X0 + (K ∗ dZ)τ+h = X0 + (∆hK ∗ dZ)τ +

∫ h

0
K(h− s)dZτ+s (3.4)

for all h ≥ 0. We claim that

(∆hKi ∗ Li)(t) is nondecreasing in t for any h ≥ 0. (3.5)

Indeed, using that Ki ∗ Li ≡ 1 we have

(∆hKi ∗ Li)(t) =

∫ t

0
Ki(t+ h− u)Li(du)

= 1−
∫ t+h

t
Ki(t+ h− u)Li(du)

= 1−
∫ h

0
Ki(h− u)Li(t+ du),
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and therefore, for any s ≤ t,

(∆hKi ∗ Li)(t)− (∆hKi ∗ Li)(s) =

∫ h

0
Ki(h− u) (Li(s+ du)− Li(t+ du)) .

This is nonnegative since Ki is nonnegative and Li non-increasing, proving (3.5). Further-
more, since Ki is non-increasing and Li nonnegative we obtain

0 ≤ (∆hKi ∗ Li)(t) ≤ (Ki ∗ Li)(t) = 1. (3.6)

It follows from (3.5) that ∆hKi ∗ Li is of locally bounded variation. Thus (2.13) in
Lemma 2.6, along with (3.5)–(3.6) and the fact that Xt is Rd+-valued for t ≤ τ , yield

Xi,0 + (∆hKi ∗ dZi)τ = (1− (∆hKi ∗ Li)(τ))Xi,0

+ (∆hKi ∗ Li)(0)Xi,τ

+ (d(∆hKi ∗ Li) ∗Xi)τ

≥ 0.

In view of (3.4) it follows that

Xi,τ+h ≥
∫ h

0
Ki(h− s) (bi(Xτ+s)ds+ σi(Xτ+s)dWτ+s) (3.7)

on {τ <∞} for all i and all h ≥ 0.
Now, on {τ < ∞} there is an index i (depending on ω) such that Xi,τ = 0 and

Xi,τ+h < 0 for arbitrarily small but positive values of h. On the other hand, by continuity
there is some ε > 0 (again depending on ω) such that Xi,τ+h ≤ n−1 for all h ∈ [0, ε). Thus
(3.3) and (3.7) yield Xi,τ+h ≥ 0 for all h ∈ [0, ε). This contradiction shows that τ =∞, as
desired. The proof is complete.

4 Affine Volterra processes

Fix a dimension d ∈ N and a kernel K ∈ L2
loc(R+,Rd×d). Let a : Rd → Sd and b : Rd → Rd

be affine maps given by
a(x) = A0 + x1A

1 + · · ·+ xdA
d

b(x) = b0 + x1b
1 + · · ·+ xdb

d
(4.1)

for some Ai ∈ Sd and bi ∈ Rd, i = 0, . . . , d. To simplify notation we introduce the d × d
matrix

B =
(
b1 · · · bd

)
,

and for any row vector u ∈ (Cd)∗ we define the row vector

A(u) = (uA1u>, . . . , uAdu>).
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Let E be a subset of Rd, which will play the role of state space for the process defined
below, and assume that a(x) is positive semidefinite for every x ∈ E. Let σ : Rd → Rd×d
be continuous and satisfy σ(x)σ(x)> = a(x) for every x ∈ E. For instance, one can take
σ(x) =

√
π(a(x)), where π denotes the orthogonal projection onto the positive semidefinite

cone, and the positive semidefinite square root is understood.

Definition 4.1. An affine Volterra process (with state space E) is a continuous E-valued
solution X of (1.1) with a = σσ> and b as in (4.1). In this paper we always take X0

deterministic.

Setting K ≡ id we recover the usual notion of an affine diffusion with state space E;
see e.g. Filipović (2009). Even in this case, existence and uniqueness is often approached
by first fixing a state space E of interest, and then studying conditions on (a, b) under
which existence and uniqueness can be proved; see e.g. Duffie et al. (2003); Cuchiero et al.
(2011); Spreij and Veerman (2012); Larsson and Krühner (2017). A key goal is then to
obtain explicit parameterizations that can be used in applications. In later sections we
carry out this analysis for affine Volterra processes with state space Rd, Rd+, and R ×
R+. In the standard affine case more general results are available. Spreij and Veerman
(2010) characterize existence and uniqueness of affine jump-diffusions on closed convex state
spaces, while Abi Jaber et al. (2016) provide necessary and sufficient first order geometric
conditions for existence of affine diffusions on general closed state spaces. We do not pursue
such generality here for affine Volterra processes.

Assuming that an affine Volterra process is given, one can however make statements
about its law. In the present section we develop general results in this direction. We start
with a formula for the conditional mean.

Lemma 4.2. Let X be an affine Volterra process. Then for all t ≤ T ,

E[XT | Ft] =

(
id−

∫ T

0
RB(s)ds

)
X0 +

(∫ T

0
EB(s)ds

)
b0 +

∫ t

0
EB(T − s)σ(Xs)dWs,

where RB is the resolvent of −KB and EB = K −RB ∗K. In particular,

E[XT ] =

(
id−

∫ T

0
RB(s)ds

)
X0 +

(∫ T

0
EB(s)ds

)
b0.

Proof. We have X = X0 + (KB) ∗X +K ∗ (b0dt+ σ(X)dW ), and therefore

X −RB ∗X =
(
id−RB ∗ 1

)
X0

+
(
(KB)−RB ∗ (KB)

)
∗X

+ EB ∗ (b0dt+ σ(X)dW ).

The resolvent equation (2.10) states that KB −RB ∗ (KB) = −RB, so that

X = (id−RB ∗ 1)X0 + EB ∗ (b0dt+ σ(X)dW ).
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Consider the local martingale Mt =
∫ t

0 EB(T − s)σ(Xs)dWs, t ∈ [0, T ]. Its quadratic
variation satisfies

E[〈M〉T ] ≤
∫ T

0
|EB(T − s)|2 E[|σ(Xs)|2]ds ≤ ‖EB‖L2(0,T ) max

s≤T
E[|σ(Xs)|2],

which is finite by Lemma 3.1. Thus M is a martingale, so taking Ft-conditional expecta-
tions completes the proof.

The main result of this section is the following theorem, which expresses the conditional
Fourier–Laplace functional of an affine Volterra process in terms of the conditional mean
in Lemma 4.2 and the solution of a quadratic Volterra integral equation, which we call a
Riccati–Volterra equation.

Theorem 4.3. Let X be an affine Volterra process and fix some T < ∞, u ∈ (Cd)∗, and
f ∈ L1([0, T ], (Cd)∗). Assume ψ ∈ L2([0, T ], (Cd)∗) solves the Riccati–Volterra equation

ψ = uK +

(
f + ψB +

1

2
A(ψ)

)
∗K. (4.2)

Then the process {Yt, 0 ≤ t ≤ T} defined by

Yt = Y0 +

∫ t

0
ψ(T − s)σ(Xs)dWs −

1

2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)>ds, (4.3)

Y0 = uX0 +

∫ T

0

(
f(s)X0 + ψ(s)b(X0) +

1

2
ψ(s)a(X0)ψ(s)>

)
ds (4.4)

satisfies

Yt = E[uXT + (f ∗X)T | Ft] +
1

2

∫ T

t
ψ(T − s)a(E[Xs | Ft])ψ(T − s)>ds (4.5)

for all 0 ≤ t ≤ T . The process {exp(Yt), 0 ≤ t ≤ T} is a local martingale and, if it is a
true martingale, one has the exponential-affine transform formula

E
[
exp (uXT + (f ∗X)T )

∣∣∣ Ft] = exp(Yt), t ≤ T. (4.6)

Referring to (4.6) as an exponential-affine transform formula is motivated by the fact
that Yt depends affinely on the conditional expectations E[Xs | Ft]. We show in Lemma 4.5
below that under suitable assumptions, Yt is actually an affine function of the past trajec-
tory {Xs, s ≤ t}. Before proving Theorem 4.3 we give the following lemma.

Lemma 4.4. The Riccati–Volterra equation (4.2) is equivalent to

ψ = uEB +

(
f +

1

2
A(ψ)

)
∗ EB, (4.7)

where EB = K −RB ∗K and RB is the resolvent of −KB.
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Proof. Assume (4.7) holds. Using the identity EB ∗ (BK) = −RB ∗K we get

ψ − ψ ∗ (BK) = u(EB +RB ∗K) +

(
f +

1

2
A(ψ)

)
∗ (EB +RB ∗K),

which is (4.2). Conversely, assume (4.2) holds. With R̃B being the resolvent of −BK, we
obtain

ψ − ψ ∗ R̃B = u(K −K ∗ R̃B) +

(
f +

1

2
A(ψ)

)
∗ (K −K ∗ R̃B)− ψ ∗ R̃B.

To deduce (4.7) it suffices to prove K ∗ R̃B = RB ∗K. Equivalently, we show that for each
T <∞, there is some σ > 0 such that

(e−σtK) ∗ (e−σtR̃B) = (e−σtRB) ∗ (e−σtK) on [0, T ], (4.8)

where e−σt is shorthand for the function t 7→ e−σt. It follows from the definitions that
e−σtRB is the resolvent of −e−σtKB, and that e−σtR̃B is the resolvent of −e−σtBK; see
Gripenberg et al. (1990, Lemma 2.3.3). Choosing σ large enough that ‖e−σtKB‖L1(0,T ) < 1
we get, as in the proof of Gripenberg et al. (1990, Theorem 2.3.1),

e−σtRB = −
∑
k≥1

(e−σtKB)∗k and e−σtR̃B = −
∑
k≥1

(e−σtBK)∗k

on [0, T ]. This readily implies (4.8), as required.

Proof of Theorem 4.3. Let Ỹt be defined by the right-hand side of (4.5) for 0 ≤ t ≤ T . We
first prove that Ỹ0 = Y0. A calculation using the identity va(x)v> = vA0v>+A(v)x yields

Ỹ0 − Y0 = uE[XT −X0] + (f ∗ E[X −X0])(T )

+

(
1

2
A(ψ) ∗ E[X −X0]

)
(T )−

(
ψ ∗ (b0 +BX0)

)
(T ),

(4.9)

where E[X −X0] denotes the function t 7→ E[Xt −X0]. This function satisfies

E[X −X0] = K ∗
(
b0 +B E[X]

)
,

as can be seen by taking expectations in (1.1) and using Lemma 3.1. Consequently,

1

2
A(ψ) ∗ E[X −X0] =

1

2
A(ψ) ∗K ∗

(
b0 +B E[X]

)
= (ψ − uK − (f + ψB) ∗K) ∗

(
b0 +B E[X]

)
= ψ ∗

(
b0 +B E[X]

)
− uE[X −X0]− (f + ψB) ∗ E[X −X0].
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Substituting this into (4.9) yields Ỹ0 − Y0 = 0, as required.
We now prove that Ỹ = Y . In the following calculations we let C denote an F0-

measurable quantity that does not depend on t, and may change from line to line. Using
again the identity va(x)v> = vA0v> +A(v)x we get

Ỹt = C + uE[XT | Ft] +

∫ T

0

(
f +

1

2
A(ψ)

)
(T − s)E[Xs | Ft] ds

− 1

2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)>ds.

Lemma 4.2, the stochastic Fubini theorem, see Veraar (2012, Theorem 2.2), and a change
of variables yield∫ T

0

(
f +

1

2
A(ψ)

)
(T − s)E[Xs | Ft] ds

= C +

∫ T

0

(
f +

1

2
A(ψ)

)
(T − s)

∫ t

0
1{r<s}EB(s− r)σ(Xr)dWr ds

= C +

∫ t

0

(∫ T

r

(
f +

1

2
A(ψ)

)
(T − s)EB(s− r)ds

)
σ(Xr)dWr

= C +

∫ t

0

((
f +

1

2
A(ψ)

)
∗ EB

)
(T − r)σ(Xr)dWr,

where the application of the stochastic Fubini theorem in the second equality is justified
by the fact that∫ T

0

(∫ t

0

∣∣∣∣(f +
1

2
A(ψ)

)
(T − s) 1{r<s}EB(s− r)σ(Xr)

∣∣∣∣2 dr
)1/2

ds

≤ max
0≤s≤T

|σ(Xs)| ‖EB‖L2(0,T )‖f +
1

2
A(ψ)‖L1(0,T ) <∞.

Since E[XT | Ft] = C +
∫ t

0 EB(T − r)σ(Xr)dWr by Lemma 4.2, we arrive at

Ỹt = Ỹ0 +

∫ t

0

(
uEB +

(
f +

1

2
A(ψ)

)
∗ EB

)
(T − r)σ(Xr)dWr

− 1

2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)>ds.

Due to Lemma 4.4 and (4.4) we then arrive at (4.3).
The final statements are now straightforward. Indeed, (4.3) shows that Y + 1

2〈Y 〉 is
a local martingale, so that exp(Y ) is a local martingale by Itô’s formula. In the true
martingale situation, the exponential-affine transform formula then follows upon observing
that YT = uXT + (f ∗X)T by (4.5).
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In the particular case f ≡ 0 and t = 0, Theorem 4.3 yields two different expressions for
the Fourier–Laplace transform of X,

E[euXT ] = exp

(
E[uXT ] +

1

2

∫ T

0
ψ(T − t)a(E[Xt])ψ(T − t)>dt

)
(4.10)

= exp (φ(T ) + χ(T )X0) , (4.11)

where φ and χ are defined by

φ′(t) = ψ(t)b0 +
1

2
ψ(t)A0ψ(t)>, φ(0) = 0, (4.12)

χ′(t) = ψ(t)B +
1

2
A(ψ(t)), χ(0) = u. (4.13)

If K admits a resolvent of the first kind L, one sees upon convolving (4.2) by L and using
(2.11) that χ = ψ ∗ L; see also Example 4.7 below. Note that (4.12)–(4.13) reduce to the
classical Riccati equations when K ≡ id, since in this case L = δ0id and hence ψ = χ. While
the first expression (4.10) does exist in the literature on affine diffusions in the classical
case K ≡ id, see Spreij and Veerman (2010, Proposition 4.2), the second expression (4.11)
is much more common.

In the classical case one has a conditional version of (4.11), namely

E[euXT | Ft] = exp (φ(T − t) + ψ(T − t)Xt) .

This formulation has the advantage of showing clearly that the right-hand side depends on
Xt in an exponential-affine manner. In the general Volterra case the lack of Markovianity
precludes such a simple form, but using the resolvent of the first kind it is still possible to
obtain an explicit expression that is exponential-affine in the past trajectory {Xs, s ≤ t}.
Note that this property is not at all obvious neither from (4.6), nor from the expression

E[euXT | Ft] = E
(
Y0 +

∫
ψ(T − s)σ(Xs)dWs

)
t

(4.14)

which follows directly from (4.3)–(4.4). Here E denotes stochastic exponential.

Lemma 4.5. Consider the setting of Theorem 4.3, and assume in addition that K admits
a resolvent of the first kind L. Define

πh = ∆hψ ∗ L−∆h(ψ ∗ L),

and assume πh is of locally bounded variation for every h ≥ 0. The process Y in (4.5) is
then given by

Yt = φ(h) + (∆hf ∗X)t + (∆hψ ∗ L)(0)Xt − πh(t)X0 + (dπh ∗X)t (4.15)
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with h = T − t and

φ(h) =

∫ h

0

(
ψ(s)b0 +

1

2
ψ(s)A0ψ(s)>

)
ds.

If instead Reπh is of locally bounded variation for every h ≥ 0, then ReYt is given by
(4.15) with φ(h), f , and πh replaced by Reφ(h), Re f , and Reπh. An analogous statement
holds for ImYt.

Proof. Define Z =
∫
b(X)dt+

∫
σ(X)dW . By (4.3) and the definition of ∆h we have

Yt = Y0 + (∆hψ ∗ dZ)t −
∫ t

0

(
ψ(T − s)b(Xs) +

1

2
ψ(T − s)a(Xs)ψ(T − s)>

)
ds, (4.16)

where h = T − t. Note that ψ ∗ L = u+ (f + ψB + 1
2A(ψ)) ∗ id, so that ψ ∗ L is of locally

bounded variation (even absolutely continuous). Thus ∆h(ψ ∗L) is also of locally bounded
variation, and hence so is ∆hψ ∗ L = πh + ∆h(ψ ∗ L). Applying (2.13) in Lemma 2.6 with
F = ∆hψ now yields

∆hψ ∗ dZ = (∆hψ ∗ L)(0)X − (∆hψ ∗ L)X0 + d(∆hψ ∗ L) ∗X.

Substituting this into (4.16) and rearranging terms yields the claimed expression.

Remark 4.6. If K ≡ id so that L = id δ0, then the correction πh vanishes and the
expression for Yt reduces to the classical form φ(T − t) + ψ(T − t)Xt, where φ satisfies
φ′ = ψb0 + 1

2ψA
0ψ> and φ(0) = 0.

Example 4.7 (Fractional affine processes). Let K = diag(K1, . . . ,Kd), where

Ki(t) =
tαi−1

Γ(αi)

for some αi ∈ (1
2 , 1]. Then L = diag(L1, . . . , Ld) with Li(dt) = t−αi

Γ(1−αi)dt if αi < 1, and

Li(dt) = δ0(dt) if αi = 1. It follows that χi = ψi ∗ Li = I1−αiψi, where I1−αi denotes
the Riemann-Liouville fractional integral operator. Hence, (4.2) and (4.12) reduce to the
following system of fractional Riccati equations,

φ′ = ψb0 +
1

2
ψA0ψ>, φ(0) = 0,

Dαiψi = fi + ψbi +
1

2
ψAiψ>, i = 1, . . . , d, I1−αψ(0) = u,

where Dαi = d
dtI

1−αi is the Riemann-Liouville fractional differential operator. Moreover,
for t = 0, (4.6) reads

E
[
euXT+(f∗X)T

]
= exp

(
φ(T ) + I1−αψ(T )X0

)
where we write I1−αψ = (I1−α1ψ1, . . . , I

1−αdψd). This generalizes the expressions in
El Euch and Rosenbaum (2016, 2017). Notice that the identity Lαi ∗ Kαi ≡ 1 is equiv-
alent to the identity Dαi(Iαif) = f .
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5 The Volterra Ornstein–Uhlenbeck process

The particular specification of (4.1) where A1 = · · · = Ad = 0, so that a ≡ A0 is a constant
symmetric positive semidefinite matrix, yields an affine Volterra process with state space
E = Rd that we call the Volterra Ornstein–Uhlenbeck process. It is the solution of the
equation

Xt = X0 +

∫ t

0
K(t− s)(b0 +BXs)ds+

∫ t

0
K(t− s)σdWs,

where σ ∈ Rd×d is a constant matrix with σσ> = A0. Here existence and uniqueness is no
issue. Indeed, Lemma 4.2 with T = t yields the explicit formula

Xt =

(
id−

∫ t

0
RB(s)ds

)
X0 +

(∫ t

0
EB(s)ds

)
b0 +

∫ t

0
EB(t− s)σdWs,

where RB is the resolvent of −KB and EB = K − RB ∗K. In particular Xt is Gaussian.
Furthermore, the solution of the Riccati–Volterra equation (4.2) is obtained explicitly via
Lemma 4.4 as

ψ = uEB + f ∗ EB.

The quadratic variation of the process Y in (4.3) is given by

〈Y 〉t =

∫ t

0
ψ(T − s)σσ>ψ(T − s)>ds,

and is in particular deterministic. The martingale condition in Theorem 4.3 is thus clearly
satisfied, and the exponential-affine transform formula (4.6) holds for any T < ∞, u ∈
(Cd)∗, and f ∈ L1([0, T ], (Cd)∗).

6 The Volterra square-root process

We now consider affine Volterra processes whose state space is the nonnegative orthant
E = Rd+. We let K be diagonal with scalar kernels Ki ∈ L2

loc(R+,R) on the diagonal.
The coefficients a and b in (4.1) are chosen so that A0 = 0, Ai is zero except for the (i, i)
element which is equal to σ2

i for some σi > 0, and

b0 ∈ Rd+ and Bij ≥ 0 for i 6= j. (6.1)

The conditions on a and b are the same as in the classical situation K ≡ id, in which case
they are necessary and sufficient for (1.1) to admit an Rd+-valued solution for every initial
condition X0 ∈ Rd+. With this setup, we obtain an affine Volterra process that we call the
Volterra square-root process. It is the solution of the equation

Xi,t = Xi,0 +

∫ t

0
Ki(t− s)bi(Xs)ds+

∫ t

0
Ki(t− s)σi

√
Xi,sdWi,s, i = 1, . . . , d. (6.2)
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The Riccati–Volterra equation (4.2) becomes

ψi(t) = uiKi(t) +

∫ t

0
Ki(t− s)

(
fi(s) + ψ(s)bi +

σ2
i

2
ψi(s)

2

)
ds, i = 1, . . . , d. (6.3)

The following theorem is our main result on Volterra square-root processes.

Theorem 6.1. Assume each Ki is continuous on (0,∞) and the shifted kernels ∆hKi

satisfy (2.5) and (3.2) for all h ∈ [0, 1]. Assume also that (6.1) holds.

(i) The stochastic Volterra equation (6.2) has a unique in law Rd+-valued continuous weak
solution X for any initial condition X0 ∈ Rd+. For each i, the paths of Xi are Hölder
continuous of any order less than γi/2, where γi is the constant associated with Ki

in (2.5).

(ii) For any u ∈ (Cd)∗ and f ∈ L1
loc(R+, (Cd)∗)) such that

Reui ≤ 0 and Re fi ≤ 0 for all i = 1, . . . , d,

the Riccati–Volterra equation (6.3) has a unique global solution ψ ∈ L2
loc(R+, (Cd)∗),

which satisfies Reψi ≤ 0, i = 1, . . . , d. Moreover, the exponential-affine transform
formula (4.6) holds with Y given by (4.3)–(4.5).

Example 6.2. A sufficient condition for Ki to satisfy the assumptions of Theorem 6.1 is
that it satisfies (2.5) and is completely monotone and not identically zero; see Example 3.6.
This covers in particular the gamma kernel tα−1e−βt with α ∈ (1

2 , 1] and β ≥ 0.

Proof. Thanks to (6.1) and the form of σ(x), Theorem 3.5 yields an Rd+-valued continuous
weak solution X of (6.2) for any initial condition X0 ∈ Rd+. The stated path regularity
then follows from Lemma 2.2.

Next, the existence, uniqueness, and non-positivity statement for the Riccati–Volterra
equation (6.3) is proved in Lemma 6.3 below. Thus in order to apply Theorem 4.3 to
obtain the exponential-affine transform formula, it suffices to argue that ReYt is bounded
above on [0, T ], since exp(Y ) is then bounded and hence a martingale. This is done using
Lemma 4.5, and we start by observing that

πrh,i(r) = −
∫ h

0
ψr
i (h− s)Li(r + ds), r ≥ 0,

where πh = ∆hψ ∗ L − ∆h(ψ ∗ L) and we write πrh = Reπh and ψr = Reψ. Due to
the assumption (3.2) on Li and since −ψr

i ≥ 0, it follows that πrh,i is nonnegative and
non-increasing. In particular, πrh is of locally bounded variation. Lemma 4.5 then yields

ReYt = Reφ(h) + (Re ∆hf ∗X)t + (∆hψ
r ∗ L)(0)Xt − πrh(t)X0 + (dπrh ∗X)t
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where h = T − t and, since A0 = 0,

φ(h) =

∫ h

0
ψ(s)b0ds.

Observe that ψr, (∆hψ
r ∗ L)(0), Re ∆hf , −πrh, and dπrh all have nonpositive components.

Since b0 and X take values in Rd+ we thus get

ReYt ≤ 0.

Thus exp(Y ) is bounded, whence Theorem 4.3 is applicable and the exponential-affine
transform formula holds.

It remains to prove uniqueness in law for X. This follows since the law of X is deter-
mined by the Laplace functionals E[exp((f∗X)T )] as f ranges through, say, all (Rd)∗-valued
continuous functions f with nonpositive components, and T ranges through R+.

Lemma 6.3. Assume K is as in Theorem 6.1. Let u ∈ (Cd)∗ and f ∈ L1
loc(R+, (Cd)∗))

satisfy
Reui ≤ 0 and Re fi ≤ 0 for all i = 1, . . . , d.

Then the Riccati–Volterra equation (6.3) has a unique global solution ψ ∈ L2
loc(R+, (Cd)∗),

and this solution satisfies Reψi ≤ 0, i = 1, . . . , d.

Proof. By Theorem B.1 there exists a unique non-continuable solution (ψ, Tmax) of (6.3).
Let ψr and ψi denote the real and imaginary parts of ψ. They satisfy the equations

ψr
i = (Reui)Ki +Ki ∗

(
Re fi + ψrbi +

σ2
i

2

(
(ψr

i )
2 − (ψi

i)
2
))

ψi
i = (Imui)Ki +Ki ∗

(
Im fi + ψibi + σ2

i ψ
r
iψ

i
i

)
on [0, Tmax). Moreover, on this interval, −ψr

i satisfies the linear equation

χi = −(Reui)Ki +Ki ∗
(
−Re fi + χbi +

σ2
i

2

(
(ψi

i)
2 + χiψ

r
i

))
.

Due to (6.1) and since Reu and Re f both have nonpositive components, Theorem C.2
yields ψr

i ≤ 0, i = 1, . . . , d. Next, let g ∈ L2
loc([0, Tmax), (Rd)∗) and h, ` ∈ L2

loc(R+, (Rd)∗)
be the unique solutions of the linear equations

gi = |Imui|Ki +Ki ∗
(
|Im fi|+ gbi + σ2

i ψ
r
i gi
)

hi = |Imui|Ki +Ki ∗
(
|Im fi|+ hbi

)
`i = (Reui)Ki +Ki ∗

(
Re fi + `bi − σ2

i

2
h2
i

)
.
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These solutions exist on [0, Tmax) thanks to Corollary B.3. We now perform multiple
applications of Theorem C.2. The functions g ± ψi satisfy the equations

χi = 2(Imui)
±Ki +Ki ∗

(
2(Im fi)

± + χbi + σ2
i ψ

r
iχi
)

on [0, Tmax), so |ψi
i| ≤ gi on [0, Tmax) for all i. Similarly, h− g satisfies the equation

χi = Ki ∗
(
χbi − σ2

i ψ
r
i gi
)

on [0, Tmax), so gi ≤ hi on [0, Tmax). Finally, ψr − ` satisfies the equation

χi = Ki ∗
(
χbi +

σ2
i

2

(
(ψr

i )
2 + h2

i − (ψi
i)

2
))

,

on [0, Tmax), so `i ≤ ψr
i on [0, Tmax). In summary, we have shown that

`i ≤ ψr
i ≤ 0 and |ψi

i| ≤ hi on [0, Tmax) for i = 1, . . . , d.

Since ` and h are global solutions and thus have finite norm on any bounded interval, this
implies that Tmax =∞ and completes the proof of the lemma.

7 The Volterra Heston model

We now consider an affine Volterra process with state space R×R+, which can be viewed
as a generalization of the classical Heston stochastic volatility model in finance, and which
we refer to as the Volterra Heston model. We thus take d = 2 and consider the process
X = (logS, V ), where price process S and its variance process V are given by

dSt
St

=
√
Vt
(√

1− ρ2 dW1,s + ρ dW2,s

)
, S0 ∈ (0,∞), (7.1)

and

Vt = V0 +

∫ t

0
K(t− s)

(
κ(θ − Vs)ds+ σ

√
Vs dW2,t

)
, (7.2)

with kernel K ∈ L2
loc(R+,R), a standard Brownian motion W = (W1,W2), and parame-

ters V0, κ, θ, σ ∈ R+ and ρ ∈ [−1, 1]. Here the notation has been adapted to comply with
established conventions in finance. Weak existence and uniqueness of V follows from The-
orem 6.1 under suitable conditions on K. This in turn determines S. Moreover, observe
that the log-price satisfies

logSt = logS0 −
∫ t

0

Vs
2
ds+

∫ t

0

√
Vs
(√

1− ρ2 dW1,s + ρ dW2,s

)
.
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Therefore the process X = (logS, V ) is indeed an affine Volterra process with diagonal
kernel diag(1,K) and coefficients a and b in (4.1) given by

A0 = A1 = 0, A2 =

(
1 ρσ
ρσ σ2

)
,

b0 =

(
0
κθ

)
, B =

(
0 −1

2
0 −κ

)
. (7.3)

The Riccati–Volterra equation (4.2) takes the form

ψ1 = u1 + 1 ∗ f1, (7.4)

ψ2 = u2K +K ∗
(
f2 +

1

2

(
ψ2

1 − ψ1

)
− κψ2 +

1

2

(
σ2ψ2

2 + 2ρσψ1ψ2

))
. (7.5)

Theorem 7.1. Assume K is continuous on (0,∞) and the shifted kernel ∆hK satisfies
(2.5) and (3.2) for all h ∈ [0, 1].

(i) The stochastic Volterra equation (7.1)-(7.2) has a unique in law R×R+-valued con-
tinuous weak solution (logS, V ) for any initial condition (logS0, V0) ∈ R× R+. The
paths of V are Hölder continuous of any order less than γ/2, where γ is the constant
associated with K in (2.5).

(ii) Let u ∈ (C2)∗ and f ∈ L1
loc(R+, (C2)∗)) be such that

Reu1 ∈ [0, 1], Reu2 ≤ 0, f1 = 0, and Re f2 ≤ 0.

Then, if ψ1 is given by (7.4), the Riccati–Volterra equation-(7.5) has a unique global
solution ψ2 ∈ L2

loc(R+,C∗), which satisfies Reψ2 ≤ 0. Moreover, the exponential-
affine transform formula (4.6) holds with Y given by (4.3)–(4.5).

(iii) The process S is a martingale.

Proof. As already mentioned above, part (i) follows directly from Theorem 6.1 along with
the fact that S is determined by V . Part (iii) is proved in Lemma 7.3 below. The existence,
uniqueness, and non-positivity statement for the Riccati–Volterra equation (7.5) is proved
in Lemma 7.4 below. Thus in order to apply Theorem 4.3 to obtain the exponential-affine
transform formula, it suffices to argue that exp(Y ) is a martingale. This is done using
Lemma 4.5 and part (iii). As the argument closely parallels that of the proof of Theo-
rem 6.1, we only provide an outline. We use the notation of Lemma 4.5 and Theorem 6.1,
in particular πh and πrh = Reπh, and let L be the resolvent of the first kind of K. After
verifying that πrh,2 is of locally bounded variation, we apply Lemma 4.5 to get

ReYt = Reu1 logSt + Reφ(h) + (∆hψ
r
2 ∗ L)(0)Vt

+ (Re ∆hf2 ∗ V )t − πr2,h(t)V0 + (dπr2,h ∗ V )t

25



where h = T − t and

φ(h) = κθ

∫ h

0
ψ2(s) ds.

An inspection of signs and monotonicity properties gives

ReYt ≤ Reu1 logSt.

Since Reu1 ∈ [0, 1] we get
| exp(Yt)| ≤ SReu1

t ≤ 1 + St,

where the right-hand side is a true martingale by Part (iii), and hence of Class (DL).
Thus exp(Y ) is a true martingale, Theorem 4.3 is applicable, and the exponential-affine
transform formula holds.

Example 7.2 (Rough Heston model). In the fractional case K(t) = t1−α

Γ(α) with α ∈ (1
2 , 1)

we recover the rough Heston model introduced and studied by El Euch and Rosenbaum
(2016, 2017). Theorem 7.1 generalizes some of their main results. For instance, in the

notation of Example 4.7 and using that L(dt) = t−α

Γ(1−α)dt, we have

χ = (u1, I
1−αψ2),

which yields the full Fourier–Laplace functional with integrated variance,

E
[
eu1 logST+u2VT+(f2∗V )T

]
= exp

(
φ(T ) + u1 logS0 + I1−αψ2(T )V0

)
,

where φ and ψ2 solve the fractional Riccati equations

φ′ = κθψ2, φ(0) = 0,

Dαψ2 = f2 +
1

2

(
u2

1 − u1

)
+ (2ρσu1 − κ)ψ2 +

σ2

2
ψ2

2, I1−αψ2(0) = u2.

This extends some of the main results of El Euch and Rosenbaum (2016, 2017).

We now proceed with the lemmas used in the proof of Theorem 7.1.

Lemma 7.3. The process S is a martingale.

Proof. Since S is a nonnegative local martingale, it is a supermartingale by Fatou’s lemma,
and it suffices to show that E[ST ] ≥ S0 for any T ∈ R+. To this end, define stopping times
τn = inf{t ≥ 0: Vt ≥ n}. Then Sτn is a uniformly integrable martingale for each n, and we
may define probability measures Qn by

dQn

dP
=
Sτn
S0

.
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By Girsanov’s theorem, the process dWn
t = dW2,t − 1{t≤τn}ρ

√
Vtdt is a Brownian motion

under Qn, and we have

V = V0 +K ∗ ((κθ − (κ− ρσ1[[0,τn]])V )dt+ σ
√
V dWn).

Let γ be the constant appearing in (2.5) and choose p sufficiently large that γ/2−1/p > 0.
Due to Lemma 3.1 and Remark 3.2 we have the moment bound

sup
t≤T

EQn [|Vt|p] ≤ c

for some constant c that does not depend on n. For any real-valued function f , write

|f |C0,α(0,T ) = sup
0≤s<t≤T

|f(t)− f(s)|
|t− s|α

for its α-Hölder seminorm. An application of Lemma 2.5 with α = 0 now yields

Qn(τn ≤ T ) = Qn
(

sup
t≤T
|Vt| ≥ n

)
≤ Qn

(
|V0|+ |V |C0,0(0,T ) ≥ n

)
≤
(

1

n− |V0|

)p
EQn

[
|V |p

C0,0(0,T )

]
≤
(

1

n− |V0|

)p
c′

for a constant c′ that does not depend on n. We deduce that

EP

[
ST
S0

]
≥ EP

[
ST
S0

1{τn>T}

]
= Qn(τn > T ) ≥ 1−

(
1

n− |X0|

)p
c′,

and sending n to infinity we obtain EP[ST ] ≥ S0. This completes the proof.

Lemma 7.4. Assume K is as in Theorem 7.1. Let u ∈ (C2)∗ and f ∈ L1
loc(R+, (C2)∗)) be

such that
Reu1 ∈ [0, 1], Reu2 ≤ 0, f1 = 0, and Re f2 ≤ 0.

Then, with ψ1 ≡ u1 given by (7.4), the Riccati–Volterra equation (7.5) has a unique global
solution ψ2 ∈ L2

loc(R+,C∗), which satisfies Reψ2 ≤ 0.

Proof. The proof parallels that of Lemma 6.3. For any complex number z, we denote by
zr and zi the real and imaginary parts of z. Since f1 = 0, ψ1 is constant and equal to u1.
Equation (7.5) for ψ2 thus reads

ψ2 = u2K +K ∗
(
f2 +

1

2
(u2

1 − u1) + (ρσu1 − κ)ψ2 +
σ2

2
ψ2

2

)
. (7.6)
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By Theorem B.1 there exists a unique non-continuable solution (ψ2, Tmax) of (7.6). The
functions ψr

2 and ψi
2 satisfy the equations

ψr
2 = ur2K +K ∗

(
fr2 +

1

2
((ur1)2 − ur1 − (ui1)2)− ρσui1ψi

2

− σ2

2
(ψi

2)2 + (ρσur1 − κ)ψr
2 +

σ2

2
(ψr

2)2

)
ψi

2 = ui2K +K ∗
(
f i2 +

1

2

(
2ur1u

i
1 − ui1

)
+ ρσui1ψ

r
2 + (ρσur1 − κ+ σ2ψr

2)ψi
2

)
on [0, Tmax). After some rewriting, we find that on [0, Tmax), −ψr

2 satisfies the linear
equation

χ = −ur2K +K ∗
(
− fr2 +

1

2
(ur1 − (ur1)2 + (1− ρ2)(ui1)2)

+
(σψi

2 + ρui1)2

2
−
(
ρσur1 − κ+

σ2

2
ψr

2

)
χ

)
.

Due to (6.1) and since ur1, |ρ| ∈ [0, 1], and fr2 and ur2 are nonnpositive, Theorem C.2 yields
ψr

2 ≤ 0 on [0, Tmax).
Now, if σ = 0, then (7.6) is a linear Volterra equation and thus admits a unique global

solution ψ2 ∈ L2
loc(R+,C∗) by Corollary B.3. Therefore it suffices to consider the case σ > 0.

Following the proof of Lemma 6.3, we let g ∈ L2
loc([0, Tmax), (R)∗) and h, ` ∈ L2

loc(R+, (R)∗)
be the unique solutions of the linear equations

g = |ui2|K +
∣∣∣ρui1σ−1

∣∣∣+K ∗
( ∣∣∣∣f i2 +

ui1
2

(
2(1− ρ2)ur1 − 1 +

2κρ

σ

)∣∣∣∣
+ (ρσur1 − κ+ σ2ψr

2)g

)
h = |ui2|K +

∣∣∣ρui1σ−1
∣∣∣+K ∗

( ∣∣∣∣f i2 +
ui1
2

(
2(1− ρ2)ur1 − 1 +

2κρ

σ

)∣∣∣∣+ (ρσur1 − κ)h

)
` = ur2K +K ∗

(
fr2 +

1

2
((ur1)2 − ur1 − (ui1)2)− |ρσui1|

(
h+

∣∣∣ρui1σ−1
∣∣∣)

− σ2

2

(
h+

∣∣∣ρui1σ−1
∣∣∣)2

+ (ρσur1 − κ)`

)
.

These solutions exist on [0, Tmax) thanks to Corollary B.3. We now perform multiple
applications of Theorem C.2. The functions g ± (ψi

2 + (ρui1σ
−1)) satisfy the equations

χ = (ui2)±K +
(
ρui1σ

−1
)±

+K ∗
((

f i2 +
ui1
2

(
2(1− ρ2)ur1 − 1 +

2κρ

σ

))±
+ (ρσur1 − κ+ σ2ψr

2)χ

)

28



on [0, Tmax), so that 0 ≤ |ψi
2 +

(
ρui1σ

−1
)
| ≤ g on [0, Tmax). Similarly, the function h − g

satisfies the equation
χ = K ∗

(
−σ2ψr

2g + (ρσur1 − κ)χ
)

on [0, Tmax), so that g ≤ h on [0, Tmax). This yields |ψi
2| ≤ h +

∣∣ρui1σ−1
∣∣ on [0, Tmax).

Finally, the function ψr
2 − ` satisfies the linear equation

χ = K ∗
(
|ρσui1|

(
h+

∣∣∣ρui1σ−1
∣∣∣)− ρσui1ψi

2

+
σ2

2

((
h+

∣∣∣ρui1σ−1
∣∣∣)2
−
(
ψi

2

)2
+ (ψr

2)2

)
+ (ρσur1 − κ)χ

)
on [0, Tmax), so that ` ≤ ψr

2 ≤ 0 on [0, Tmax). Since h and ` are global solutions and thus
have finite norm on any bounded interval, this implies that Tmax = ∞ and completes the
proof of the lemma.

We conclude this section with a remark on an alternative variant of the Volterra Heston
model in the spirit of Guennoun et al. (2017).

Example 7.5. Let K̃ denotes a scalar locally square integrable non-negative kernel. Con-
sider the following variant of the Volterra Heston model

dSt = St

√
ṼtdBt, S0 = 1,

dVt = κ(θ − Vt)dt+ σ
√
VtdB

⊥
t , V0 ≥ 0,

Ṽt = Ṽ0 + (K̃ ∗ V )t,

where B and B⊥ are independent Brownian motions. Since K̃ is nonnegative, one readily
sees that there exists a unique strong solution taking values in R×R2

+. The 3-dimensional

process X = (logS, V, Ṽ ) is an affine Volterra process with

K = diag(1, 1, K̃), b0 =

 0
κθ
0

 , B =

0 0 −1
2

0 −κ 0
0 1 0

 ,

A0 = 0, A1 = 0, A2 = diag(0, σ2, 0), A3 = diag(1, 0, 0).

The Riccati–Volterra equation (4.2) reads

ψ′1 = f1, ψ1(0) = u1

ψ′2 = f2 + ψ3 − κψ2 +
σ2

2
ψ2

2, ψ2(0) = u2, (7.7)

ψ3 = u3K̃ + K̃ ∗
(
f3 +

1

2
ψ1(ψ1 − 1)

)
. (7.8)

29



Under suitable conditions the solution exists and is unique, and the process eY with Y
given by (4.3)–(4.5) is a true martingale. Hence by Theorem 4.3 the exponential-affine
transform formula (4.6) holds. We omit the details. In particular, for f ≡ 0 we get, using
Example 4.7,

χ(t) = (ψ ∗ L)(t) =

(
u1, ψ2(t), u3 +

(u2
1 − u1)t

2

)
and

E
[
eu1 logST+u2VT+u3ṼT

]
= exp

(
φ(T ) + u1 logS0 + ψ2(T )V0 +

(
u3 +

(u2
1 − u1)T

2

)
Ṽ0

)
,

where φ and ψ2 solve

φ′ = κθψ2, φ(0) = 0,

ψ′2 = u3K̃ + K̃ ∗ (u2
1 − u1)

2
− κψ2 +

σ2

2
ψ2

2, ψ2(0) = u2.

Setting K̃ = tα−1

Γ(α) and u2 = 0, this formula agrees with Guennoun et al. (2017, Theorem

2.1). If B and B⊥ are correlated one loses the affine property, as highlighted in Guennoun
et al. (2017, Remark 2.2 ).

A Proof of Theorem 3.3

Lemma A.1. Assume b and σ are Lipschitz continuous. Then (1.1) admits a unique
continuous strong solution X for any initial condition X0 ∈ Rd.

Proof. The proof parallels that of Mytnik and Salisbury (2015, Proposition 2.1), which
uses a standard Picard iteration scheme; we refrain from repeating the argument here. Let
us only mention that the proof hinges on the extended Gronwall’s lemma given in Dalang
(1999, Lemma 15), as well as routine applications of the BDG inequalities and Jensen’s
inequality.

Lemma A.2. Fix an initial condition X0 ∈ Rd and a constant cLG. Let X denote the
set of all continuous processes X that solve (1.1) for some continuous coefficients b and
σ satisfying the linear growth bound (3.1) with the given constant cLG. Then X is tight,
meaning that the family {law of X : X ∈ X} of laws on C(R+;Rd) is tight.

Proof. Let X ∈ X be any solution of (1.1) for some continuous b and σ satisfying the linear
growth bound (3.1). Lemma 3.1 implies that supu≤T E[|b(Xu)|p] and supu≤T E[|σ(Xu)|p]
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are bounded above by a constant that only depends on |X0|, ‖K‖L2(0,T ), cLG, p, and T .
Therefore, since the components of K satisfy (2.5), we may apply Lemma 2.5 to obtain

E

[(
sup

0≤s<t≤T

|Xt −Xs|
|t− s|α

)p]
≤ c

for all α ∈ [0, γ̄/2− 1/p), where γ̄ is the smallest of the constants γ appearing in (2.5) for
the components of K, and where c is a constant that only depends on |X0|, ‖K‖L2(0,T ),
cLG, p, and T , but not on s or t, nor on the specific choice of X ∈ X . Choosing p so that
γ̄p/2 > 1, and using that closed Hölder balls are compact in C(R+;Rd), it follows that X
is tight.

Lemma A.3. Assume that K admits a resolvent of the first kind L. For each n ∈ N, let
Xn be a weak solution of (1.1) with b and σ replaced by some continuous coefficients bn

and σn that satisfy (3.1) with a common constant cLG. Assume that bn → b and σn → σ
locally uniformly for some coefficients b and σ, and that Xn ⇒ X for some continuous
process X. Then X is a weak solution of (1.1).

Proof. Lemma 2.6 yields the identity

L ∗ (Xn −X0) =

∫
bn(Xn)dt+

∫
σn(Xn)dW.

Moreover, Gripenberg et al. (1990, Theorem 3.6.1(ii) and Corollary 3.6.2(iii)) imply that
the map

F 7→ L ∗ (F − F (0))

is continuous from C(R+;Rd) to itself. Using also the locally uniform convergence of bn

and σn, the continuous mapping theorem shows that the martingales

Mn =

∫
σn(Xn)dW = L ∗ (Xn −X0)−

∫
bn(Xn)dt

converge weakly to some limit M , that the quadratic variations 〈Mn〉 =
∫
σnσn>(Xn)dt

converge weakly to
∫
σσ>(X)dt, and that

∫
bn(Xn)dt converge weakly to

∫
b(X)dt.

Consider any s < t, m ∈ N, any bounded continuous function f : Rm → R, and any
0 ≤ t1 ≤ · · · ≤ tm ≤ s. Observe that the moment bound in Lemma 3.1 is uniform in
n since the Xn satisfy the linear growth condition (3.1) with a common constant. Using
Billingsley (1999, Theorem 3.5), one then readily shows that

E[f(Xt1 , . . . , Xtm)(Mt −Ms)] = lim
n→∞

E[f(Xn
t1 , . . . , X

n
tm)(Mn

t −Mn
s )] = 0,

and similarly for the increments of Mn
i M

n
j − 〈Mn

i ,M
n
j 〉. It follows that M is a martingale

with respect to the filtration generated by X with quadratic variation 〈M〉 =
∫
σσ>(X)dt.
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This carries over to the usual augmentation. Enlarging the probability space if necessary,
we may now construct a d-dimensional Brownian motion W such that M =

∫
σ(X)dW .

The above shows that L ∗ (X −X0) =
∫
b(X)dt +

∫
σ(X)dW . The converse direction

of Lemma 2.6 then yields X = X0 +K ∗ (b(X)dt+ σ(X)dW ), that is, X solves (1.1) with
the Brownian motion W .

Proof of Theorem 3.3. Using Hofmanová and Seidler (2012, Proposition 1.1) we choose
Lipschitz coefficients bn and σn that satisfy the linear growth bound (3.1) with cLG replaced
by 2cLG, and converge locally uniformly to b and σ as n → ∞. Let Xn be the unique
continuous strong solution of (1.1) with b and σ replaced by bn and σn; see Lemma A.1.
Due to Lemma A.2 the sequence {Xn} is tight, so after passing to a subsequence we have
Xn ⇒ X for some continuous process X. The result now follows from Lemma A.3.

B Local solutions of Volterra integral equations

Fix a kernel K ∈ L2
loc(R+,Rd×d) along with functions g : R+ → Cd and p : R+ ×Cd → Cd,

and consider the Volterra integral equation

ψ = g +K ∗ p( · , ψ). (B.1)

A non-continuable solution of (B.1) is a pair (ψ, Tmax) with Tmax ∈ (0,∞] and ψ ∈
L2

loc([0, Tmax),Cd), such that ψ satisfies (B.1) on [0, Tmax) and ‖ψ‖L2(0,Tmax) =∞ if Tmax <
∞. If Tmax =∞ we call ψ a global solution of (B.1). With some abuse of terminology we
call a non-continuable solution (ψ, Tmax) unique if for any T ∈ R+ and ψ̃ ∈ L2([0, T ],Cd)
satisfying (B.1) on [0, T ], we have T < Tmax and ψ̃ = ψ on [0, T ].

Theorem B.1. Assume that g ∈ L2
loc(R+,Cd), p( · , 0) ∈ L1

loc(R+,Cd), and that for all
T ∈ R+ there exist a positive constant ΘT and a function ΠT ∈ L2([0, T ],R+) such that

|p(t, x)− p(t, y)| ≤ ΠT (t)|x− y|+ ΘT |x− y|(|x|+ |y|), x, y ∈ Cd, t ≤ T. (B.2)

The Volterra integral equation (B.1) has a unique non-continuable solution (ψ, Tmax). If g
and p are real-valued, then so is ψ.

Remark B.2. If K ∈ L2+ε
loc for some ε > 0, then it is possible to apply Gripenberg et al.

(1990, Theorem 12.4.4) with p = 2 + ε to get existence.

Proof. We focus on the complex-valued case; for the real-valued case, simply replace Cd
by Rd below. We first prove that a solution exists for small times. Let ρ ∈ (0, 1] and ε > 0
be constants to be specified later, and define

Bρ,ε = {ψ ∈ L2([0, ρ],Cd) : ‖ψ‖L2(0,ρ) ≤ ε}.
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Consider the map F acting on elements ψ ∈ Bρ,ε by

F (ψ) = g +K ∗ p( · , ψ).

We write ‖ · ‖q = ‖ · ‖Lq(0,ρ) for brevity in the following computations. The growth condition

(B.2) along with the Young, Cauchy–Schwarz, and triangle inequalities yield for ψ, ψ̃ ∈ Bρ,ε

‖F (ψ)‖2 ≤ ‖g‖2 + ‖K‖2‖p( · , ψ)‖1
≤ ‖g‖2 + ‖K‖2

(
‖p( · , 0)‖1 + ‖Π1‖2‖ψ‖2 + Θ1‖ψ‖22

)
(B.3)

≤ ‖g‖2 + ‖K‖2
(
‖p( · , 0)‖1 + ‖Π1‖L2(0,1)ε+ Θ1ε

2
)

and

‖F (ψ)− F (ψ̃)‖2 ≤ ‖K‖2
(
‖Π1‖2 + Θ1

(
‖ψ‖2 + ‖ψ̃‖2

))
‖ψ − ψ̃‖2

≤ ‖K‖2
(
‖Π1‖L2(0,1) + 2Θ1ε

)
‖ψ − ψ̃‖2.

Choose ε > 0 so that 1 + ε
2 +‖Π1‖L2(0,1)ε+ Θ1ε

2 < 2 and ε (‖Π1‖L2(0,1) + 2Θ1ε) < 2. Then
choose ρ > 0 so that ‖g‖2 ∨ ‖K‖2 ∨ ‖p( · , 0)‖1 ≤ ε/2. This yields

‖F (ψ)‖2 ≤
ε

2

(
1 +

ε

2
+ ‖Π1‖L2(0,1)ε+ Θ1ε

2
)
≤ ε

and
‖F (ψ)− F (ψ̃)‖2 ≤ κ‖ψ − ψ̃‖2, κ =

ε

2

(
‖Π1‖L2(0,1) + 2Θ1ε

)
< 1.

Thus F maps Bρ,ε to itself and is a contraction there, so Banach’s fixed point theorem
implies that F has a unique fixed point ψ ∈ Bρ,ε, which is a solution of (B.1).

We now extend this to a unique non-continuable solution of (B.1). Define the set

J = {T ∈ R+ : (B.1) has a solution ψ ∈ L2([0, T ],Cd) on [0, T ]}.

Then 0 ∈ J , and if T ∈ J and 0 ≤ S ≤ T , then S ∈ J . Thus J is a nonempty interval.
Moreover, J is open in R+. Indeed, pick T ∈ J , let ψ be a solution on [0, T ], and set

h(t) = g(T + t) +

∫ T

0
K(T + t− s)p(s, ψ(s))ds, t ≥ 0,

which lies in L2
loc(R+,Cd) by a calculation similar to (B.3). By what we already proved,

the equation
χ = h+K ∗ p( · + T, χ)

admits a solution χ ∈ L2([0, ρ],Cd) on [0, ρ] for some ρ > 0. Defining ψ(t) = χ(t − T ) for
t ∈ (T, T + ρ], one verifies that ψ solves (B.1) on [0, T + ρ]. Thus T + ρ ∈ J , so J is open
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in R+ and hence of the form J = [0, Tmax) for some 0 < Tmax ≤ ∞ with Tmax /∈ J . This
yields a non-continuable solution (ψ, Tmax).

It remains to argue uniqueness. Pick T ∈ R+ and ψ̃ ∈ L2([0, T ],Cd) satisfying (B.1) on
[0, T ]. Then T ∈ J , so T < Tmax. Let S be the supremum of all S′ ≤ T such that ψ̃ = ψ
on [0, S′]. Then ψ̃ = ψ on [0, S] (almost everywhere, as elements of L2). If S < T , then for
ρ > 0 sufficiently small we have 0 < ‖ψ− ψ̃‖L2(0,S+ρ) ≤ 1

2‖ψ− ψ̃‖L2(0,S+ρ), a contradiction.
Thus S = T , and uniqueness is proved.

Corollary B.3. Let K ∈ L2
loc(R+,Rd×d), u ∈ Rd, f ∈ L1

loc(R+,Rd) and G ∈ L2(R+,Rd×d).
Suppose that p : R+×Rd → Rd is a Lispschitz continuous function in the second argument
such that p(·, 0) ∈ L2

loc(R+,Rd). Then the equation

χ = Ku+K ∗ (f +Gp(·, χ)) (B.4)

has a unique global solution ψ ∈ L2
loc(R+,Rd). Moreover, if K is continuous on [0,∞) then

ψ is also continuous on [0,∞) and ψ(0) = uK(0).

Proof. Theorem B.1 implies the existence and uniqueness of a non-continuable solution
(χ, Tmax). If K is continuous on [0,∞), then this solution is continuous on [0, Tmax) with
χ(0) = K(0)u. To prove that Tmax =∞, observe that

|χ| ≤ |K||u|+ |K| ∗ (|f |+ |G|(|p(·, 0)|+ Θ|χ|)) (B.5)

for some positive constant Θ. Define the scalar non-convolution Volterra kernel K ′(t, s) =
Θ|K(t− s)||G(s)|1s≤t. For any interval [u, v] ⊂ R+, Young’s inequality implies that∣∣∣∣∣∣K ′∣∣∣∣∣∣

L2(u,v)
≤ Θ‖K‖L2(0,v−u)‖G‖L2(0,v−u),

where ||| · |||L1(u,v) is defined in Gripenberg et al. (1990, Definition 9.2.2); see also Lemma C.1

below for related calculations. Thus −K ′ is a nonpositive kernel of type L2
loc and, due to

Gripenberg et al. (1990, Proposition 9.8.1), has a nonpositive resolvent R′ of type L2
loc.

The Gronwall type inequality in Gripenberg et al. (1990, Lemma 9.8.2) and (B.5) then
yield

|χ| ≤ f ′ −
∫ ·

0
R′(·, s)f ′(s) ds (B.6)

on [0, Tmax], where
f ′ = |K||u|+ |K| ∗ (|f |+ |G|(|p(·, 0)|).

Since the function on the right-hand side of (B.6) is in L2
loc(R+,R) due to Gripenberg et al.

(1990, Theorem 9.3.6), we conclude that Tmax =∞.
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C Invariance results for Volterra integral equations

Lemma C.1. Fix T <∞. Let u ∈ Cd, G ∈ L2([0, T ],Cd×d), as well as Fn ∈ L2([0, T ],Cd)
and Kn ∈ L2([0, T ],Cd×d) for n = 0, 1, 2, . . .. For each n, there exists a unique element
χn ∈ L2([0, T ],Cd×d) such that

χn = Fn +Kn ∗ (Gχn).

Moreover, if Fn → F 0 and Kn → K0 in L2(0, T ), then χn → χ0 in L2(0, T ).

Proof. For any K ∈ L2([0, T ],Cd×d), define K̂(t, s) = K(t− s)G(s)1s≤t. This is a Volterra
kernel in the sense of Gripenberg et al. (1990, Definition 9.2.1), and we have∫ T

0

∫ T

0
1s≤t|K(t− s)|2|G(s)|2ds dt ≤ ‖K‖2L2(0,T )‖G‖

2
L2(0,T )

by Young’s inequality. Thus by Gripenberg et al. (1990, Proposition 9.2.7(iii)), K̂ is of
type L2 on (0, T ) with norm

|||K̂|||L2(0,T ) ≤ ‖K‖L2(0,T )‖G‖L2(0,T ), (C.1)

see Gripenberg et al. (1990, Definition 9.2.2). Next, we show that −K̂ admits a resolvent
of type L2 on (0, T ) in the sense of Gripenberg et al. (1990, Definition 9.3.1). For any
0 ≤ u ≤ v ≤ T , a change of variables and Young’s inequality give∫ v

u

∫ v

u
1s≤t|K(t− s)|2|G(s)|2ds dt =

∫ v−u

0

∫ t

0
|K(t− s)|2|G(u+ s)|2ds dt

≤ ‖K‖2L2(0,v−u)‖G‖
2
L2(0,T ).

For v − u sufficiently small, the right-hand side is smaller than 1, whence |||K̂|||L2(u,v) < 1
by Gripenberg et al. (1990, Proposition 9.2.7(iii)). We now apply Gripenberg et al. (1990,
Corollary 9.3.14) to obtain a resolvent of type L2 on (0, T ) of −K̂, which we denote by
R̂. Due to Gripenberg et al. (1990, Theorem 9.3.6), the unique solution in L2(0, T ) of the
equation

χ(t) = F (t) +

∫ t

0
K̂(t, s)χ(s)ds, t ∈ [0, T ],

for a given F ∈ L2([0, T ],Cd), is

χ(t) = F (t)−
∫ t

0
R̂(t, s)F (s)ds, t ∈ [0, T ].

This proves the existence and uniqueness statement for the χn. Next, assume Fn → F 0

and Kn → K0 in L2(0, T ). Applying (C.1) with K = Kn−K0 shows that K̂n → K̂0 with
respect to the norm ||| · |||L2(0,T ). An application of Gripenberg et al. (1990, Corollary 9.3.12)

now shows that χn → χ0 in L2(0, T ) as claimed.
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Theorem C.2. Assume K ∈ L2
loc(R+,Rd×d) is diagonal with scalar kernels Ki on the

diagonal. Assume each Ki is continuous on (0,∞) and the shifted kernels ∆hKi satisfy
(2.5) and (3.2) for all h ∈ [0, 1]. Let u ∈ Rd, F ∈ L1

loc(R+,Rd) and G ∈ L2
loc(R+,Rd×d)

be such that ui ≥ 0, Fi ≥ 0, and Gij ≥ 0 for all i, j = 1, . . . , d and i 6= j. Then the linear
Volterra equation

χ = Ku+K ∗ (F +Gχ) (C.2)

has a unique solution χ ∈ L2
loc(R+,Rd) with χi ≥ 0 on [0, T ] for i = 1, . . . , d.

Proof. Define kernels Kn = K(· + n−1) for n ∈ N, which are diagonal with scalar kernels
on the diagonal that satisfy (2.5) and (3.2). Lemma C.1 shows that (C.2) (respectively
(C.2) with K replaced by Kn) has a unique solution χ (respectively χn), and that χn → χ
in L2(R+,Rd). Therefore, we can suppose without loss of generality that K is continuous
on [0,∞) with Ki(0) ≥ 0. To shows that χ takes values in Rd+, it is therefore enough to
consider the case where K is continuous on [0,∞) with Ki(0) ≥ 0 for all i.

For x ∈ Rd define b(x) = F + Gx. For all positive n, Corollary B.3 implies that there
exists a unique solution χn ∈ L2

loc(R+,Rd) of the equation

χn = Ku+K ∗ b((χn − n−1)+),

and that χn is continuous on [0,∞) with χni (0) = Ki(0)ui ≥ 0 for i = 1, . . . , d. We claim
that χn is Rd+ valued for all n. Indeed, arguing as in the proof of Theorem 3.5, we can show
that if Li denotes the resolvent of the first kind of Ki, then (∆hKi ∗Li)(t) is nonnegative,
bounded and nondecreasing in t for any h ≥ 0. Fix n and define Z =

∫
b((χn − n−1)+ dt.

The argument of Lemma 2.6 shows that for all h ≥ 0 and i = 1, . . . , d,

∆hKi ∗ dZi = (∆hKi ∗ Li)(0)Ki ∗ dZi + d(∆hKi ∗ Li) ∗Ki ∗ dZi
= (∆hKi ∗ Li)(0)χni + d(∆hKi ∗ Li) ∗ χni
− ui ((∆hKi ∗ Li)(0)Ki + d(∆hKi ∗ Li) ∗Ki) .

(C.3)

Convolving the quantity d(∆hKi ∗Li)∗Ki first by Li, then by Ki, and comparing densities
of the resulting absolutely continuous functions, we deduce that

d(∆hKi ∗ Li) ∗Ki = ∆hKi − (∆hKi ∗ Li)(0)Ki.

Plugging this identity into (C.3) yields

∆hKi ∗ dZi = (∆hKi ∗ Li)(0)χni + d(∆hKi ∗ Li) ∗ χni − ui∆hKi. (C.4)

Define τ = inf{t ≥ 0: Xt /∈ Rd+} and assume for contradiction that τ <∞. Then

χn(τ+h) = ∆hK(τ)u+(K∗dZ)τ+h = ∆hK(τ)u+(∆hK∗dZ)τ +

∫ h

0
K(h−s)dZτ+s (C.5)
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for any h ≥ 0. By definition of τ , the identities (C.4) and (C.5) imply

χni (τ + h) ≥
∫ h

0
Ki(h− s)bi((χn(τ + s)− n−1)+) ds i = 1, . . . , d.

As in the proof of Theorem 3.5, these inequalities lead to a contradiction. Hence τ = ∞
and χn is Rd+-valued for all n.

To conclude that χ is Rd+-valued it suffices to prove that χn converges to χ in L2([0, T ],Rd)
for all T ∈ R+. To this end we write

χ− χn = K ∗
(
G(χn − (χn − n−1)+) +G(χ− χn)

)
,

from which we infer

|χ− χn| ≤
√
d

n
|K| ∗ |G|+ |K| ∗ (|G||χ− χn|).

The same argument as in the proof of Corollary B.3 shows that

|χ− χn| ≤
√
d

n

(
F ′ −

∫ ·
0
R′( · , s)F ′(s) ds

)
, (C.6)

where R′ is the nonpositive resolvent of type L2
loc of K ′(t, s) = |K(t − s)||G(s)|, and

F ′ = |K| ∗ |G|. Since the right-hand side of (C.6) is in L2
loc(R+,R) in view of Gripenberg

et al. (1990, Theorem 9.3.6), we conclude that χn converges to χ in L2([0, T ],Rd) for all
T ∈ R+.
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