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Reduction of Qualitative Models of Biological
Networks for Transient Dynamics Analysis

Loïc Paulevé

Abstract—Qualitative models of dynamics of signalling pathways and gene regulatory networks allow to capture temporal properties
of biological networks while requiring few parameters. However, these discrete models typically suffer from the so-called state space
explosion problem which makes the formal assessment of their potential behaviours very challenging.
In this paper, we describe a method to reduce a qualitative model for enhancing the tractability of analysis of transient reachability
properties. The reduction does not change the dimension of the model, but instead limits its degree of freedom, therefore reducing the
set of states and transitions to consider. We rely on a transition-centered specification of qualitative models by the mean of automata
networks. Our framework encompass usual asynchronous Boolean and multi-valued network, as well as 1-bounded Petri nets.
Applied to different large-scale biological networks from the litterature, we show that the reduction can lead to drastic improvement for
the scalability of verification methods.

Index Terms—Model reduction, reachability, automata networks, Petri nets, systems biology
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1 INTRODUCTION

AUTOMATA networks model dynamical systems result-
ing from simple interactions between entities. Each

entity is typically represented by an automaton with few
internal states which evolve subject to the state of a narrow
range of other entities in the network. Richness of emerging
dynamics arises from several factors including the topology
of the interactions, the presence of feedback loop, and the
concurrency of transitions.

Automata networks, which subsume Boolean and multi-
valued networks, are notably used to model dynamics of
biological systems, including signalling networks or gene
regulatory networks (e.g., [1], [2], [3], [4], [5], [6], [7], [8]).
The resulting models can then be confronted with biological
knowledge, for instance by checking if some time series
data can be reproduced by the computational model. In the
case of models of signalling or gene regulatory networks,
such data typically refer to the possible activation of a
transcription factor, or a gene, from a particular state of the
system, which reflects both the environment and potential
perturbations. Automata networks have also been used to
infer targets to control the behaviour of the system. For
instance, in [1], [6], the author use Boolean networks to find
combinations of signals or combinations of mutations that
should alter the cellular behaviour.

From a formal point of view, numerous biological prop-
erties can be expressed in computation models as reacha-
bility properties: from an initial state, or set of states, the
existence of a sequence of transitions which leads to a
desired state, or set of states. For instance, an initial state
can represent a combination of signals/perturbations of a
signalling network; and the desired states the set of states
where the concerned transcription factor is active. One can
then verify the (im)possibility of such an activation, possibly
by taking into account mutations, which can be modelled,
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for instance, as the freezing of some automata to some fixed
states, or by the removal of some transitions.

Due to the increasing precision of biological knowledge,
models of networks become larger and larger and can gather
hundreds to thousands of interacting entities making the
formal analysis of their dynamics a challenging task: the
reachability problem in automata networks/bounded Petri
nets is PSPACE-complete [9], which limits its scalability.

Facing a model too large for a raw exhaustive anal-
ysis, a natural approach is to reduce its dynamics while
preserving important properties. Multiple approaches, of-
ten complementary, have been explored since decades to
address such a challenge in dynamical and concurrent sys-
tems [10], [11], [12]. In the scope of rule-based models of
biological networks, efficient static analysis methods have
been developed to lump numerous global states of the
systems based on the fragmentation of interacting com-
ponents [13]; and to a posteriori compress simulated traces
to obtain compact witnesses of dynamical properties [14].
Reductions preserving the attractors of dynamics (long-
term/steady-state behaviour) have also been proposed for
chemical reaction networks [15] and Boolean networks [16].
The latter approach applies to formalisms close to automata
networks but does not preserve reachability properties. On
Petri nets, different structural reductions have been pro-
posed to reduce the size of the model specification while
preserving bisimulation [17], or liveness and LTL properties
[18], [19]. Procedures such as the cone of influence reduction
[20] or relevant subnet computation [21] allow identifying
variables/transitions which have no influence on a given
dynamical property. Our work has a motivation similar to
the two latter approaches.

In this paper, we define a reduction of automata net-
works which identifies transitions that do not contribute to
a given reachability property and hence can be ignored. The
considered automata networks are finite sets of finite-state
machines where transitions between their local states are
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conditioned by the state of other automata in the network.
We use a general concurrent semantics where any number
of transitions can be applied in one step. We call a trace a
sequential interleaved execution of steps. Our framework
encompass usual Boolean and multi-valued networks, as
well as standard 1-bounded/safe Petri nets.

Our reduction preserves all the minimal traces satisfying
reachability properties of the form “from state s there exist
successive steps that lead to a state where a given automaton
g is in local state g>”. A trace is minimal if no step nor
transition can be removed from it and resulting in a sub-
trace that satisfies the concerned reachability property. The
complexity of the procedure is polynomial in the number
of local transitions, and exponential in the maximal size of
automata. Therefore, the reduction is scalable for networks
of multiple automata, where each have a few local states.

The identification of the transitions that are not part
of any minimal trace is performed by a static analysis
of the causality of transitions within automata. It extends
previous static analysis of reachability properties by abstract
interpretation [22], [23]. In [22], necessary or sufficient con-
ditions for reachability are derived, but they do not allow to
capture all the (minimal) traces towards a reachability goal.
In [23], the static analysis extracts local states, referred to
as cut-sets, which are necessarily reached prior to a given
reachability goal. The results presented here are orthogonal:
we identify transitions that are never part of a minimal trace
for the given reachability property. It allows us to output a
reduced model where all such transitions are removed while
preserving all the minimal traces for reachability. Hence,
whereas [23] focuses on identifying necessary conditions
for reachability, this article focuses on preserving sufficient
conditions for reachability.

The effectiveness of our goal-oriented reduction is ex-
perimented on actual models of biological networks and
show significant shrinkage of the dynamics of the automata
networks, enhancing the tractability of a concrete verifi-
cation. Compared to other model reductions, our goal is
similar to the cone of influence reduction [20] or relevant
subnet computation [21] mentioned above, which identify
variables/transitions that do not impact a given property.
Here, our approach offers a much more fine-grained analy-
sis in order to identify the sufficient transitions and values
of variables that contribute to the property, which leads
to stronger reductions, although preserving less temporal
properties.

This paper is an extension of the conference paper
[24]. The automata network framework has been enhanced
to account for coupled (or synchronized) transitions. This
adds the expressivity to encode 1-bounded Petri nets (ap-
pendix A), and lead to generalize the reduction method and
its proof (appendix B). This paper also details the algorith-
mic aspect of our goal-oriented reduction (section 3.2.2), and
the application of automata networks to biological networks
(section 4), notably by showing and proving the encoding of
Boolean and multi-valued networks.

Outline
Section 2 sets up the definition and semantics of the au-
tomata networks, together with the local causality analysis
for reachability properties, based on prior work. Section 3

first depicts a necessary condition using local causality anal-
ysis for satisfying a reachability property and then details
the goal-oriented reduction which preserves minimal traces.
Section 4 shows how automata networks and their reduction
can be applied to biological models. Section 5 benchmark
the tractability of transient analysis before and after goal-
reduction on a range of biological networks. Finally, sec-
tion 6 discusses the results and motivates further work.

Notations
Integer ranges are noted [m;n]

∆
= {m,m+ 1, · · · , n}. Given

a finite set A, |A| is the cardinality of A; 2A is the power set
of A. Given n ∈ N, x = (xi)i∈[1;n] is a sequence of elements
indexed by i ∈ [1;n]; |x| = n; xm..n is the subsequence
(xi)i∈[m;n]; x :: e is the sequence x with an additional
element e at the end; ε is the empty sequence.

2 AUTOMATA NETWORKS AND LOCAL CAUSALITY

2.1 Automata Networks

An Automata Network (AN) is composed of a finite set of
finite-state machines having transitions between their local
states conditioned by the state of other automata in the
network. In this paper, we allow the local transitions to be
coupled, or synchronized, as it is common for Synchronous
Products of Transition Systems [25].

An AN is defined by a triple (Σ, S, T ) (definition 1)
where Σ is the set of automata identifiers; S associates to
each automaton a finite set of local states: if a ∈ Σ, S(a)
refers to the set of local states of a; T is the set of local
transitions. Each local state is written of the form ai, where
a ∈ Σ is the automaton in which the state belongs to, and i
is a unique identifier; therefore given ai, aj ∈ S(a), ai = aj
if and only if ai and aj refer to the same local state of the
automaton a.

A local transition t ∈ T is a pair t = (l, x) where l is
the set of local state changes for the automata in which the
transition takes place, and x is the set of local states of other
automata that are necessary to trigger the transition. The
local state changes l are specified by pairs of local states of a
same automaton, indicating the starting local state and the
ending local state.

For instance, a local transition t = (l, x) with l =
{(ai, aj)} and x = {bk} specifies that, when b is in state
bk, automaton a can change from state ai to state aj . If
l = {(ai, aj), (cq, cr)}, the transition specifies that automata
a and c change simultaneously from their respective local
states ai and cq to aj and cr . Such a transition is applicable
only if a and c are in states ai and cq , respectively.

The pre-condition of transition t = (l, x), noted •t, is the
set composed of the starting local states specified in l and
of the local states in x; the post-condition, noted t• is the set
composed of the ending local states specified in l and of the
local states in x.

Definition 1 (Automata Network (Σ, S, T )). An Automata
Network (AN) is defined by a tuple (Σ, S, T ) where

• Σ is the finite set of automata identifiers;
• For each a ∈ Σ, S(a) = {ai, . . . , aj} is the finite set

of local states of automaton a; S ∆
=

∏
a∈Σ S(a) is the
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finite set of global states;
L

∆
=

⋃
a∈Σ S(a) denotes the set of all the local states.

• T ⊆ {2
⋃

a∈Σ S(a)×S(a) × 2L} is the set of local tran-
sitions t = (l, x) where l is a set of local state
changes (pairs of automata local states) and x is a
condition (set of local states) such that: ∀(l, x) ∈ T ,
∀a ∈ Σ, |{(ai, aj) ∈ l}| ≤ 1 and {(ai, aj) ∈ l} 6= ∅ ⇒
x ∩ S(a) = ∅; ∀b ∈ Σ, |x ∩ S(b)| ≤ 1.

Given t = (l, x) ∈ T , orig(t)
∆
= {ai | (ai, aj) ∈ l}, dest(t)

∆
=

{aj | (ai, aj) ∈ l}, enab(t)
∆
= x, •t ∆

= orig(t) ∪ enab(t), and
t•

∆
= dest(t) ∪ enab(t). We write ai

x−→ aj for ({(ai, aj)}, x)
and ai, . . . , bm

x−→ aj , . . . , bn for ({(ai, aj), . . . , (bm, bn)}, x).

At any time, each automaton is in one and only one local
state, forming the global state of the network. Assuming an
arbitrary ordering between automata identifiers, the set of
global states of the network is referred to as S as a shortcut
for

∏
a∈Σ S(a). Given a global state s ∈ S, s(a) is the local

state of automaton a in s, i.e., the a-th coordinate of s.
Moreover we write ai ∈ s

∆⇔ s(a) = ai; and for any x ∈ 2L,
x ⊆ s ∆⇔ ∀ai ∈ x, s(a) = ai.

In the scope of this paper, we allow, but do not enforce,
the parallel application of local transitions. This leads to
the definition of a step as a set of transitions, with at most
one change per automaton (definition 2). For notational
convenience, we allow empty steps. The pre-condition (resp.
post-condition) of a step τ , noted •τ (resp. τ•), extends the
similar notions on transitions: the pre-condition (resp. post-
condition) is the union of the pre-conditions (resp. post-
conditions) of composing transitions. A step τ is playable in a
state s ∈ S if and only if •τ ⊆ s, i.e., all the local states in the
pre-conditions of transitions are in s. If τ is playable in s, s·τ
denotes the state after the applications of all the transitions
in τ , i.e., where for each transition (l, x) ∈ τ , ∀(ai, aj) ∈ l,
the local state ai of automaton a has been replaced with aj .

Definition 2 (Step). Given an AN (Σ, S, T ), a step τ ⊆ T
is a subset of local transitions T where, for each automaton
a ∈ Σ, there is at most one local change of a: |{(l, x) ∈ τ |
∃(ai, aj) ∈ l}| ≤ 1; and the pre-condition of compositing
local transitions are compatible: |S(a) ∩

⋃
t∈τ
•t| ≤ 1.

We note •τ ∆
=

⋃
t∈τ
•t and τ• ∆

=
⋃
t∈τ t

• \
⋃
t∈τ orig(t).

Given a state s ∈ S where τ is playable (•τ ⊆ s), s · τ
denotes the state where ∀a ∈ Σ, (s · τ)(a) = aj if ∃(l, x) ∈ τ
s.t. (ai, aj) ∈ l; otherwise, (s · τ)(a) = s(a).

Remark that τ• ⊆ s · τ ; and that •τ ⊆ s implies that any
sub-step τ ′ ⊆ τ is also playable in s: •τ ′ ⊆ s.

A trace (definition 3) is a sequence of successively
playable steps from a state s ∈ S. The pre-condition •π
of a trace π is the set of local states that are required to be in
s for applying π (•π ⊆ s); and the post-condition π• is the
set of local states that are present in the state after the full
application of π (π• ⊆ s · π).

Definition 3 (Trace). Given an AN (Σ, S, T ) and a state s ∈
S, a trace π is a sequence of steps such that ∀i ∈ [1; |π|],
•πi ⊆ (s · π1 · · · ·πi−1).
The pre-condition •π and the post-condition π• are defined
as follows: for all n ∈ [1; |π|], for all ai ∈ •πn, ai ∈ •π

∆⇔
∀m ∈ [1;n−1], S(a)∩•πm = ∅; similarly, for all n ∈ [1; |π|],

for all aj ∈ πn•, aj ∈ π•
∆⇔ ∀m ∈ [n+1;m], S(a)∩πm• = ∅.

If π is empty, •π = π• = ∅.
The set of transitions composing a trace π is noted tr(π)

∆
=⋃|π|

n=1 π
n.

Given an automata network (Σ, S, T ) and a state s ∈ S,
the local state g> ∈ L is reachable from s if and only if either
g> ∈ s or there exists a trace π with •π ⊆ s and g> ∈ π•.

We consider a trace π for g> reachability from s is
minimal if and only if there exists no different trace reaching
g> having each successive step being a subset of a step in π
with the same ordering (definition 4). Say differently, a trace
is minimal for g> reachability if no step or transition can be
removed from it without breaking the trace validity or g>
reachability.

Definition 4 (Minimal trace for local state reachability). A
trace π is minimal w.r.t. g> reachability from s if and only
if there is no trace $ from s, $ 6= π, |$| ≤ |π|, g> ∈ $•,
such that there exists an injection φ : [1; |$|] → [1; |π|] with
∀i, j ∈ [1; |$|], i < j ⇔ φ(i) < φ(j) and $i ⊆ πφ(i).

Automata networks as defined here are very similar to
1-bounded (also called safe) Petri nets [26]. Actually, any 1-
bounded Petri net can be encoded as AN and conversely,
as detailed in appendix A. The methods presented in this
paper, and in particular the local causality analysis, rely
of the component (automata) decomposition of the system,
therefore automata networks have the advantage of making
this partition explicit.

The semantics considered in this paper where transi-
tions can be applied in parallel echoes with Petri net step-
semantics and concurrent/maximally concurrent semantics
[27], [28], [29]. In the Boolean network community, such a
semantics is referred to as the asynchronous generalized
update schedule [30].
Example 1. Let us consider the automata network (Σ, S, T ),
graphically represented in figure 1, where:

Σ = {a, b, c, d}

S(a) = {a0, a1} T = {a0
{b0}−−−→ a1; b0

{a1}−−−→ b1;

S(b) = {b0, b1} a1, b1
∅−→ a0, b0;

S(c) = {c0, c1, c2} c0
{a1}−−−→ c1; c1

{b1}−−−→ c0;

S(d) = {d0, d1} c1
{b0}−−−→ c2; c0

{d1}−−−→ c2}

Starting from the state s = 〈a0, b0, c0, d0〉, only one transi-
tion is playable: t = a0

b0−→ a1. Playing t updates the state
of automaton a: s · t = 〈a1, b0, c0, d0〉. From this new state,
two transitions are playable: b0

a1−→ b1 and c0
a1−→ c1. This

lead to several possible playable steps: τ1 = {b0
a1−→ b1},

τ2 = {c0
a1−→ c1}, τ3 = {b0

a1−→ b1; c0
a1−→ c1}. Playing τ3

results in state 〈a1, b1, c1, d0〉. In this state, the synchronized
transition a1, b1

∅−→ a0, b0 is playable, which results in state
〈a0, b0, c1, d0〉.

From the state 〈a0, b0, c0, d0〉, instances of traces are

π1 = {a0
{b0}−−−→ a1} ::{b0

{a1}−−−→ b1; c0
{a1}−−−→ c1}

::{a1, b1
∅−→ a0, b0} ::{c1

{b0}−−−→ c2} ;

π2 = {a0
{b0}−−−→ a1} ::{c0

{a1}−−−→ c1} ::{c1
{b0}−−−→ c2}
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Fig. 1. An example of automata network. Automata are represented by
labelled boxes, and local states by circles where ticks are their identifier
within the automaton – for instance, the local state a0 is the circle ticked
0 in the box a. A transition is a directed edge between two local states
within the same automaton. It can be labelled with a set of local states
of other automata. In this example, all the transitions are conditioned by
at most one other local state. Synchronized transitions are linked with a
dashed edge.

the latter only being a minimal trace for c2 reachability.

2.2 Local Causality

Locally reasoning within one automaton a, the reachability
of one of its local state aj from some global state s with
s(a) = ai can be described by a (local) objective, that we note
ai aj (definition 5).

Definition 5 (Objective). Given an automata network
(Σ, S, T ), an objective is a pair of local states ai, aj ∈ S(a)
of a same automaton a ∈ Σ and is denoted ai aj . The set
of all objectives is referred to as Obj

∆
= {ai aj | (ai, aj) ∈

S(a)× S(a), a ∈ Σ}.

Given an objective ai  aj ∈ Obj, lpaths(ai  aj) is
the set of path of transitions of T that are acyclic within
automaton a from ai to aj (definition 6).

Definition 6 (lpaths). Given ai  aj ∈ Obj, if i = j,
lpaths(ai  ai)

∆
= {ε}; if i 6= j, a sequence η of tran-

sitions in T is in lpaths(ai  aj) if and only if |η| ≥ 1,
ai ∈ orig(η1), aj ∈ dest(η|η|), ∀n ∈ [1; |η| − 1], ∃ak ∈ S(a)
s.t. ak ∈ dest(ηn), ak ∈ orig(ηn+1), and ∀n,m ∈ [1; |η|], n >
m⇒ S(a) ∩ dest(ηn) ∩ orig(ηm) = ∅.

As stated by property 1, any trace reaching aj from a
state containing ai uses all the transitions of at least one
local acyclic path in lpaths(ai aj).

Property 1. For any trace π, for any a ∈ Σ, ai, aj ∈ S(a),
1 ≤ n ≤ m ≤ |π| where ai ∈ •πn and aj ∈ πm•, there
exists a local acyclic path η ∈ lpaths(ai aj) that is a sub-
sequence of πn..m, i.e., there is an injection φ : [1; |η|] →
[n;m] with ∀u, v ∈ [1; |η|], u < v ⇔ φ(u) < φ(v) and ηu ∈
πφ(u).

A local acyclic path being of length at most |S(a)| with
unique transitions, the number of local acyclic paths is poly-
nomial in the number of transitions T (a) and exponential in
the number of local states in a minus 1, |S(a)| − 1.

Finally, let us remark that a local path is not necessarily a
trace, as transitions may be conditioned by the state of other
automata that may need to be reached beforehand.

Example 2. Considering the AN of figure 1,

lpaths(a0 a1) = {a0
b0−→ a1}

lpaths(a1 a0) = lpaths(b1 b0) = {a1, b1
∅−→ a0, b0}

lpaths(c0 c2) = {c0
{a1}−−−→ c1 ::c1

{b0}−−−→ c2; c0
{d1}−−−→ c2}

lpaths(c1 c2) = {c1
{b0}−−−→ c2; c1

{b1}−−−→ c0 ::c0
{d1}−−−→ c2}

lpaths(d0 d1) = ∅ lpaths(a0 a0) = {ε}

3 GOAL-ORIENTED REDUCTION

Assuming a global AN (Σ, S, T ), an initial state s ∈ S and
a reachability goal g> where g ∈ Σ and g> ∈ S(g), the
goal-oriented reduction identifies a subset of local transi-
tions T that are sufficient for producing all the minimal
traces leading to g> from s. The reduction procedure takes
advantage of the local causality analysis both to fetch the
transitions that matter for the reachability goal and to filter
out objectives that can be statically proven impossible.

3.1 Necessary condition for local reachability

Given an objective ai  aj and a global state s ∈ S
where s(a) = ai, prior work has demonstrated necessary
conditions for the existence of a trace leading to aj from
s [22], [23]. Those necessary conditions rely on the local
causality analysis defined in previous section for extracting
necessary steps that have to be performed in order to reach
the concerned local state.

Several necessary conditions have been established in
[22], taking into account several features captured by the
local paths (dependencies, sequentiality, partial order con-
straints, . . . ). The complexity of deciding most of these
necessary conditions is polynomial in the total number of
local transitions |T | and exponential in k − 1, where k the
maximum number of local states within an automaton, i.e.,
k = maxa∈Σ |S(a)|.

In this section, we consider a generic reachability over-
approximation predicate valids which is false only when
applied to an objective that has no concrete trace from s: aj
is reachable from s with s(a) = ai only if valids(ai aj).

Definition 7 (valids). For all a ∈ S, for all ai, aj ∈ S(a),
valids(ai  aj) if there exists a trace π from s such that
∃m,n ∈ [1; |π|] with m ≤ n, ai ∈ •πm, and aj ∈ πn•.

For the sake of self-consistency, we give in proposition 1
an instance implementation of such a predicate. It is a
simplified version of a necessary condition for reachability
demonstrated in [22]. Essentially, the set of valid objectives
Ω is built as follows: initially, it contains all the objectives of
the form ai  ai (that are always valid), and in particular
the objectives s(a) s(a) for all a ∈ Σ. Then an objective
ai aj is added to Ω only if there exists a local acyclic path
η ∈ lpaths(ai aj) where all the objectives from the initial
state s to the pre-conditions of the transitions are already in
Ω: if bk ∈ •ηn, b 6= a for some n ∈ [1; |η|], then the objective
b0 bk is already in the set, assuming s(b) = b0.
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Proposition 1. For all objective P ∈ Obj, valids(P )
∆⇔ P ∈

Ω where Ω is the least fixed point of the monotonic function
F : 2Obj → 2Obj with

F(Ω)
∆
= {ai aj ∈ Obj | ∃η ∈ lpaths(ai aj) :

∀n ∈ [1; |η|],∀bk ∈ •ηn \ S(a), s(b) bk ∈ Ω} .

Applied to the AN of figure 1 with s = 〈a0, b0, c0, d0〉,
because valids(b0 b0) and a0

b0−→ a1 ∈ lpaths(a0 a1),
valids(a0  a1) is true. Moreover, because c0

a1−→ c1
b0−→

c2 ∈ lpaths(c0 c2), valids(c0 c2) is true. On the other
hand, valids(d0 d1) is false.

Note that Proposition 1 is an instance of valids imple-
mentation; any other implementation satisfying definition 7
can be used to apply the reduction proposed in this article.
In [22], more restrictive over-approximations are proposed.

3.2 Reduction procedure
This section depicts the goal-oriented reduction procedure
which aims at identifying transitions that do not take part
in any minimal trace from the given initial state to the goal
local state g>. The reduction relies on the local causality
analysis to delimit local paths that may be involved in the
goal reachability: any local transitions that is not captured
by this analysis can be removed from the model without
affecting the minimal traces for its occurrence.

3.2.1 Formal characterisation
The reduction procedure (definition 8) consists of collecting
the set B of objectives for which a local acyclic path can
be part of a minimal trace for the goal reachability. The
enabling condition of these local paths necessarily lead to
valid objectives from s. The set of such local paths associated
to an objective P is noted lpathss(P ). The local transitions
corresponding to the objectives in B are noted tr(B). To ease
notations, and without loss of generality, we assume that
any automaton a is in state a0 in s.

Initially starting with the main objective g0 g> (defi-
nition 8(1)), for each objective ai  aj ∈ B, the procedure
collects objectives for other automata that may be involved
in the pre-condition of transitions in local paths for ai aj
(definition 8(2)). Then, for each transition (l, x) of these local
paths, for each individual automaton transition (bj , bk) ∈ l,
if there exists another objective in B of the form b? bi, the
objective bk bi is added in B (definition 8(3)). This later cri-
teria accounts for the possible interleaving and successions
of local paths within a same automaton: e.g., g> reachability
may require reaching bk and bi in some (undefined) order:
4 objectives have to be considered: b0 bk, bk bi, b0 bi,
and bi bk.

Definition 8 (B). Given an AN (Σ, S, T ), an initial state s
where, without loss of generality, ∀a ∈ Σ, s(a) = a0, and a
local state g> with g ∈ Σ and g> ∈ S(g), B ⊆ Obj is the
smallest set which satisfies the following properties:

1) g0 g> ∈ B
2) ∀ai aj ∈ tr(B),∀t ∈ tr(lpathss(ai aj)),

∀bk ∈ •t \ S(a), b0 bk ∈ B
3) ∀P ∈ B,∀(l, x) ∈ tr(lpathss(P )),

∀(bj , bk) ∈ l,∀b? bi 6= P ∈ B, bk bi ∈ B

a

0

1

b

0

1

c

0

1

2
d

0

1

b0 a1

b0

Fig. 2. Reduced automata network from figure 1 for the reachability of
c2 from initial state indicated in grey.

with tr(B)
∆
=

⋃
P∈B

tr(lpathss(P )) , where,

∀ai aj ∈ Obj,

lpathss(ai aj)
∆
= {η ∈ lpaths(ai aj) | ∀n ∈ [1; |η|],
∀bk ∈ •ηn \ S(a),valids(b0 bk)}

Theorem 1 states that any trace which is minimal for the
reachability of g> from initial state s is composed only of
transitions in tr(B). The proof is detailed in appendix B. It
results that the AN (Σ, S, tr(B)) contains fewer transitions
but preserves all the minimal traces for the reachability of
the goal.

Theorem 1. For each minimal trace π reaching g> from s,
tr(π) ⊆ tr(B).

Example 3. By applying proposition 1 on the AN of figure 1,
we obtain the following set of valid objectives:

Ω = {a0 a0, a1 a1, b0 b0, b1 b1,

c0 c0, c1 c1, c2 c2, d0 d0, d1 d1,

a0 a1, b0 b1, c0 c1, c0 c2, c1 c0 }
= Obj \ {c2 c0, c2 c1, d0 d1, d1 d0}

Let us consider the initial state 〈a0, b0, c0, d0〉 and the
goal c2. Following definition 8(1), we initially set B = {c0 
c2}. Note that, because valids(d0 d1) is false, we have

lpathss(c0  c2) = {c0
{a1}−−−→ c1 :: c1

{b0}−−−→ c2}. Following
definition 8(2), the objectives a0 a1 and b0 b0 are added
to B, and no more objectives are considered. Note that the
rule definition 8(3) never occurs in this simple example.

The resulting reduced AN for c2 reachability is given in
figure 2.

3.2.2 Algorithmic aspects
Although the number of objectives is quadratic, the math-
ematical definition of the reduction procedure in proposi-
tion 1 and definition 8 does not address its efficient imple-
mentation, notably to avoid useless or redundant computa-
tions over objectives and their local paths.

Listing 1 details such a possible algorithm to compute
the goal-oriented reduction by implementing jointly the
over-approximation of valid objectives (proposition 1) and
of the transitions of minimal traces (definition 8).

To avoid the un-necessary analysis of objectives which
are not involved for the goal reachability, instead of com-
puting the full set Ω of proposition 1, the validity of



6

Listing 1. Algorithm for goal-oriented reduction
1 G = digraph ( )
2

3 def compute_valid_nodes ( P : o b j e c t i v e ) :
4 new_nodes = s e t ( )
5 valid_queue = f i f o ( )
6

7 def s e t _ n o d e _ v a l i d i t y ( n , va l id ) :
8 G[ n ] . va l id = va l id
9 valid_queue . push ( n )

10

11 def build_obj_deps (ai aj ) :
12 G[ai aj ] = node ( )
13 new_nodes . add (ai aj )
14 for η in lpaths(ai aj) :
15 G[η ] = node ( )
16 new_nodes . add (η )
17 G[ai aj ] . ch i ldren . add (η )
18 for t in η :
19 for bk in •t \ S(a) :
20 i f b0 bk not in G:
21 build_obj_deps (b0 bk )
22 e l i f G[b0 bk ] . va l id i s defined :
23 valid_queue . push (b0 bk )
24 G[η ] . ch i ldren . add (b0 bk )
25 i f G[η ] . ch i ldren i s empty :
26 s e t _ n o d e _ v a l i d i t y (η , True )
27 i f G[ai aj ] . ch i ldren i s empty :
28 s e t _ n o d e _ v a l i d i t y (ai aj , Fa l se )
29

30 def update_val id_parent ( n , c h i l d ) :
31 G[ n ] . defined . add ( c h i l d )
32 i f n i s an o b j e c t i v e :
33 i f G[ c h i l d ] . va l id :
34 set_node_val id ( n , True )
35 e l i f G[ n ] . c h i ldren == G[ n ] . defined :
36 set_node_val id ( n , Fa l se )
37 e lse : # n is a local path
38 i f not G[ c h i l d ] . va l id :
39 set_node_val id ( n , Fa l se )
40 e l i f G[ n ] . c h i ldren == G[ n ] . defined :
41 set_node_val id ( n , True )
42

43 build_obj_deps ( P )
44 while valid_queue i s not empty :
45 m = valid_queue . pop ( )
46 for n in G[m] . parents :
47 i f G[ n ] . va l id i s not defined :
48 update_val id_parent ( n , m)
49 new_nodes . remove (m)
50 for n in new_nodes :
51 G[ n ] . va l id = Fa l se
52

53 def reduce ( ) :
54 queue = f i f o ( )
55 t a r g e t s = {a : s e t ( ) for a ∈ Σ }
56

57 def r e g i s t e r _ o b j (ai aj ) :
58 i f ai aj not in G:
59 compute_valid_nodes (ai aj )
60 my_targets = {a : s e t ( ) for a ∈ Σ }
61 for η in lpaths(ai aj) :
62 i f G[η ] . va l id :
63 for (l, x) in η :
64 for bk in •(l, x) \ S(Σ(P )) :
65 queue . push (b0 bk )
66 for (bj , bk) in l :
67 i f k not in t a r g e t s [ b ] :
68 for i in t a r g e t s [ b ] :
69 queue . push (bi bk )
70 queue . push (bk bi )
71 my_targets [ b ] . add ( k )
72 t a r g e t s . merge ( my_targets )
73

74 done = s e t ( )
75 queue . push (g0 g> )
76 while queue i s not empty :
77 P = queue . pop ( )
78 i f P not in done :
79 r e g i s t e r _ o b j ( P )
80 done . add ( P )
81 keep_trs = s e t ( )
82 for l o c a l path η in G. nodes :
83 i f G[η ] . va l id :
84 keep_trs . update ( s e t (η ) )
85 return keep_trs

objectives can be assessed only when they are consid-
ered for B (compute_valid_nodes). We use a digraph where
nodes are objectives and local paths, related by edges: each
η ∈ lpaths(ai aj) is a child of objective ai aj (lines 14-
17), and b0 bk is a child of η if b 6= a and if there exists a
transition (l, x) ∈ η where bk ∈ •(l, x) (lines 18-24).

Once all the dependencies of the objectives are refer-
enced in the graph (build_obj_deps), the validity of nodes
are computed as follows: an objective is valid if and only
if at least one of its local path children is valid; a local
path is valid if and only if all its objective children are
valid. Therefore, the validity of a node can be assessed
only when either the validity of all the children have been
assessed; or as soon as one child of an objective is declared
valid, or one child of a local path is declared as not valid
(update_valid_parent). The computation starts from the leafs
of the graph (lines 25-28) and continues to their parents
(lines 44-49) creating a topological ordered traversal of the
digraph. Remark that the digraph can contain cycles. Two
cases arise: either the validity of a node of a connected
component can be computed (when one of its children is
outside the connected component has been computed), in
which case its children in the connected component have no
impact on its value; or none of the nodes of the connected
component can be computed: this case reflects un-resolvable

circular dependencies between objectives and local paths,
hence these nodes are invalid (lines 50-51).

At the same time, the graph accounts for the objectives
and local paths of B: starting from the goal objective (line 75,
definition 8(1)), objectives to be added to B are iteratively
registered in the graph (lines 76-80) with register_obj . Once
the validity of the candidate objective is assessed (line 59),
rules of definition 8(2) and definition 8(3) are applied, re-
spectively in line 65 and lines 68-70.

Finally, the transitions of the reduced model correspond
to the transitions of the valid local paths referenced in the
digraph (lines 81-85).

3.2.3 Complexity
Recall that there is quadratic number of objectives (|Obj| =∑
a∈Σ |S(a)|2); for any objective ai aj , the number of local

path in lpaths(ai  aj) is polynomial with the number of
local transitions in a and exponential in the number of local
states in a minus 1, i.e., |S(a)| − 1; moreover, a local path is
of length at most |S(a)|.

Therefore, the size of graph G computed in Listing 1 is
polynomial with the number of local transitions |T | and
exponential with the maximum number k− 1 of local states
within an automaton, where k = maxa∈Σ |S(a)|.

The function compute_valid_node visit each node and edge
twice: once for the construction (build_obj_deps) and once for
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the computation of nodes validity. The function register_obj
is again linear with the size of G.

Overall, the goal-oriented reduction has a time complex-
ity polynomial with the total number of automata and local
transitions, and exponential with the maximum number
k− 1 of local states within an automaton. Therefore, assum-
ing k � |Σ|, the goal-oriented reduction offers a very low
complexity, especially with regard to a full exploration of the
k|Σ| states. Moreover, we remark that in the case of binary
automata (k = 2), as when encoding Boolean networks, the
complexity is polynomial.

3.3 Comparison with other reductions

The relevant subnet computation [21] identifies places and
transitions of Petri nets which can be removed while pre-
serving a subset of LTL properties. As our automata net-
work framework is close to safe Petri nets (appendix A),
the subnet computation can be directly applied to AN mod-
els. Nevertheless, the subnet computation aims at preserv-
ing LTL properties which involve non-minimal traces; and
hence preserves more properties than our goal-oriented re-
duction. In particular, some traces with cycles are preserved
by the subnet computation, as they are relevant to some
LTL properties. Applied to figure 1 for c2 reachability, the
relevant subnet would remove only the transition c0

d1−→ c2.
Another closely related reduction is the so-called cone

of influence reduction [20] which identifies variables (au-
tomata) which are not involved in given LTL/CTL prop-
erty. The principle is very similar to the relevant subset
network computation, and is implemented in the model-
checker NUSMV. Next section gives benchmarks on the
performance of NUSMV before and after the goal-oriented
reduction, and using in both case the cone of influence
reduction. It shows that the goal-oriented reduction achieve
a much more drastic reduction.

4 APPLICATION TO SIGNALLING AND GENE REGU-
LATORY NETWORKS

In this section, we detail the application of automata net-
works for the analysis of transient reachability in bio-
logical regulatory networks, typically signalling and gene
networks. First, as qualitative models of these networks
are usually defined with Boolean and multi-valued net-
works, we show how these latter can be encoded exactly
in automata networks. Then, we address the biological
interpretation of goal reachability and cut sets properties,
and mention available implementation of the goal-oriented
reduction.

4.1 Encoding of Boolean and multi-valued networks

Most of qualitative models of biological regulatory networks
available in literature or databases (such as biomodels, cell-
collection, GINsim) are specified as Boolean networks and
multi-valued networks. One of their fundamental difference
with Automata Networks (ANs) is that Boolean/multi-
valued networks define (deterministic) functions for each
node of the network instead of transitions between node
values. Nevertheless, we detail in this section that both

asynchronous Boolean and multi-valued networks dynam-
ics can be encoded equivalently as ANs (we demonstrate a
bisimulation relation). As we will discuss at the end of this
sub-subsection, the converse is not true.

4.1.1 Definitions

There exists several definitions of mutli-valued networks
in the literature (e.g., [31], [32], [33]) which are often
parametrised by a so-called influence graph with regulation
thresholds. In this section, we use a general definition of
such networks, using simple discrete maps. It encompasses
above mentioned frameworks, and straightforwardly boils
down to classical Boolean networks [34], [35] when the
discrete domain of every node is binary.

Definition 9 (Multi-valued Network). A multi-valued net-
work of dimension n is defined by a couple (D, F ) where
D = D1 × · · · × Dn, with, ∀i ∈ [0;n], Di = [0;mi] is the
domain of each node; and where F = 〈f1, . . . , fn〉, with
∀i ∈ [0;n], fi : D→ Di.

Definition 10 (Semantics of Multi-valued Network). Given
a multi-valued network (D, F ) of dimension n, and given a
state v ∈ D, the node i can change of value only if vi 6= fi(v),
in which case its new value is given by

nextiF (v)
∆
=


vi + 1 if fi(v) > vi
vi − 1 if fi(v) < vi
vi if fi(v) = vi

The asynchronous transition relation →async
F ⊆ D × D is such

that, ∀v, v′ ∈ D,

v →async
F v′

∆⇔ v 6= v′ ∧ ∃i ∈ [0;n] : v′i = nextiF (v)

∧ ∀j ∈ [0;n], j 6= i, v′j = vj

The asynchronous generalized update transition relation→gen
F ⊆

D× D is such that, ∀v, v′ ∈ D,

v →gen
F v′

∆⇔ v 6= v ∧ ∀i ∈ [0;n],

v′i = nextiF (v) ∨ v′i = vi

4.1.2 Encoding in automata networks

Given a multi-valued network (D, F ) of dimension n, we
associate to each node i ∈ [0;n] an automaton ai with local
states corresponding to Di. The transitions are defined such
that they encode nextiF (v) when nextiF (v) 6= vi, i.e., there
is a transition from aij to aij+1 (resp. aij−1) when fi(v) > vi
(resp. fi(v) < vi).

The conditions of transitions correspond to the solutions
of the Boolean satisfiability formula [vi = j ∧ fi(v) > j]
(resp. [vi = j ∧ fi(v) < j]), with variables vk, k ∈ [0;n],
and where �i < j ≡ �i = 0 ∨ · · · ∨ �i = j − 1, and
�i > j ≡ �i = j+1∨· · ·∨�i = mi, assuming Di = [0;mi].

Transitions being of the form aij
x−→ aij±1, where the

condition x is a conjunction of local states, each transition
corresponds to a clause of the Disjunctive Normal Form
(DNF, disjunction of conjunctions) of [vi = j∧fi(v) ≷ j], we
refer to as DNF[vi = j ∧ fi(v) ≷ j] ⊆ 2{[vk=q]|k∈[0;n],q∈Dk}.
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a1

0

1

a2

0

1

a3

0

1

a2
1, a

3
1 a2

0 a3
0

Fig. 3. Automata network encoding the Boolean network of Example 4

We define the automata network (Σ, S, T ) encoding the
multi-valued network (D, F ) of dimension n, with:

Σ = {ai | i ∈ [0;n]} ∀i ∈ [0;n], S(ai) = {aij | j ∈ Di}

T = {aij
xi(C)−−−→ aij+1 | i ∈ [0;n] ∧ j ∈ Di

∧ C ∈ DNF[vi = j ∧ fi(v) > j]}

∪ {aij
xi(C)−−−→ aij−1 | i ∈ [0;n] ∧ j ∈ Di

∧ C ∈ DNF[vi = j ∧ fi(v) < j]}

where xi(C)
∆
= {akq | k 6= i ∧ [vk = q] ∈ C}.

The computation of DNF can rely on the method of
prime implicants (Quine-McCluskey algorithm [36]) to ob-
tain minimal sets of transitions.
Example 4. Let us consider the Boolean network of dimen-
sion 3 with D1 = D2 = D3 = {0, 1}, and

f1(v) = [v2 = 1 ∧ v3 = 1] f2(v) = [v2] f3(v) = [1]

From the DNF computation (detailed in figure 4), we obtain
the following automata network, represented in figure 3:

Σ = {a1; a2; a3}
S(a1) = {a1

0; a1
1} S(a2) = {a2

0; a2
1} S(a3) = {a3

0; a3
1}

T = {a1
0

{a2
1,a

3
1}−−−−−→ a1

1; a1
1

{a2
0}−−−→ a1

0; a1
1

{a3
0}−−−→ a1

0; a3
0
∅−→ a3

1}

4.1.3 Bisimulation relation
Given an AN (Σ, S, T ), we define the asynchronous
(→async

T ⊆ S × S) and generalised asynchronous (→gen
T ⊆

S × S) transition relations following step definition (defini-
tion 2): the asynchronous corresponds to steps composed of
only one transition, whereas the generalised asynchronous
corresponds to any non-empty steps.

s→async
T s′

∆⇔ ∃t ∈ T, s · {t} = s′

s→gen
T s′

∆⇔ ∃τ ⊆ T, τ 6= ∅, s · τ = s′

Let us consider the bijection relation ∼⊆ ×S defined as
v ∼ 〈a1

v1
, . . . , anvn〉. It derives that ∼ is a bisimulation rela-

tion for both asynchronous and generalised asynchronous
semantics: if v ∼ s, then

(v →async
F v′ ⇒ ∃s′ ∈ S : s→async

T s′ ∧ v′ ∼ s′)
∧(s→async

T s′ ⇒ ∃v′ ∈ D : v →async
F v′ ∧ v′ ∼ s′)

∧(v →gen
F v′ ⇒ ∃s′ ∈ S : s→gen

T s′ ∧ v′ ∼ s′)
∧(s→gen

T s′ ⇒ ∃v′ ∈ D : v →gen
F v′ ∧ v′ ∼ s′)

Indeed, for any v ∈ D and the ∼-corresponding s, ∀i ∈
[0;n], (nextiF (v) = j′∧vi 6= j′) if and only if ∃aivi

x−→ aij′ ∈ T
where x ⊆ s.

4.1.4 Discussion
It results that any asynchronous/generally asynchronous
Boolean and multi-valued networks can be encoded equiv-
alently as an automata network.

Remark that the converse is not true: let us consider
the automata network (Σ, S, T ) with Σ = {a}, S(a) =

{a0, a1, a2}, and T = {a1
∅−→ a0; a1

∅−→ a2}. This actu-
ally encodes a non-deterministic discrete function which is
equal both to 0 and 2 when a = 1. In general, automata
networks can encode non-deterministic functions, which is
not directly possible with usual Boolean and multi-valued
networks. See [37] for a thorough comparison of function-
centered and transition-centered systems.

Furthermore, remark that coupled transitions such as
a0, b0

x−→ a1, b1 would require adhoc semantics specifica-
tions for Boolean and multi-valued networks.

4.2 Goal reachability and cut sets
Applied directly to automata networks modelling a biolog-
ical network, a goal is typically the activation/inactivation
of a particular gene/transcription factor/kinase/etc. Given
an initial state for each node of the network, the goal is
reachable if there exists a sequence of steps leading to a
state where the goal is present. For instance, in a signalling
network, the initial state usually corresponds to a setting
of receptor states with the internal nodes being initially
inactive; and the goal corresponds to the activation of down-
stream transcription factor: the goal reachability means that,
in the specified settings, it is possible to see an activation of
the given transcription factor.

A minimal trace corresponds to a sequence of steps that
present no cycle (the same global state is never visited
twice), and in which each node activation/inhibition is
causally related to the goal reachability.

Note that the reachability properties we consider are
transient: there is no guarantee that the goal is still present
in the long run.

Beyond the local state goal
Although the formal specification of the goal is always the
local state of a single automaton, it is worth noticing that our
framework allow to consider much more complex proper-
ties, such as (sub-)state reachability, sequence of (sub)-states,
and disjunction of these properties.

Indeed, such properties can be encoded by on extra
automaton g and whose transitions and their condition
express the desired behaviours; the final local state for each
of them being the goal local state g>.

For instance, the property “reach a state where both a1

and b1 are present, then reach c1 or d1” can be encoded
with the automaton g having 3 local states g0, g1, g>, and

the transitions g0
{a1,b1}−−−−−→ g1; g1

{c1}−−−→ g>; g1
{d1}−−−→ g>.

Similarly, the reachability of global state s can be expressed

with a single extra transition g0
{s(a)|a∈Σ,a6=g}−−−−−−−−−−→ g>.

Any trace reaching the goal necessarily verifies the de-
sired dynamical property; and any trace verifying the prop-
erty can always trigger the goal reachability. Consequently,
all minimal traces verifying the property are preserved by
the goal-oriented reduction.
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a1
0 → a1

1 : DNF[v1 = 0 ∧ f1(v) = 1] ≡ DNF[v1 = 0 ∧ v2 = 1 ∧ v3 = 1] = {{[v1 = 0], [v2 = 1], [v3 = 1]}}
a1
1 → a1

0 : DNF[v1 = 1 ∧ f1(v) = 0] ≡ DNF[v1 = 1 ∧ (v2 = 0 ∨ v3 = 0)] = {{[v1 = 1], [v2 = 0]}, {[v1 = 1, v3 = 0]}}
a2
0 → a2

1 : DNF[v2 = 0 ∧ f2(v) = 1] ≡ DNF[v2 = 0 ∧ v2 = 1] = ∅
a2
1 → a2

0 : DNF[v2 = 1 ∧ f2(v) = 0] ≡ DNF[v2 = 1 ∧ v2 = 0] = ∅
a3
0 → a3

1 : DNF[v3 = 0 ∧ f3(v) = 1] ≡ DNF[v3 = 0 ∧ 1 = 1] = {{[v3 = 0]}}
a3
1 → a3

0 : DNF[v3 = 1 ∧ f3(v) = 0] ≡ DNF[v3 = 1 ∧ 1 = 0] = ∅

Fig. 4. Detail of transition conditions computation for Example 4.

Cut sets for goal reachability
Cut sets are sets of local states such that each trace reaching
the goal includes a transition involving one of these local
states. For instance, we say that {a1, b1} is a cut set for g>
reachability if any trace reaching g> includes a transitions
having a1 or b1 in its pre-condition. Hence, the disabling
of all the transitions having pre-condition intersecting with
the cut set will remove all the traces leading to the goal.
Therefore, cut sets predicts mutation to control the biological
network, which could be implemented by the knock-out/in
of the corresponding species. Cut sets have been studied
in the scope of biological networks in [6], [23], and are
close to intervention sets [4]. Whereas intervention sets
determine mutations which ensure the inevitability of a
specified steady state, cut sets determine mutations which
disable any trace leading to a goal state, without any steady
state assumption.

Remark that it is sufficient to break only the minimal the
traces to goal in order to break all the traces to it. On the
other hand, verifying if a set of local state is a valid cut set
requires to reason on all the minimal traces. Therefore, the
preservation of all the minimal traces by the goal-oriented
reduction (theorem 1) is crucial to ensure the equivalence of
the verification on the reduced model.

4.3 Implementation
The software PINT, available at http://loicpauleve.name/
pint, implements the static analysis of automata networks
for transient reachability properties.

Besides command line utilities, it comes with a PYTHON
interface which allows a seamless manipulation of automata
network, from the automatic import of Boolean/multi-
valued models (notably in GINsim, SBML-qual, or any
format supported by BioLQM [38]), to the model reduction
and analysis.

A typical usage for model reduction for further analysis
with NuSMV model-checker is the following:
>>> import pypint
>>> an = pypint . load ( " ht tp :// ginsim . org . . model . zginml " )
>>> an . i n i t i a l _ s t a t e . update ( EGFr=1 ,TGFr=1)
>>> red = an . reduce_for_goal (pRB=1)
>>> red . save_as ( " model . smv" )
# or direct invocation of model-checker
# (reduction is done automatically beforehand)
>>> an . r e a c h a b i l i t y (pRB=1 , t o o l ="nusmv" )
True

5 EXPERIMENTS

We experimented the goal-oriented reduction on several
biological networks and quantify the shrinkage of the reach-
able state space. Then, we illustrate potential applications

with the verification of simple reachability, and of cut sets. In
both cases, the reduction drastically increases the tractability
of those applications.

5.1 Results on model reduction

We conducted experiments on Automata Networks (ANs)
that model dynamics of biological networks. For different
initial states, and for different reachability goals, we com-
pared the number of local transitions in the AN specifica-
tions (|T |), the number of reachable states, and the size of the
so-called complete finite prefix of the unfolding of the net
[39]. This latter structure is a finite partial order representa-
tion of all the possible traces, which is well studied in con-
currency theory. It aims at offering a compact representation
of the reachable state spaces by exploiting the concurrency
between transitions: if t1 and t2 are playable in a given state
and are not in conflict (notably when •t1 ∩ •t2 = ∅), a
standard approach would consider 4 global transitions (t1
then t2, and t2 then t1), whereas a partial order structure
would simply declare t1 and t2 as concurrent, imposing
no ordering between them. Hence, unfoldings drop part of
the combinatorial explosion of the state space due to the
interleaving of concurrent transitions.

The selected networks are models of signalling pathways
and gene regulatory networks: two Boolean models of Epi-
dermal Growth Factor receptors (EGF-r) [6], [7], one Boolean
model of tumor cell invasion (Wnt) [2], two Boolean models
of T-Cell receptor (TCell-r) [4], [5], one Boolean model of
Mitogen-Activated Protein Kinase network (MAPK) [3], one
multi-valued model of fate determination in the Vulval Pre-
cursor Cells (VPC) in C. elegans [8], one Boolean model of
T-Cell differentiation (TCell-d) [1], and one Boolean models
of cell cycle regulation (RBE2F) [40]. The ANs result from the
encoding described in section 4.1. For each of these models,
we selected initial states and nodes for which the activation
will be the reachability goal (see supplementary material for
scripts and data). Typically, the initial states correspond to
various input signal combinations in the case of signalling
cascades, or to pluripotent states for gene networks; and
goals correspond to transcription factors or genes of impor-
tance for the model (output nodes for signalling cascades,
key regulators for gene networks).

Table 1 sums up the results before and after the goal-
oriented reduction. The number of reachable states is com-
puted with ITS-REACH [41] using a symbolic representa-
tion, and the size of the complete finite prefix (number of
instances of transitions) is computed with MOLE [42]. In
each case, the reduction step took less than 0.1s, thanks to
its very low complexity when applied to logical networks.

http://loicpauleve.name/pint
http://loicpauleve.name/pint
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Verification of goal reachability Verification of goal cut sets
Model Goal |T | # states |unf| NuSMV its-reach NuSMV its-ctl

EGF-r (20) pRB1
68 4,200 1,749 0.2s 10Mb 0.2s 7Mb 0.1s 9Mb 0.7s 51Mb
43 722 336 0.1s 8Mb 0.1s 5Mb 0.1s 8Mb 0.2s 24Mb

Wnt (32) Migration1
197 7,260,160 KO 30s 48Mb 0.3s 18Mb 44s 55Mb 105s 2.1Gb
117 241,060 217,850 0.9s 32Mb 0.5s 17Mb 9.1s 27Mb 16s 720Mb

TCell-r (40) AP11
90 ≈ 1.2 · 1011 KO KO 1.1s 52Mb KO 492s 10Gb
46 158,400 14,071 3.8s 36Mb 0.6s 15Mb 2.4s 34Mb 11s 319Mb

MAPK (53)
Proliferation1

173 ≈ 3.8 · 1012 KO KO 0.9s 60Mb KO KO
initial state 1 113 ≈ 4.5 · 1010 KO KO 2s 48Mb KO KO
MAPK (53)

Apoptosis1
173 8,126,465 KO 63s 83Mb 0.2s 15Mb 34s 66Mb 48s 1.9Gb

initial state 2 69 269,825 155,327 1.5s 36Mb 0.4s 18Mb 0.3s 23Mb 6.7s 500Mb

VPC (88) LIN391
332 KO KO KO 1s 50Mb KO KO
219 1.8 · 109 43,302 236s 156Mb 0.8s 21Mb 163s 155Mb KO

TCell-r (94) ap11
217 KO KO KO KO KO KO
42 54.921 1,017 0.4 23Mb 0.26s 14Mb 0.2s 22Mb 3s 181Mb

TCell-d (101)
Th21

384 ≈ 2.7 · 108 257 3s 40Mb 0.5s 24Mb
initial state 1 0 1 1
TCell-d (101)

BCL61
384 KO KO KO 0.5s 23Mb KO KO

initial state 2 161 75,947,684 KO 474s 260Mb 0.3s 19Mb 600s 360Mb KO
EGF-r (104)

ap11
378 9,437,184 47,425 7s 35Mb 0.6s 23Mb

initial state 1 0 1 1
EGF-r (104)

ap11
378 ≈ 2.7 · 1016 KO KO 1.36s 60Mb KO KO

initial state 2 69 62,914,560 KO 11s 33Mb 0.3s 17Mb 13s 33Mb 21s 875Mb

RBE2F (370) a8581
742 KO KO KO KO KO KO
56 2,350,494 28,856 5s 377Mb 5s 170Mb 6s 29Mb 179s 1.8Gb

TABLE 1
Comparisons before (normal font) and after (bold font) the goal-oriented AN reduction and cut sets verification. Each model is identified by the
system, the number of automata (within parentheses), an initial state, and the reachability goal. |T | is the number of local transitions in the AN

specification; “#states” is the number of reachable global states from the initial state; “|unf|” is the size of the complete finite prefix of the unfolding.
“KO” indicates an execution running out of time (30 minutes) or memory. When applied to goal reachability, we show the total execution time and

memory used by the tools NuSMV, its-reach, and its-ctl. Computation times where obtained on an Intel R© CoreTM i7 3.4GHz CPU with
16GB RAM. For each case, the reduction procedure took less than 0.1s.

There is a substantial shrinkage of the dynamics for the
reduced models, which can turn out to be drastic for large
models. In some cases, the model is too large to compute
the state space without reduction. For some large models,
the unfolding is too large to be computed, whereas it can
provide a very compact representation compared to the
state space for large networks exhibiting a high degree of
concurrency (e.g., TCell-d, RBE2F). In the case of first profile
of TCell-d and EGF-r (104) the reduction removed all the
transitions, resulting in an empty model. Such a behaviour
can occur when the local causality analysis statically detect
that the reachability goal is impossible, i.e., the necessary
condition of section 3.1 is not satisfied. On the other hand,
a non-empty reduced model does not guarantee the goal
reachability.

Impact of statically-proven impossible objectives

The goal-oriented reduction relies on two intertwined anal-
yses of the local causality in ANs: (1) the computation of po-
tentially involved objectives (section 3.2) and (2) the filtering
of objectives that can be proven impossible (section 3.1). The
second part can be considered optional: one could simply
define the predicate valids to be always true. In order to
appreciate the impact of this second part, we show in table 2
the intermediary results of model reduction without the
filtering of impossible objectives. As we can see, for some
models it has no effect on the reduction, for some others the
filtering part is necessary to obtain substantial reduction of
the state space (e.g., MAPK, TCell-r (94), TCell-d).

5.2 Example of application: goal reachability

In order to illustrate practical applications of the goal-
oriented model reduction, we first systematically applied
model-checking for the goal reachability on the initial and
reduced model (table 1).

We compared two different softwares: NUSMV [43]
which combines Binary Decision Diagrams and SAT ap-
proaches for synchronous systems, and ITS-REACH which
implements efficient decision diagram data structures [44].
In both cases, the transition systems specified as input of
these tools is an exact encoding of the asynchronous seman-
tics of the automata networks, where steps (definition 2) are
always composed of only one transition. For NUSMV, the
reachability property is specified with CTL [45] (“EF g>”,
g> being the goal local state, and EF the exists eventually
CTL operator). It is worth noting that NUSMV implements
the cone of influence reduction [20], although our experiments
show it does not bring a noticeable performance improve-
ment for the selected models. ITS-REACH is optimized for
checking if a state belongs to the reachable state space, and
cannot perform CTL checking.

Experiments show a remarkable gain in tractability for
the model-checking of reduced networks. For large cases,
we observe that the dynamics can be tractable only after
model reduction (e.g., TCell-r (94), RBE2F (370)). ITS-REACH
is significantly more efficient than NUSMV because it is
tailored for simple reachability checking, whereas NUSMV
handles much more general properties.

Because the goal-reduction preserves all the minimal
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Model # tr # states |unf|

EGF-r (20)
68 4,200 1,749
43 722 336
43 722 336

Wnt (32)
197 7,260,160 KO
134 241,060 217,850
117 241,060 217,850

TCell-r (40)
90 ≈ 1.2 · 1011 KO
46 158,400 14,071
46 158,400 14,071

MAPK (53) 173 ≈ 3.8 · 1012 KO
initial state 1 147 ≈ 9 · 1010 KO

113 ≈ 4.5 · 1010 KO
MAPK (53) 173 8,126,465 KO
initial state 2 148 1,523,713 KO

69 269,825 155,327

VPC (88)
332 KO KO
278 ≈ 2.9 · 1012 185,006
219 1.8 · 109 43,302

TCell-r (94)
217 KO KO
112 KO KO
42 54.921 1,017

TCell-d (101) 384 ≈ 2.7 · 108 257
initial state 1 275 ≈ 1.1 · 108 159

0 1 1
TCell-d (101) 384 KO KO
initial state 2 253 ≈ 2.4 · 1012 KO

161 75,947,684 KO
EGF-r (104) 378 9,437,184 47,425
initial state 1 120 12,288 1,711

0 1 1
EGF-r (104) 378 ≈ 2.7 · 1016 KO
initial state 2 124 ≈ 2 · 109 KO

69 62,914,560 KO

RBE2F (370) 742 KO KO
56 2,350,494 28,856
56 2,350,494 28,856

TABLE 2
Comparison of AN size (# tr), number of reachable states (# states),
and complete prefix size (|unf|) before (normal font) the goal-oriented

reduction with the goal-oriented reduction without the filtering of
impossible objective (italic) and with the full reduction (bold font)

traces for the goal reachability, it preserves the goal reacha-
bility: the results of the model-checking is equivalent in the
initial and reduced model.

5.3 Example of application: cut set verification

The above application to simple reachability does not re-
quires the preservation of all the minimal traces. Here,
we apply the goal-oriented reduction to the cut sets for
reachability, where the completeness of minimal traces is crucial
(section 4.2)

We focus on verifying if a given set of local states is
a cut set for the goal reachability. In the scope of this
experiment, we consider cut sets that are disjoint with the
initial state. The cut set property can be expressed with CTL
as follows: {a1, b1} is a cut set for g> reachability if the
model satisfies the CTL property not E [ (not a1 and
not b1) U g> ] (U being the until operator). The property
states that there exists no trace where none of the local state
of the cut set is reached prior to the goal. It is therefore
required that all the minimal traces to the goal reachability
are present in the model: if one is missing, a set of local

states could be validated as cut set whereas it may not be
involved in the missed trace.

Table 1 compares the model-checking of cut sets prop-
erties using NUSMV and ITS-CTL [41] on a range of the
biological networks used in the previous sections and on
cut sets computed beforehand with PINT or arbitrarily de-
signed. Because the goal-oriented reduction preserves all the
minimal traces to the goal, the results are equivalent in the
reduced models. As for the simple reachability, the goal-
oriented reduction drastically improves the tractability of
large models.

6 DISCUSSION

This paper establishes a reduction of automata networks
parametrized by a goal, a reachability property of the form:
from a state s there exists a trace which leads to a state
where a given automaton g is in state g>. As discussed in
section 4, such kind of properties allows the expression of
sequential (sub-)state reachability properties.

The goal-oriented reduction preserves all the minimal
traces satisfying the reachability property under a general
concurrent semantics which allows at each step simultane-
ous transitions of an arbitrary number of automata. These
results directly apply to the asynchronous semantics where
only one transition occurs at a time: any minimal trace of
the asynchronous semantics is a minimal trace in the general
concurrent semantics.

Its time complexity is polynomial in the total number
of transitions and exponential with the maximal number
of local states within an automaton minus 1 (and hence
polynomial on binary automata network). Therefore, the
procedure is extremely scalable when applied on networks
between numerous automata, but where each automaton
has a few local states.

The main benefit of this reduction is the enhancement of
tractability for formal verification of the transient dynamics
of the model, notably for reachability properties, as well
as for cut sets properties, which require the completeness
of minimal traces in the reduced model. These properties
are preserved by the reduction. The experiments on several
models from the literature confirm this practical impact.

Usually, input models are specified as Boolean or multi-
valued networks. We showed that our framework can en-
code them equivalently. In some cases, it is also possible
to convert the obtained reduced automata network back to
functional specification, for instance using [46].

The reduction method can be applied to any automata
networks, and therefore may have applications beyond
Boolean and multi-valued networks for systems biology.
Thus, it would be of interest to pursue a more general
evaluation with different kind of models, and for these
different models compare with other reduction methods,
such as relevant subnet computation.

Further work consider the embedding of this reduction
in different methods relying on transient dynamics analysis.
For instance, one could consider applying the reduction
iteratively during the state graph computation. Indeed, in
general, the closer we get to the goal, the more transitions
can be ignored: in the case of RB2EF models, this lead to a
further shrinkage from 2 millions states to 28,000. Another
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question is the assessment of the optimality of the reduction:
if one can compute the concrete minimal traces, one can
evaluate how close the static analysis can get to the optimal
reduced network. Unfortunately, the computation of the
exact and complete set of minimal traces is hardly tractable.
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APPENDIX A
SAFE PETRI NETS VS AUTOMATA NETWORKS

In this section, we detail how safe Petri nets can be encoded
as automata networks, and vice versa.

A safe or 1-bounded Petri net is a tuple (P, T , F,M0)
where P and T are sets of nodes, called places and transitions
respectively, and F ⊆ (P × T ) ∪ (T × P) is a flow relation
whose elements are called arcs. A subset M ⊆ P of the
places is called a marking, and M0 is a distinguished initial
marking. For any node x ∈ P ∪ T , we call pre-set of x the
set •x = {y ∈ P ∪ T | (y, x) ∈ F} and post-set of x the set
x• = {y ∈ P ∪ T | (x, y) ∈ F}.

A transition t ∈ T is enabled at a marking M if and only
if •t ⊆ M . The application of such a transition leads to the
new marking M ′ = (M \ •t) ∪ t•.

A.1 Safe Petri nets to automata networks

In general, each place of the Petri net can be modeled as a
single binary automaton, where local states indicates if the
place is marked or not. Then, transitions update the related
automata accordingly. However, in many cases, safe Petri
nets actually model the synchronized product of transitions
systems: in such cases, the places model the (local) states
of the compositing systems. It is therefore more natural to
encode such nets with automata which makes explicit this
partionning of places.

A set of places is said mutually exclusive if at most one
place of this set can be present in any reachable marking. In
the case when this set of places always contains one place in
the marking, it can then be modeled as a single automaton
where places are its local states. The identification of these
set of places can be done automatically using so-called P-
invariants (they are particular cases of them) [47].

In the following, we assume a set of k subsets of places
P , ∀i ∈ [1; k], Ai ⊆ P , which are mutually exclusive and
have one marked place in each reachable marking from
M0. Note that the sets Ai are not necessarily disjoint (see
example below). We note B

∆
= P \

⋃
i∈[1;k]A

i the set of
places not belonging to these subsets.

The encoding of the Petri net in an automata network
(Σ, S, T ) is the following. We instantiate one automaton per
set Ai and per place in B: Σ = {ai | i ∈ [1; k]} ∪ {p ∈ B}.
The local states are defined as follows: ∀i[1; k], S(ai) = {aip |
p ∈ Ai}; and ∀p ∈ B,S(p) = {p0, p1}. To each Petri net
transition t ∈ T , we define a transition (l, x) ∈ T where
the automata changes l are ∀p ∈ •t \ t• (consumed places),
if p ∈ B, (p1, p0) ∈ l, otherwise, ∀i ∈ [1; k] such that p ∈
Ai, with q ∈ Ai ∩ t• \ •t, (aip, a

i
q) ∈ l; and ∀p ∈ B ∩ t• \

•1

t1

•2

• 4

3

t2

•5

6

7

Fig. 5. Petri net of Example 5. Places are circle nodes and transitions
rectangle nodes.

•t (produced places), (p0, p1) ∈ l; finally the conditions x
correspond to the places present both in pre- and post-set of
t: x =

⋃
p∈•t∩t• L(p) with, if p ∈ B, L(p) = {p1}, otherwise

L(p) = {aip | i ∈ [1; k], p ∈ Ai}.
Example 5. Let us consider the Petri net in figure 5 with
P = {1, 2, 3, 4, 5, 6, 7} and T = {t1, t2}. Two P-invariants of
mutually exclusive places can be identified: A1 = {1, 3, 6}
and A2 = {2, 3, 7}; hence B = {4, 5}. Remark that the
place 3 belongs to two subsets of places: it will be du-
plicated in the automata network encoding. The resulting
automata network gathers 4 automata Σ = {a1, a2, 4, 5}
with local states S(a1) = {a1

1, a
1
3, a

1
6}, S(a2) = {a2

2, a
2
3, a

2
7},

S(4) = {40, 41}, S(5) = {50, 51}. The Petri net transition
t1 is encoded as the AN transition a1

1, a
2
2

41−→ a1
3, a

2
3; and

Petri net transition t2 is encoded as the AN transition
a1

3, a
2
3, 51

∅−→ a1
6, a

2
7, 50.

A.2 Automata networks to safe Petri nets

An automata network (Σ, S, T ) can be straightforwardly
encoded as a safe Petri net having groups of mutually
exclusive places acting as the automata, and where each
transition t ∈ T of the AN is encoded as a Petri net transition
with incoming arcs from orig(t) and enab(t), out-going arcs
to dest(t) and enab(t). Formally, the Petri net is defined
with P =

⋃
a∈Σ S(a), T = T , and F = {(ai, t) | ai ∈ •t, t ∈

T} ∪ {(t, aj) | aj ∈ t•, t ∈ T}.

APPENDIX B
PROOF OF MINIMAL TRACES PRESERVATION

We assume a global AN (Σ, S, T ) where g ∈ Σ, g> ∈ S(g),
and s ∈ S with s(g) 6= g>.

From property 1 and definition 7, any trace reaching first
ai and then aj uses all the transitions of at least one local
path in lpathss(ai aj).

We first prove with lemma 2 that the last transition of
a minimal trace π for g> reachability, of the form π|π| =
{(l, x)} with (gi, g>) ∈ l, is necessarily in tr(B). Indeed,
by definition of B, g0 g> ∈ B; and by lemma 1, (l, x) /∈
lpathss(g0 g>) implies that reaching gi requires reaching
g> beforehand.

Lemma 1. Given (l, x) ∈ T with (aj , ai) ∈ l, if (l, x) /∈
tr(lpathss(a0 ai)), then for any trace π from s with aj ∈ πv•
and ai ∈ πw• for some v, w ∈ [1; |π|], there exists u < v with
ai ∈ πu•.

Proof. Let η ∈ lpathss(a0  aj) be an a-acyclic local path
such that ∀n ∈ [1; |η|], ai /∈ dest(ηn). The sequence η :: (l, x)
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is then acyclic and, by definition, belongs to lpathss(a0  
ai), which is a contradiction.

Lemma 2. If π is a minimal trace for g> reachability from state
s, then, necessarily, π|π| ⊆ tr(B).

Proof. As π is minimal for g> reachability, without loss
of generality, we can assume that π|π| = {(l, x)} with
(gi, g>) ∈ l. By definition, tr(lpathss(g0 g>)) ⊆ tr(B). By
lemma 1, if (l, x) /∈ tr(lpathss(g0 g>)), then there exists
u < |π| with g> ∈ πu•; hence, π would be non minimal.

The rest of the proof of theorem 1 is derived by contra-
diction: if a transition of π is not in tr(B), we can build a
sub-trace of π which preserves g> reachability, therefore π
is not minimal.

Given a transition (l, x) in the q-th step of π that is not in
tr(B), removing (l, x) from πq would imply to remove any
further transition that depend causally on it. Two cases arise
from this fact: either all further transitions that depend on
(l, x) must be removed, if any; or (l, x) is part of loop which
can be removed from π.

Lemma 3 ensures that if az ak is in B and if az occurs
before the q-th step and ak after the q-th step of π, then
(l, x) /∈ tr(lpathss(az  ak)) with (ai, aj) ∈ l only if (l, x)
is part of a loop in automaton a, i.e., there are two steps
surrounding q where the automaton a is in the same state
before their application. Intuitively, lemma 3 imposes that π
has the form illustrated in figure 6.

Lemma 3. Let a ∈ Σ and u, q, v ∈ [1; |π|], u ≤ q < v, such
that az ∈ •πu, ak ∈ •πv ∪ πv•, and (l, x) ∈ πq \ tr(B) with
(ai, aj) ∈ l. If az ak ∈ B then ∃m,n ∈ [u; v], m ≤ q ≤ n
such that (π1..m−1)•∩S(a) = (π1..n)•∩S(a); and ak ∈ •πv ⇒
n < v.

Proof. If (l, x) /∈ tr(B) and az  ak ∈ tr(B), necessarily
(l, x) /∈ tr(lpathss(az  ak)). Therefore, (l, x) belongs to a
loop of a local path in automata a from az (at index u in π)
to ak (at index v in π). Hence, ∃m,n ∈ [u; v] withm ≤ q ≤ n
and ah ∈ S(a) such that ah ∈ •πm and ah ∈ πn• therefore
(π1..m−1)• ∩S(a) = (π1..n)• ∩S(a) = ah. In the case where
ak ∈ •πv , ak 6= ah, hence n < v.

The idea is then to remove the transitions forming the
loop within automaton a. However, transitions in other
automata may depend causally on the transitions that com-
pose the local loop in automaton a within steps m and n,
following the notations in lemma 3.

Lemma 4 establishes that we can always find m and n
such that none of the transitions within these steps with an
enabling condition depending on an automaton modified
by the transition (l, x) are in tr(B). Indeed, for any a such
that ∃(ai, aj) ∈ l, if a transition in tr(B) depends on a
local state of a, let us call it ap, the objectives a0 ap and
ap ak are in B, due to the second and third condition in
definition 8. Lemma 3 can then be applied on the subpart
of π that contains the transition (l, x) not in tr(B) and that
concretizes either a0 ap or ap ak to identify a smaller
loop containing (l, x).

In the following, we denote the set of automata changed
by a transition (l, x) by Σ(l)

∆
= {a ∈ Σ | ∃(ai, aj) ∈ l}.

Lemma 4. Let q ∈ [1; |π|] where (l, x) ∈ πq \ tr(B). For each
a ∈ Σ(l), there exists m,n ∈ [1; |π|] with m ≤ q ≤ n such that
∀t ∈ tr(πm+1..n), enab(t) ∩ S(a) 6= ∅ ⇒ t /∈ tr(B), and, if
g = a or ∃t ∈ tr(πn+1..|π|) ∩ tr(B) with enab(t) ∩ S(a) 6= ∅,
then (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a).

Proof. • Case 1 – ∀a ∈ Σ(l), a 6= g and for any t ∈ πq+1..|π|,
enab(t) ∩ S(a) 6= ∅ ⇒ t /∈ tr(B): the lemma is verified with
m = q and n = |π|.
• Case 2 – ∃a ∈ Σ(l) and v ∈ [q + 1; |π|] such that ∃t ∈

tr(πv)∩tr(B) with ak ∈ enab(t). By definition 8, this implies
a0 ak ∈ B. By lemma 3, there exists m,n ∈ [1; v − 1] with
m ≤ q ≤ n such that (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a).
• Case 3 – ∃a ∈ Σ(l) with a = g, by lemma 3 applied

with ak = g>, there exists m,n ∈ [1; |π|] with m ≤ q ≤ n
and m 6= n such that (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a).
Remark that it is necessary that n < |π|, otherwise, if n =
|π|, g> ∈ (π1..m−1)• and π would be not minimal.

In both Case 2 and 3, if there exists r ∈ [m + 1;n] such
that ∃ap ∈ S(a) and ∃t ∈ πr with ap ∈ enab(t), then
t ∈ tr(B) implies that a0  ap ∈ B and ap  ak ∈ B
(definition 8). If r > q, by lemma 3 with ak = ap and
v = r, there exists m′, n′ ∈ [m + 1;n] such that m′ ≤ q ≤
n′ < r ≤ n with (π1..m′−1)• ∩ S(a) = (π1..n′)• ∩ S(a).
If r ≤ q, by lemma 3 with a0 = ap and u = r, there
exists m′, n′ ∈ [m + 1;n] such that r ≤ m′ ≤ q ≤ n′

with (π1..m′−1)• ∩ S(a) = (π1..n′)• ∩ S(a). Therefore, by
induction with lemma 3, there exists m,n ∈ [1; |π|] such
that ∀t ∈ tr(πm+1..n), enab(t) ∩ S(a) 6= ∅ ⇒ t /∈ tr(B).

Using lemma 4, we show how we can identify a subset
of transitions in π that can be removed to obtain a sub-
trace for g> reachability. In the following, we refer to the
couple (m,n) for a ∈ Σ(l) of lemma 4 with cb(π, a, q)
(definition 11).

Definition 11 (cb(π, a, q)). Given a ∈ Σ, q ∈ [1; |π|] with
t = (l, x) ∈ πq \ tr(B) and a ∈ Σ(l), cb(π, a, q)

∆
= (m,n)

where m,n ∈ [1; |π|] are such that,

• ∀t ∈ tr(πm+1..n), enab(t) ∩ S(a) 6= ∅ ⇒ t /∈ tr(B);
• a = g ∨ ∃t ∈ tr(πn+1..|π|) ∩ tr(B) with enab(t) ∩

S(a) 6= ∅ =⇒ (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a).
Moreover, if a = g, then n < |π|.

We use lemma 4 to collect the portions of π to remove
depending on automata. We start from the last transition in
π that is not in tr(B): if tr(π) 6⊆ tr(B), there exists d ∈ [1; |π|]
such that πd 6⊆ tr(B) and ∀n > d, πn ⊆ tr(B). By lemma 2,
we know that d < |π|.

Let us define Ψ ⊆ Σ × [1; |π|] × [1; |π|] the smallest set
which satisfies:

• (a,m, n) ∈ Ψ if cb(π, a, d) = (m,n) where (l, x) ∈
πd \ tr(B).

• ∀(a,m, n) ∈ Ψ, ∀q ∈ [m + 1;n], ∀t = (l, x) ∈ πq ,
•(t) ∩ S(a) 6= ∅ =⇒ (b,m′, n′) ∈ Ψ for each b ∈ Σ(l)
where cb(π, b, q) = (m′, n′).

Finally, let us define the sequence of steps $ as the
sequence of steps π where the transitions delimited by Ψ
are removed: for each (a,m, n) ∈ Ψ, all the transitions of
automaton a occurring between πm and πn are removed.



14

a
z
∈ /∈

tr
(B

)

a
k
∈

π = · · · ::πu :: · · · ::ah → ax :: · · · ::ai → aj :: · · · ::ay → ah :: · · · ::πv :: · · ·
u m q n v

Fig. 6. By lemma 3, given that az ak ∈ B, ai → aj ∈ πq \ tr(B) only if it is part of a cycle within automata a, here between steps m and n.

Formally, |$| = |π| and for all q ∈ [1; |π|], $q ∆
= {(l, x) ∈

πq | ∀a ∈ Σ(l), @(a,m, n) ∈ Ψ : m ≤ q ≤ n}.
From lemma 4 and Ψ definition, $ is a valid trace.

Moreover, by lemma 4, there is no q ∈ [1; |π|] such that
(g, q, |π|) ∈ Ψ, hence g> ∈ $•. Therefore, π is not minimal,
which contradicts our hypothesis.
Example 6. Let us consider the reachability of c2 in the AN
of figure 1 from state 〈a0, b0, c0, d0〉. The transitions tr(B)
preserved by the reduction for that goal are listed in figure 2.

Let π be the following trace in the AN of figure 1:

π = {a0
{b0}−−−→ a1} ::{b0

{a1}−−−→ b1; c0
{a1}−−−→ c1} ::

::{a1, b1
∅−→ a0, b0} ::{c1

{b0}−−−→ c2} .

The latest transition not in tr(B) is a1, b1
∅−→ a0, b0 at

step 3. One can compute cb(π, b, 3) = (2, 3), and as there
is no transition involving b between steps 3 and 4, and
cb(π, a, 3) = (3, |π|) as a is no longer involve in subsequent
transitions. Hence, Ψ = {(b, 2, 3), (a, 3, 4)}; therefore, the
sequence

$ = {a0
{b0}−−−→ a1} ::{c0

{a1}−−−→ c1} ::::{} ::{c1
{b0}−−−→ c2}

is a valid sub-trace of π reaching c2, proving π non-
minimality.

In conclusion, if π is a minimal trace for g> reachability
from state s, then, tr(π) ⊆ tr(B).
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