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1. Introduction

The extensive use of composite materials in the industrial appli-
cations requires a careful examination of their mechanical proper-
ties. The material behaviour must be validated experimentally for
different types of loadings (static, dynamic, fatigue) depending
on the material application. Then, a behaviour model should be
developed to simulate structures’ response as a supportive tool
to the experimental method. As the composites are anisotropic
heterogeneous materials, complex models are required to ade-
quately describe their response. Some works referred by [1–6] is
concerned with the composites behaviour modelling in the mesos-
cale. Another option is to use the micromechanics models [7,8].
Based on the in-ply damage scenarios at the microscale, a recent
work [8] considers the coupling between the delamination and
micro cracking. These models take into account only the damage
propagation, the material hardening and the in-elastic strains’
appearances. Furthermore, the polymer matrix composites have
the viscoelastic behaviour due to the nature of matrix and this
behaviour is evident in the material’s strain-rate sensibility. The
dependence of a material’s strain rate sensitivity on the viscoelas-
tic effects was first taken into account in the works [9–11] for the
unidirectional composites and in the works [12–14] for the woven
composites.

However, the coupling between the cyclic loading damages and
the viscoelastic effects has not been considered in the classical
damage modelling [1–14]. It must be highlighted that the damage
propagation is strongly linked with the material energy dissipation
and, thus, with the hysteresis loops appearance. Thus, the precise
modelling of hysteresis loops is needed. Therefore, in this paper
we propose a collaborative model based on a fractional derivative
approach.

A fractional derivative theory is a promising technique to
describe the history-dependent phenomena like viscoelasticity. A
significant number of fractional viscoelastic models have been
developed and successfully applied tomodel amechanical response
of natural structures and modern heterogenic materials such as
elastomers and polymers [15–17]. The classical rheological models
are rewritten in terms of fractional derivative like the Kelvin-Voigt
[18,19], Maxwell [20–22] and Zener [23,24] fractional models that
allows to obtain creep and relaxation functions adapted for the
polymers’ response. Rabotnov has developed a hereditary theory
where he had introduced a generalized fractional rheological model
and a new class of hereditary functions in his works [25–27]. The
Rabotnov’s theory is widely used to describe the behaviour of the
polymers, metals and concrete. Bagley and Torvik established the
fractional law in the frequency domain to describe the behaviour
of polymers and elastomers [28]. The link betweenmolecular struc-
ture of polymers and fractional derivative law is given in the works
[29–31] for the different types of polymers. These relations were



obtained by using the Rouse molecular theory [32]. The hysteresis
loops’ appearance is another viscoelastic effect which can be
observed in the viscoelastic materials response and then, it can be
treated using the fractional derivative approach. Caputo has
described the hysteresis loop using the fractional derivatives in
the frequency domain to determine a fatigue limit for a few metals
[33]. Mateos [34] proposed a fractional derivative model with a few
material parameters to describe the hysteresis composite beha-
viour in the temporal domain. This model also includes strain-
rate dependence and can be applied for dynamic loading [35]. The
elastic and the irreversible strains, the damage and the strain rate
effects are taken into account into [34] and [35] but not thematerial
hardening. Moreover, these phenomena that are cited are in-
separable making it difficult to calculate their individual contribu-
tion in the material’s energy dissipation. Hence this paper proposes
a collaborative model to describe the complete composite beha-
viour during cyclic loading including the representation of the hys-
teresis phenomena during the loading-unloading paths. The
proposedmodel is composed of the elastoplastic damage behaviour
law [3] with possible strain-rate sensitivity [9] and including a
newly proposed fractional derivative approach. This model allows
us to distinguish the dissipation due to the material damage, plas-
ticity and viscoelasticity.

This paper is organized as follows. In Section 2, the essential
mathematical elements of the fractional calculus are introduced
and the collaborative model for woven composite materials is pro-
posed in the Section 3. The parameter identification procedure is
developed in the Section 4 and the validation of the collaborative
model is demonstrated in the Section 5. The Section 6 concludes this
paper and notes the various engineering application of this model.

2. Introduction in fractional calculus

The advent of advanced materials requires new mathematical
methods to describe their behaviours. One of the ways is to
increase the number of parameters in the existing constitutive
laws. This leads to sophisticated models with a significant number
of parameters which sometimes require complex identification
procedures. On the other hand, new methods may be introduced
as the fractional derivative theory.

Fractional operators are an extension of the order of the inte-
grals and derivatives to the fractional order. By their definition,
the fractional operators take into account the past loading history
and are suitable to describe the viscoelastic phenomena. The solu-
tion of fractional differential equations is expressed by the frac-
tional functions [36,37] whereas the solution of ordinary
differential equations is an exponential basis. Therefore, the frac-
tional behaviour laws are widely used to describe behaviour of
heterogeneous materials and fractal structures such as polymers,
alloys and geological strata [27,38,39].

There are a few definitions of the fractional integrals and
derivatives which are equivalent for most of the functions but they
do not always lead to the same results. In this work the classical
Riemann and Liouville definition (6) [40,41] is used. To deduce this
definition, the formula of nth repeated integral of the continuous
function f ðxÞ (Cauchy’s formula) is used:Z x

a
dx

Z x

a
dx . . .

Z x

a
f ðxÞdx ¼ 1

ðn� 1Þ!
Z x

a
ðx� tÞn�1f ðtÞdt; n 2 N ð1Þ

To generalize the Eq. (1), the natural number n is replaced by a
real positive number a. It is known that the extension of the facto-
rial function to real and complex numbers is the gamma function
CðzÞ defined by:

CðzÞ ¼
Z þ1

0
e�xxz�1dx; z 2 R�

þ ð2Þ
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The gamma function CðzÞ satisfies the following recurrence
relation:

Cðzþ 1Þ ¼ zCðzÞ; z 2 R�
þ ð3Þ

The fractional Riemann-Liouville integral of order a (4) is
obtained from the generalized form of the Eq. (1) by using the
property of the gamma function (3)

ðIaa f ÞRLðxÞ¼
def 1

CðaÞ
Z x

a

f ðtÞ
ðx� tÞ1�a

dt; a > 0 ð4Þ

where ðIaa f ÞRLðxÞ is the fractional integral of order a of the function
f ðxÞ.

The fractional derivative is an inverse operator to the fractional
integral. Let us consider a which is a positive real number and n
which is an integer that satisfies the inequality n� 1 < a < n.
The fractional derivative of order a is defined as the fractional inte-
gral of order n� a derived n times. For example, if a belongs to the
open interval ð0;1Þ, the fractional derivative of order a of the func-
tion f ðxÞ is the fractional integral of order 1� a derived one time:

ðDa
a f ÞRLðxÞ¼

def d
dx

ðI1�aa f ÞRLðxÞ ð5Þ

The alternative form of the previous expression is:

ðDa
a f ÞRLðxÞ¼

def 1
Cð1� aÞ

d
dx

Z x

a

f ðtÞ
ðx� tÞa dt; 0 < a < 1 ð6Þ

where ðDa
a f ÞRLðxÞ is the fractional derivative of order a in the sense

of Riemann- Liouville.

2.1. Numerical evaluation of fractional derivatives

In order to implement the fractional derivatives in a numerical
code, different algorithms exist. The L1-approximation [42] of the
Riemann-Liouville fractional derivative (6) ðDa

0 f ðxÞÞL1 has a follow-
ing form:

ðDa
0 f ðxÞÞL1 ¼ 1

Cð1�aÞ
f ð0Þ
xa þ

þ 1
Cð2�aÞ

XN�1

j¼0

f ðx�xjþ1Þ�f ðx�xjÞ
Dx ½x1�ajþ1 � x1�aj �

ð7Þ

where Dx is a step interval, N is a number of interval points and C is
the gamma function defined by (2).

The Riemann-Liouville fractional integral (4) can be rewritten in
the alternative forms [43]:

ðIa0 f ðxÞÞM1 ¼ xa

Cðaþ 1Þ
Z 1

0
f ðxð1� v1

aÞÞdv ð8Þ

ðIa0 f ðxÞÞM2 ¼ 2xa

Cðaþ 1Þ
Z 1

0
f ðxð1� v2

aÞÞdv ð9Þ

The formulas (8) and (9) can be easily implemented in the
numerical code if an analytical expression of the function f ðxÞ is
known.

According to the expression (6), the fractional derivative is the
first derivative of the M1 (8) or M2 (9) integrals. The M1 and M2
fractional derivate approximations are calculated by a central dif-
ference scheme:

ðDa
0 f ðxÞÞM1 ¼ ðI1�a0 f ðxþ DxÞÞM1 � ðI1�a0 f ðx� DxÞÞM1

2Dx
ð10Þ

ðDa
0 f ðxÞÞM2 ¼ ðI1�a0 f ðxþ DxÞÞM2 � ðI1�a0 f ðx� DxÞÞM2

2Dx
ð11Þ

In order to estimate the numerical accuracy of the proposed
approximations, the fractional derivatives of the linear function
f ðxÞ ¼ x are computed by the methods (7), (10) and (11) and com-
pared with the analytical results (12) [36].



Fig. 2. Relative errors comparison for the fractional derivatives of the linear
function.

Table 1
Total relative errors comparison for the linear function f ðxÞ ¼ x.

dM1ð%Þ dM2ð%Þ dL1ð%Þ
0.2611 0.2612 5.712

Fig. 3. Specimen geometry for ½0�8 laminate.

Fig. 4. Specimen geometry for ½45�8 laminate.
ðDa
0 f ÞRLðxÞ ¼

1
Cð2� aÞ x

1�a ð12Þ

The order of fractional derivatives is set a ¼ 0:3. The computa-
tional interval x 2 ð0;1Þ is discretized by N ¼ 20 points. The results
are illustrated in the Fig. 1.

Accuracy of the proposed methods is estimated by using the rel-
ative error drelativei (13) and the total error d (14) functions.

drelativei ¼ jDaf ðxiÞanalyt � Daf ðxiÞapproxj
Daf ðxiÞanalyt

100% ð13Þ

d ¼ 1
N

XN
i¼1

drelativei ð14Þ

where Daf ðxiÞanalyt is the fractional derivative computed analytically

by the Eq. (12), Daf ðxiÞapprox corresponds to the L1, M1 or M2 approx-
imations defined by the Eqs. (7), (10), (11) respectively.

The integrals (8) and (9) are computed using the Gaussian
quadrature. The computed interval ð0;1Þ is divided in ten sub-
intervals and five gauss-points are used in each sub-interval.

The results are presented in the Fig. 2 and in the Table 1. The
biggest error is observed near the zero point. The total relative
errors of M1 and M2 algorithms are less than 1%. The M1-method
is the most accurate and is used in further calculations.

3. Theoretical model for composite ply

The material which is used in this work is a carbon woven fibre
epoxy matrix composite. The traction cyclic tests have been carried
out on an Instron 3369 machine with a strain rate of 5 mm/min in
two different orthotropic directions: fibre and shear directions. The
specimens’ geometry and their dimensions for [0]8 and [45]8
woven laminates are shown in the Figs. 3 and 4 respectively. The
nominal thickness of the samples is 1.8 mm.

The experimental result of the tensile cyclic test for the woven
carbon/epoxy composite is illustrated in the Figs. 5 and 6. Sub-
scripts 1 and 2 represent the warp and the weft directions, respec-
tively. The composite is considered to be perfectly balanced and
thus the longitudinal and transverse behaviours are considered
to be equivalent. Typically, the experimental tests show an elastic
brittle response in longitudinal (transverse) direction (Fig. 5). How-
ever, shear behaviour has a non-linear character. The irreversible
strains, the in-ply damage (which is observed from a regular
decrease of shear modulus) and the hysteresis loops are presented
in the stress-strain curve (Fig. 6).
Fig. 1. Different fractional derivative numerical approximations for a function
f ðxÞ ¼ x.

Fig. 5. Longitudinal traction curve for the carbon/epoxy composite.

4

The collaborative model is developed to represent the elasto-
plastic damaged material behaviour as well as the hysteresis loops
for woven composites under cyclic loading. The model is based on
the collaboration of two sub-models. The first one deals with a
composite behaviour during loading path. The elastic and the
in-elastic strains are computed as well as the in-ply damage. The



Fig. 6. Shear stress-strain curve for the carbon/epoxy composite.
second sub-model involves the fractional derivative approach to
represent the hysteresis loops during unloading path. The mesos-
cale model is developed under a state of plane stress. The constitu-
tive equations are deduced within the framework of irreversible
thermodynamics processes using the local state method.

3.1. Thermodynamic aspects

Within the framework of irreversible thermodynamics, a Helm-
holtz potential qw is chosen as a function of internal variables:

qw ¼ qwðee;di;pÞ ð15Þ
where ee, di, p are internal variables associated with elastic strain,
damage in the orthotropic directions and cumulated plasticity
respectively.

3.2. Damage modelling

Under the given loading, the damage appears in the elementary
ply. It leads to the degradation of the mechanical properties and
then to the material failure. The continuum damage mechanics
theory is used to describe the degradation of elementary ply
[44]. Using the effective stresses notation [45], the degraded
stiffness matrix C is introduced as follows:

C ¼
ð1� d11ÞC0

11 m021C
0
11 0

m012C
0
22 ð1� d22ÞC0

22 0

0 0 ð1� d12ÞG0
12

0
BB@

1
CCA

with

C0
11 ¼ E011

1�m012m021
and C0

22 ¼ E022
1�m012m021

m021E
0
11 ¼ m012E

0
22

8>><
>>:

ð16Þ

where m012 and m021 are the Poisson’s ratios, E0
11 and E0

22 are longitudi-

nal and transverse Young’s moduli and G0
12 is a shear modulus.

The damage internal variables ðd11; d22; d12Þ represent the mate-
rial degradation in orthotropic directions. These parameters are set
between 0 and 1:

� When the material is not degraded: dij ¼ 0; fi; j ¼ 1;2g
� If there is a ‘‘complete” damage: dij ¼ 1; fi; j ¼ 1;2g.

The constitutive equations are deduced using the second princi-
pal of thermodynamics. The elastic strain energy of the damaged

material Wd
e (equivalent to the Helmholtz potential qw) has a

following form:
5

Wd
e ¼

1
2
fC0

11ð1� d11Þðee11Þ2 þ C0
22ð1� d22Þðee22Þ2

þ 2m021C
0
11e

e
11e

e
22 þ G0

12ð1� d12Þð2ee12Þ2g ð17Þ
where ee11; ee22 and ee12 are the component of the elastic strain vector.

The stress-strain relation is:

r¼ @Wd
e

@ee
)

r11

r22ffiffiffi
2

p
r12

0
B@

1
CA¼

ð1�d11ÞC0
11 m021C

0
11 0

m012C
0
22 ð1�d22ÞC0

22 0

0 0 2ð1�d12ÞG0
12

0
BB@

1
CCA

ee11
ee22ffiffiffi
2

p
ee12

0
B@

1
CA

ð18Þ
where r is the stress vector.

The thermodynamic forces associated with internal variables dij

are defined as following:

Yij ¼ � @Wd
e

@dij
)

Y11 ¼ 1
2
C0
11ðee11Þ2; Y22 ¼ 1

2
C0
22ðee22Þ2; Y12 ¼ 1

2
G0

12ð2ee12Þ2
ð19Þ

where Y11; Y22 and Y12 are thermodynamic forces associated with
damage internal variables d11;d22 and d12.

The associated thermodynamic forces characterize the damage
propagation. The state of damage can only grow [1,3,46] and there-
fore, the threshold of undamaged zone �Yij is defined as a maximal
thermodynamic force for all previous time ðsÞ up to the current
time ðtÞ [12]:

Y
�
ij ¼ sups6tðYijðtÞÞ; fi; j ¼ 1;2g ð20Þ
The coupling between the internal damage variables and the

associated thermodynamic forces is determined by the experimen-
tal data fitting and the functions given below are frequently used
for this:

Linear law

dij ¼

ffiffiffiffiffiffi
Yij

q
�

ffiffiffiffiffiffi
Y0

ij

q
ffiffiffiffiffi
Yc

p if dij < 1 and Yij < YR
ij; otherwise dij ¼ 1 ð21Þ

Heaviside function H (This function is used to describe elastic
brittle behaviour)

dij ¼ H
ffiffiffiffiffiffi
Yij

q
�

ffiffiffiffiffiffi
YR

ij

q� �
if dij < 1 and Yij < YR

ij; otherwise dij ¼ 1

ð22Þ
where Y0

ij is initial damage thresholds and YR
ij is failure-damage

thresholds in the orthotropic directions. The constants in these laws
are the material parameters.

The Eqs. (21) and (22) are not always able to adequately repre-
sent the damage propagation especially in the composite material
with thermoplastic matrix. Thus, the polynomial law is proposed
[47] to increase the performance of the elastoplastic damagemodel:

dij ¼
XN
n¼1

an
ij

ffiffiffiffiffiffi
Yij

q
�

ffiffiffiffiffiffi
Y0

ij

q� �n

if dij < 1 and Yij < YR
ij; otherwise dij ¼ 1

ð23Þ
3.3. Plasticity modelling and damage-plasticity coupling

The experimental data shows the irreversible strains appearing
mainly in shear [6,9,12,13]. Thus, plastic flow is considered to be
blocked in fibre directions:



ep11 ¼ ep22 ¼ 0; ep12–0 ð24Þ
where ep11; e

p
22 and ep12 are the components of the plastic strain.

The damage and plasticity coupling is made using the effective
stress notation ~r12 (25).

~r12 ¼ r12

ð1� d12Þ ð25Þ

The isotropic strain hardening is assumed. The elastic domain is
defined by the yield function f :

f ¼ j~r12j � RðpÞ � R0 ð26Þ
where R0 is a yield stress and the function RðpÞ is a material charac-
teristic function of the cumulative plastic strain p. Generally, the
hardening function RðpÞ is approximated by a power law:

R ¼ bpk with p ¼
Z ep12

0
ð1� d12Þdep12 ð27Þ

where b and k are material parameters identified from the experi-
mental data.

The material parameter identification is detailed in the next
sections. The resulting stress-strain shear curve is obtained by
the elastoplastic damage model [3] for the carbon/epoxy woven
composite (Fig. 7). The simulation results are in a good agreement
with the experimental data. However, the hysteresis loops cannot
be reproduced by this model.

3.4. Fractional derivative model to represent hysteresis loops

The woven composites have a hysteresis behaviour for certain
loading types such as a cyclic shear test. The reason of this is that
the matrix is subjected a bigger part of the shear load and as a
result, the viscoelastic response of the polymer matrix can be
observed as well as the gradual development of microscopic dam-
age in the matrix or along matrix-fibre interface. This leads to the
appearance of hysteresis loops which is associated with material
energy dissipation. Since we are dealing with a viscoelastic phe-
nomenon, the loading history has to be taken into account. That
is why the fractional derivatives are introduced in the behaviour
law to provide the material history dependence.

To deduce a behaviour law during an unloading path let us con-
sider one hysteresis loop. According to the elastoplastic damage
model, the plastic strain stays constant and the elastic strain is a
linear function of time. However, a non-linearity in strain is
observed in the experimental curve during the unloading/reload-
ing path (Fig. 8).

Commonly, an additional viscoelastic strain vector eve is intro-
duced to take into account the observed non-linearity. In this case,
Fig. 7. Comparison of experimental and simulated behaviour by elastoplastic
damage model in shear for the carbon/epoxy composite.
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the total strain et12 is a sum of three strains: elastic ee12, plastic e
p
12

and viscoelastic eve12:

et12 ¼ ee12 þ ep12 þ eve12 ð28Þ
Generally, this approach leads to the complex models with a

large number of parameters.
An alternative approach is proposed in this work. In order to

model the viscoelastic effect, the fractional derivatives are intro-
duced in the governing law. The total strain within the hysteresis

loop eloop12 is defined as following:

eloop12 ¼ Aþ 2BDaee12ðtÞ ð29Þ
where ee12 is the elastic strain determined by the elastoplastic dam-
age model, Da is the Riemann-Liouville fractional derivative (6) and
A, B and a are the fractional model parameters.

As the plastic flow stays constant, the stress is expressed by the
elastic law:

r12ðtÞ ¼ G0
12ð1� d12Þeloop12 ðtÞ ð30Þ

By substitution the Eq. (29) in the Eq. (30), the constitutive law is:

r12ðtÞ ¼ G0
12ð1� d12ÞAþ 2G1

12D
aee12ðtÞ ð31Þ

with G1
12 ¼ G0

12ð1� d12ÞB.
The Eq. (31) is a non-standard form of Kelvin-Voight fractional

model. The parameters A;B and a is considered to be the functions
of damage d12 and consequently of the elastic strain ee12 taking into
account that shear damage is a function of the shear elastic strain:
d12 ¼ d12ðee12Þ. In order to signify meanings of the fractional param-
eters, the influence of each term in the Eq. (31) is considered.

� The fractional derivative of the elastic strain Daee12ðtÞ provides a
strain non-linearity. Hence, the hysteresis loop appears (Fig. 9).
The fractional order a adjusts the loop size. The growth of a
leads to the increasing of loop area and consequently the dissi-
pation of viscoelastic energy increases.

� The factor G1
12 governs the slope of the loop (Fig. 10). The damage

level is adjusted in respect to the elastoplastic damage model.
� The term G0

12ð1� d12ÞA is a connecting stress that links two sub-
models: the fractional and the elastoplastic damage models
(Fig. 11). Thus the position of the loop is adjusted and the stress
becomes a continuous function.

3.5. Coupling of two sub-models

In this part, the coupling between two sub-models is
considered.
Fig. 8. Total strain composition.



Fig. 12. Coupling between the elastoplastic damage and the fractional models. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 13. Computational time interval referred to the fractional derivatives calculus.

Fig. 11. Graphical representation of the fractional model
r12ðtÞ ¼ G0

12ð1� d12ÞAþ 2G1
12D

aee12ðtÞ.

Fig. 9. Graphical representation of the fractional derivative r12ðtÞ ¼ 2Daee12ðtÞ.

Fig. 10. Graphical representation of the term r12ðtÞ ¼ 2G1
12D

aee12ðtÞ.
Let us consider the typical response in shear of the carbon/
epoxy woven composite (Fig. 12). The collaboration between two
sub-models is ensured by the yield function f (26). There are two
possible cases:

1. If the plastic yield function f with its derivative f 0 are zero
ðf ¼ f 0 ¼ 0Þ, the plastic flow and damage propagation are pre-
sent in the material and the elastoplastic damage model is used.
The model represents the envelope of the stress-strain curve
which is marked by the blue triangles on the Fig. 12.
7

2. If the plastic yield function f is negative or if the yield function f
is zero and its derivative f 0 is nonzero (f < 0 or f ¼ 0 and f 0 < 0
or f ¼ 0 and f 0 > 0), then a viscoelastic unloading is to be con-
sidered. The plasticity and damage levels remains a constant,
thus we switch to the fractional derivative model. This model
represents the hysteresis loops which are marked by the red cir-
cles in the Fig. 12.

3.6. Methodology of fractional derivatives implementation

Let us consider the ‘‘unloading-reloading” intervals on the
stress-strain curve (Fig. 12) which are indicated by the red circles.
One of the intervals is represented for the ‘‘time-strain” axes in the
Fig. 13. The first time point of unloading path is referred to the time
tM (the beginning of the hysteresis loop) and the last time point is
tN (the end of the hysteresis loop). Within the time interval ½tM; tN�,
the yield function f satisfies the conditions: f < 0 or f ¼ 0 and
f 0 < 0 or f ¼ 0 and f 0 > 0 and the fractional model is used. Thus, fol-
lowing the Eq. (31), the fractional derivatives Daee12ðtÞ is calculated
within the time interval ½tM; tN�. Due to the mathematical particu-
larity of fractional derivatives [43], the differentiable function
ee12ðtÞ must be vanished at the first calculation point tM . Otherwise,
the Riemann-Liouville fractional derivative of this function will
tend to infinity at tM: D

aee12ðtMÞ ! 1. In our case this condition is
not satisfied: ee12ðtMÞ–0. To avoid this singularity, the time interval
is extended by adding the previous loading region. Hence, the new
computational interval is referred to the ½tL; tN� time interval
(Fig. 13) where the condition ee12ðtLÞ ¼ 0 is satisfied. This technique



Fig. 14. Function of the longitudinal damage evaluation for the carbon/epoxy
composite.
allows to define the fractional derivative value at the first point of
the hysteresis loop Daee12ðtMÞ. In other words, to reproduce the hys-
teresis loop on the ‘‘unloading-reloading” time interval ½tM; tN�, the
fractional derivatives are computed on the ‘‘loading-unloading-re
loading” interval ½tL; tN� to avoid the mathematical problems.

The fractional operators are approximated by using the M1-
method expressed by the formulas (8), (10) which can be rewritten
as following:

ðI1�a0 ee12ðtÞÞM1 ¼ t1�a

Cð2� aÞ
Z 1

0
ee12ðtð1� v 1

1�aÞÞdv ð32Þ

ðDa
0e

e
12ðtÞÞM1 ¼ ðI1�a0 ee12ðt þ DtÞM1 � ðI1�a0 ee12ðt � DtÞÞM1

2Dt
ð33Þ

To use the formulas (32) and (33), the analytical expression of
the ee12ðtÞ function has to be reconstructed by using the piecewise
function.

4. Parameters identification

In the following sections the identification procedure for the
model parameters is described using the experimental data for
the carbon/epoxy woven composite (Figs. 5 and 6). The in-ply dam-
age, the isotropic strain hardening and the hysteresis loops mod-
elling are taken into consideration.

4.1. Materials characterization in fibres directions

The ½0�
=90

� �8 tensile test (Fig. 5) is used to identify the longitu-
dinal (or transverse) material behaviour. As the woven fabrics have
commonly a brittle linear response the in fibre directions, the elas-
tic parameters such as elastic modulus E0

11ð22Þ, Poisson’s ratio m012ð21Þ
and rupture stress rR

11ð22Þ are easily identified and presented in the
Table 2.

4.1.1. Damage identification in fibre directions
Due to the brittle elastic behaviour, the material failure appears

instantly. The Heaviside step function (22) is used to describe the
damage propagation. The initial damage threshold coincides with
the failure threshold: Y0

11ð22Þ ¼ YR
11ð22Þ. Damage parameters are pro-

vided in the Table 3. The damage propagation is illustrated in the
Fig. 14.

4.2. Materials characterization in shear

The material parameters are identified from the shear experi-
mental curve for thermoset composite (Fig. 6). The shear undam-
Table 3
Longitudinal (or transverse) damage
parameters for the carbon/epoxy
composite.

Parameter Carbon/epoxy
ffiffiffiffiffiffiffiffi
Y0
11

q
¼

ffiffiffiffiffiffiffiffi
YR
11

q
2 MPa1=2

Table 2
Longitudinal (or transverse)
identification of the carbon/
epoxy composite.

Parameter Value

E011 ¼ E022 57.3 GPa

m012 ¼ m021 0.07

rR
11 ¼ rR

22
687 MPa
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aged modulus G0
12 and the yield stress R0 are identified from the

linear regression of the elastic part in the experimental stress-
strain curve. The failure stress rR

12 corresponds to the maximum
reached stress during the test. The elastic parameters in shear
are summarized in the Table 4.

4.2.1. Damage and plastic strain evaluation in shear
Typical cyclic shear tests show a reduction in the material stiff-

ness. To model the material degradation, the damage variable d12 is

linked with the associated thermodynamic force
ffiffiffiffiffiffiffiffi
Y12

p
. The dam-

age level is measured by the shear modulus reduction:

d12 ¼ 1� Gi
12

G0
12

ð34Þ

where Gi
12 is a degraded shear modulus.

Using the experimental data we state that damage grows lin-
early (Fig. 15) in the carbon/epoxy composite in accordance with

the Eq. (21). In this case, the coefficient
ffiffiffiffiffiffiffiffi
YC

12

q
is the speed of dam-

age propagation. The damage parameters are presented in the fol-
lowing Table 5.

The cumulative plastic strain p is obtained using the identified
damage parameters. The strain hardening function RðpÞ is defined
by the Eq. (35).

RðpÞ ¼ j~r12j � R0 ð35Þ
The experimental data are fitted using the power law (26). The

approximation is illustrated in the Fig. 16. The identified parame-
ters are presented in the Table 6.

4.3. Identification of fractional derivative model parameters

The fractional model (29) parameters A;B and a are identified
by solving a non-linear optimization problem with constrains.
The main constrain is imposed on the fractional derivative order
a: 0 < a < 1. The objective function is defined as a relative error:
Table 4
Shear parameters identification for
the carbon/epoxy composite.

Parameter Carbon/epoxy

G0
12

3.36 GPa

R0 12 MPa
rR
12

80 MPa



Fig. 15. Shear damage function for the carbon/epoxy composite.

Fig. 17. Fractional parameter A evaluation with damage for the carbon/epoxy
composite.

Fig. 19. Fractional parameter a evaluation with damage for the carbon/epoxy
composite.

Fig. 18. Fractional parameter B evaluation with damage for the carbon/epoxy
composite.

Fig. 16. Hardening function RðpÞ for the carbon/epoxy composite.

Table 5
Shear damage parameters for the
carbon/epoxy composite.

Parameter Value
ffiffiffiffiffiffiffiffi
YC
12

q
2.25 MPa1=2

ffiffiffiffiffiffiffiffi
Y0
12

q
0.15 MPa1=2

ffiffiffiffiffiffiffiffi
YR
12

q
0.8 MPa1=2

Table 6
Hardening parameters for the car-
bon/epoxy composites.

Parameter Carbon/epoxy

b 266.6 MPa
k 0.36
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðeexp12 ðtiÞ � eloop12 ðtiÞÞ
2

vuut
N

ð36Þ

where eexp12 is an experimental strain determined by the Eq. (37), eloop12

is a shear strain calculated by the fractional model (29) and N is a
number of time-points inside the considered interval.

eexp12 ¼ rexp
12

G0
12ð1� d12Þ

ð37Þ

Three fractional parameters A;B and a are defined for each hys-
teresis loops. Their values stay constant within the hysteresis loop
but they are altered in every loop. How it has been mentioned
above, the fractional parameters are the functions of damage.
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For the carbon/epoxy composite, the fractional parameters are
represented by linear functions of damage as following:

A ¼ mAd12 þ bA ð38Þ

B ¼ mBd12 þ bB ð39Þ

a ¼ mad12 þ ba ð40Þ
The results are illustrated in the Figs. 17–19. The coefficients of

fittings (38), (39) and (40) are collected in the Table 7.



Table 7
Coefficients of fractional parameters fitting for the carbon/epoxy composite.

Parameter Value Parameter Value

mA 0.0189 bA �0.0013
mB 1.795 bB 0.8605
ma 0.6944 ba �0.0035
5. Results

The carbon/epoxy composite behaviour is represented numeri-
cally in fibre directions by the collaborative model using the iden-
tified parameters in Fig. 20 and the results of simulation are more
than satisfying since the exact replica of the elastic brittle beha-
viour is obtained.

The collaborative model is applied to represent the shear strain-
stress curve. The results are in good agreement with the experi-
mental data (Fig. 21). Small errors are observed at the first and
the last points of the hysteresis loop. The error at the first point
is related to the mathematical particularity of fractional calculus
[43]. The error at the last point is related to the uncertainty of
the optimal solution. Furthermore, the derivation of the piecewise
function provides an inaccuracy at the inflection point (the transi-
tion from the unloading to the loading path).

The identification of parameters is also made for the thermo-
plastic woven composite: carbon/PA66 in shear direction. The
damage propagation has a non-linear character and is expressed
by the third order polynomial law (23). The power law (27) has
Fig. 20. Experimental and numerical behaviour comparison in longitudinal direc-
tion for the carbon/epoxy composite.

Fig. 21. Comparison of experimental and simulated behaviour by collaborative
model in shear for the carbon/epoxy composite.
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been chosen to fit the hardening function. The symmetrical hys-
teresis loops are transformed into the ‘‘bean” shaped loops due
to the fibre reorientation (Fig. 22) and this increases the error in
damage identification. To improve the simulation results, the reori-
entation of fibre angle has to be taken into account. Due to the non-
linear damage law, the fractional parameters A and B also has a
non-linear evolution and are approximated by the third order poly-
nomial law. The fractional derivative order a has a linear depen-
dence on damage but its values rises because of the loop size
increments.

The collaborative model is applied to simulate thermoplastic
composite response. The difference between the experimental
and simulation results is observed towards the end of the resulting
stress-strain curve (Fig. 22) when the level of damage is high. Thus
the inexact damage identification provides a supplementary error
in addition to the previously cited fractional calculus problems.
The asymmetric hysteresis loops cannot be treated by the collabo-
rative model. Despite the unsymmetrical loops form, their area
measures correctly and the amount of dissipated energy can be
determined precisely.

In conclusion we state that the collaborative model provides
more than satisfactory results for the composite materials with dif-
ferent matrixes.

An additional simulation has been made to predict the appear-
ance of hysteresis loops during cyclic loading. A six cycles’ experi-
mental shear test is replaced by the fictitious eight cycles loading
for the thermoplastic composite (Fig. 23). The simulation is made
with the previously identified parameters. The results are shown
Fig. 22. Comparison of experimental and simulated behaviour by collaborative
model in shear for the carbon/PA66 composite.

Fig. 23. Fictitious cyclic loading for the carbon/PA66 composite.



Fig. 24. Simulation of a fictitious loading in shear for the carbon/PA66 composite.

Fig. 25. Stress-strain dynamic response for the carbon/epoxy composite.
in the Fig. 24. The size and the position of the additional loops are
predicted exactly. It opens a lot of interesting perspectives for the
future works.

The composites with polymer matrix are sensitive to the strain
rate. The ability of the collaborative model to represent hysteresis
loops in dynamic loading is shown with the example of thermoset
composite for two different strain rates: 5 mm/min and 50 mm/
min. The material response for strain rate of 50 mm/min is pre-
dicted by the collaborative model from the quasi-static (5 mm/
min) test identification (Fig. 25). The collaborative model is a
promising approach to predict the hysteresis loops’ appearance
and to characterize the damage propagation at different strain rates.

6. Conclusion

The collaborative model is developed to simulate a complete
dynamic behaviour of woven composites. This model consists of
two sub-models: the first one is the elastoplastic damage model
[3] and the second is the fractional derivative model. The elasto-
plastic damage model is able to represent the composite material
response except the hysteresis loops. To fill this gap, the fractional
model is introduced in order to describe the history-depended
phenomena. The fractional constitutive law is expressed by a
non-standard Kelvin-Voigt model using Riemann-Liouville frac-
tional derivatives. Just a few parameters are required to represent
the hysteresis loop in this model. The fractional model is applied
during the unloading path which significantly reduces the compu-
tation time. Moreover, the fractional model is an optional tool to
the elastoplastic damage model and can be used only if the
hysteresis modelling is required.
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The collaborative model is validated for thermoset and thermo-
plastic carbon woven composites. Both materials have an elastic
brittle behaviour in fibres directions. The simplified identification
procedure is used. The material response in shear is characterized
by the damage propagation, the irreversible strains appearance
and the hysteresis mechanisms. The shear behaviour was simu-
lated by the collaborative model. The results of simulation are in
good agreement with the experimental data. Even if the collabora-
tive model is not able to represent unsymmetrical hysteresis loops
for thermoplastic composites, their area is computed correctly and
the dissipated energy can be estimated precisely. The fibre reorien-
tation during the test has to be taken into account to increase the
model performance.

The collaborative model is also able to predict the appearance of
additional hysteresis loops. It is an important result which can lead
to the simplification of experimental characterization campaign.
The model is able to represent the hysteresis loops at different
strain rates from the quasi-static experimental data. It is a promis-
ing approach to signify damage propagation in crash analysis.

The collaborative model is a simple and efficient approach to
make a link between the mechanical and the thermodynamic sim-
ulations. The amount of dissipated energy during the cyclic loading
can be easily calculated. Therefore, the collaborative model can be
used as a numerical support for the self-heating experimental
method [48]. A method based on the self-heating tests provides
fast fatigue limit identification for the composite materials com-
pared to conventional methods (S-N curves). Using the proposed
behaviour model, the thermo-mechanical finite element simula-
tion can be developed in order to compute accurately the dissi-
pated energy.
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