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Learning from Narrated Instruction Videos
Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal, Josef Sivic, Ivan Laptev,

and Simon Lacoste-Julien

Abstract—Automatic assistants could guide a person or a robot in performing new tasks, such as changing a car tire or repotting a
plant. Creating such assistants, however, is non-trivial and requires understanding of visual and verbal content of a video. Towards this
goal, we here address the problem of automatically learning the main steps of a task from a set of narrated instruction videos. We
develop a new unsupervised learning approach that takes advantage of the complementary nature of the input video and the
associated narration. The method sequentially clusters textual and visual representations of a task, where the two clustering problems
are linked by joint constraints to obtain a single coherent sequence of steps in both modalities. To evaluate our method, we collect and
annotate a new challenging dataset of real-world instruction videos from the Internet. The dataset contains videos for five different
tasks with complex interactions between people and objects, captured in a variety of indoor and outdoor settings. We experimentally
demonstrate that the proposed method can automatically discover, learn and localize the main steps of a task in input videos.

Index Terms—Step discovery, Narrated instruction videos, unsupervised learning.

F

1 INTRODUCTION

M ILLIONS of people watch narrated instruction videos1 to
learn new tasks such as assembling IKEA furniture or

changing a flat car tire. Many of such tasks have large amounts
of videos available on-line. For example, querying for “how to
change a tire” results in more than 300,000 hits on YouTube.
Most of these videos, however, are made with the intention to
teach other people to perform the task and do not provide direct
supervisory signal for automatic learning algorithms. Developing
unsupervised methods that could learn tasks from myriads of
instruction videos on the Internet is therefore a key challenge.
Such automatic cognitive ability would enable constructing virtual
assistants and smart robots that learn new skills from the Internet
to, for example, help people achieve new tasks in unfamiliar
situations.

In this work, we consider instruction videos and develop a
method that learns a sequence of steps, as well as their textual
and visual representations, required to achieve a certain task. For
example, given a set of narrated instruction videos demonstrating
how to change a car tire, our method automatically discovers
consecutive steps for this task such as loosen the nuts of the wheel,
jack up the car, remove the spare tire and so on as illustrated in
Figure 1. In addition, the method learns the visual and linguistic
variability of these steps from natural videos.

Discovering key steps from instruction videos is a highly
challenging task. First, linguistic expressions for the same step
can have high variability across videos, for example: “...Loosen
up the wheel nut just a little before you start jacking the car...” and
“...Start to loosen the lug nuts just enough to make them easy to
turn by hand...”. Second, the visual appearance of each step may
vary greatly because of differences in viewpoints, lighting, the
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poses, clothing and motion of people, types of manipulated objects
and other factors. Finally, the overall structure of instruction
videos may vary due to possible changes in the type and the order
of steps.

To address these challenges, in this paper we develop an un-
supervised learning approach that takes advantage of the comple-
mentarity of the visual signal in the video and the corresponding
natural language narration to resolve their ambiguities. We assume
that videos of the same task share the same sequence of ordered
steps (also called script in the NLP literature [34]), however,
the type and temporal locations of individual steps are unknown
and should be discovered from the data. This is in contrast to
other existing methods for modeling instruction videos [24] that
assume a script (recipe) is known and fixed in advance. We
address the problem by first performing temporal clustering of
text followed by clustering in video, where the two clustering
tasks are linked by joint constraints. The complementary nature
of the two clustering problems helps to resolve ambiguities in
the two individual modalities. For example, two video segments
with very different appearance but depicting the same step can
be grouped together if they share similar narrations. Conversely,
two video segments described with very different expressions, for
example, “jack up the car” and “raise the vehicle” can be identified
as belonging to the same instruction step because they have similar
visual appearance. The output of our method is the script listing
the discovered steps of the task as well as the temporal location
of each step in the input videos. We validate our method on a new
dataset of instruction videos composed of five different tasks2 with
a total of 150 videos and about 800,000 frames.

2 RELATED WORK

This work relates to unsupervised and weakly-supervised learning
methods in computer vision and natural language processing.
Particularly related to ours is the work on learning script-like
knowledge from natural language descriptions [7], [13], [34].
These methods aim to discover typical events (steps) and their

2Changing car tire, Perform cardiopulmonary resuscitation (CPR), Jump a
car, Repot a plant, Make coffee

www.youtube.com/watch?v=J4-GRH2nDvw
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Fig. 1: Given a set of narrated instruction videos demonstrating a particular task, we wish to automatically discover main steps to achieve the
task and to associate each step with its corresponding narration and a temporal interval in each video. Here two videos of changing a car tire
are illustrated by corresponding frames and excerpts of narrations. Steps of the same type are highlighted by the same color. Note the large
variations in narrations and appearance of corresponding steps across videos.

order for particular scenarios (tasks)3 such as “cooking scrambled
egg”, “taking a bus” or “making coffee”. While [7] uses large-scale
news copora, [34] argues that many events are implicit and are not
described in such general-purpose text data. Instead, [13], [34]
use event sequence descriptions collected for particular scenarios.
Differently to this work, we learn sequences of events from
narrated instruction videos on the Internet. Such data contains
detailed event descriptions but is not structured and contains more
noise compared to the input of [13], [34].

Interpretation of narrated instruction videos has been recently
addressed in [24]. While this work analyses cooking videos at a
great scale, it relies on readily-available recipes which may not
be available for more general scenarios. Differently from [24], we
here aim to learn the steps of instruction videos using a discrim-
inative clustering approach. A similar task to ours is addressed
in [28] using latent variable structured perceptron algorithm to
align nouns in instruction sentences with objects touched by
hands in instruction videos. However, similarly to [24], [28] uses
laboratory experimental protocols as textual input, whereas here
we consider a weaker signal in the form of the real transcribed
narration of the video.

In computer vision, unsupervised action recognition has been
explored in simple videos [30]. More recently, weakly supervised
learning of actions in video using video scripts or event order has
been addressed in [4], [5], [6], [11], [21]. Particularly related to
ours is the work [5] which explores the known order of events to
localize and learn actions in training data. While [5] uses manually
annotated sequences of events, we here discover the sequences of
main events by clustering transcribed narrations of the videos.
Related is also the work of [6] that aligns natural text descriptions
to video but in contrast to our approach does not discover auto-
matically the common sequence of main steps. Methods in [29],
[33] learn in an unsupervised manner the temporal structure of
actions from video but do not discover textual expressions for
actions as we do in this work. The recent concurrent work [35] is

3We here assign the same meaning to terms “event” and “step” as well as
to terms “script” and “task”.

addressing, independently of our work, a similar problem but with
a different approach based on a probabilistic generative model and
considering a different set of tasks mainly focussed on cooking
activities.

Our work is also related to video summarization and in partic-
ular to the recent work on category-specific video summarization
[32], [37]. While summarization is a subjective task, we here
aim to extract the key steps required to achieve a concrete task
that consistently appear in the same sequence in the input set
of videos. In addition, unlike video summarization [32], [37] we
jointly exploit visual and linguistic modalities in our approach.

3 NEW DATASET OF INSTRUCTION VIDEOS

We have collected a dataset of narrated instruction videos for five
tasks: Making coffee, Changing car tire, Performing cardiopul-
monary resuscitation (CPR), Jumping a car and Repotting a plant.
The videos were obtained by searching YouTube with relevant
keywords. The five tasks were chosen so that they have a large
number of available videos with English transcripts while trying to
cover a wide range of activities that include complex interactions
of people with objects and other people. For each task, we took
the top 30 videos with English ASR returned by YouTube. We
also quickly verified that each video contains a person actually
performing the task (as opposed to just talking about it). The result
is a total of 150 videos, 30 videos for each task. The average length
of our videos is about 4,000 frames (or 2 minutes) and the entire
dataset contains about 800,000 frames.

The selected videos have English transcripts obtained from
YouTube’s automatic speech recognition (ASR) system. To re-
move the dependence of results on errors of the particular ASR
method, we have manually corrected misspellings and punctua-
tions in the output transcriptions. We believe this step may soon
become obsolete given rapid improvements of ASR methods. As
we do not modify the content of the spoken language in videos,
the transcribed verbal instructions still represent an extremely
challenging example of natural language with large variability in
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Fig. 2: Illustration of our newly collected dataset of instructions videos. Examples of transcribed narrations together with still frames from the
corresponding videos are shown for two (out of 5) tasks: Changing car tire and Making coffee. The dataset contains challenging real-world
videos performed by many different people, captured in uncontrolled settings in a variety of outdoor and indoor environments. Note the large
variability of verbal expressions and the terminology in the transcribed narrations as well as the large variability of visual appearance due to
viewpoint, used objects, and actions performed in different manner. See our project webpage [2] for more examples.

the used expressions and terminology. Each word of the transcript
is associated with a time interval in the video (usually less than 5
seconds) obtained from the closed caption timings.

Figure 2 illustrates two tasks of our newly collected dataset.
For each task, we show a subset of 3 events that compose the
task. In the following, we refer to these events as steps as they are
units of a procedure which aims to complete the given task. Each
step is represented by several sample frames and extracted verbal
narrations. Note the large variability of verbal expressions and
the terminology in the transcribed narrations as well as the large
variability of visual appearance due to viewpoint, used objects,
and actions performed in different manner. At the same time, note
the consistency of the actions between the different videos and the
underlying script of each task.

Manually annotated ground truth. For the purpose of evalu-
ation, we have manually annotated the temporal location in each
video of the main steps necessary to achieve the given task. For all
tasks, we have defined the ordered sequence of ground truth steps
before running our algorithm. The choice of these steps was made
by an agreement of 2-3 annotators who have watched the input
videos and verified the steps on instruction video websites such as
http://www.howdini.com or http://www.wikihow.com. Checking
the instruction video websites helped us to validate the granularity
of the steps. While some steps can be occasionally left out in
some videos or the ordering slightly modified, overall we have
observed a good consistency in the given sequence of instructions
among the input videos and we come back to this in section 3.1.
Given the list of steps for each task, we have manually annotated
each time interval in each input video to one of the ground truth
steps (or no step). The actions of the individual steps are typically
separated by hundreds of frames where the narrator transitions
between the steps or explains verbally what is going to happen.
Note that some steps could be missing in some videos, or could be
present but not described in the narration. The narrations and the
actual actions in the video often have coarse temporal alignment
since the actions are often described before being performed. Our
dataset is available at [2]. In the following section we report and
discuss the dataset statistics.

3.1 Dataset statistics

To illustrate and quantify different properties of our dataset, we
introduce three different scores characterizing (i) the consistency
of the step ordering, (ii) the frequency of missing steps and (iii)
the frequency of step repetitions. We describe these scores in detail
below and then measure them on our new dataset.

Let N be the number of videos for a given task and K the
number of steps defined in the ground truth. We assume that the
ground truth steps are given in an ordered fashion, meaning the
global order is defined as the sequence (1, . . . ,K). For the n-th
video, gn denotes the total number of annotated steps, un denotes
the number of unique annotated steps, and finally ln denotes the
length of the longest common subsequence between the annotated
sequence of steps and the ground truth sequence (1, . . . ,K). Note
that, given the terms defined above, we have: ln ≤ un ≤ K ≤ gn.
We then define the following scores.
Order consistency error. The order consistency error O is the
proportion of (non-repeated) steps that are not consistent with the
global ordering. In other words, it measures the number of steps
that do not fit the global ordering defined in the ground truth
sequence divided by the total number of unique annotated steps.
More formally, using the ln and un notation for the n-th video
defined above the order consistency error is written as:

O := 1−
∑N

n=1 ln∑N
n=1 un

. (1)

This score varies between 0 and 1. When the order consistency
error is low the videos are consistent with the single ground truth
sequence of steps. Note that we report numbers aggregated over
all videos instead of reporting the average over all videos. This is
to avoid videos with few annotations having a large effect on the
resulting overall score. We use this aggregation in all the following
metrics.
Missing steps. The missing steps score M is the proportion of
steps that are visually missing in the videos when compared to the
ground truth sequence common to all videos for the task. Using
the un notation from above, the score is defined as

M := 1−
∑N

n=1 un
KN

. (2)

http://www.howdini.com
http://www.wikihow.com
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Task Changing tire Performing CPR Repoting plant Making coffee Jumping cars Average

Order consistency error 0.7% 11% 6% 3% 8% 6%
Missing steps 16% 32% 30% 28% 27% 27%
Repeated steps 4% 50% 7% 11% 0.4% 14%

TABLE 1: Statistics of the newly collected instruction video dataset.

The score varies between 0 and 1. When this score is 0 all steps
of the ground truth sequence are depicted in all videos.
Repeated steps. The repetition score R is defined as the propor-
tion of steps that are repeated:

R := 1−
∑N

n=1 un∑N
n=1 gn

. (3)

The score varies between 0 and 1. When the score is 0 none of the
ground truth steps are repeated in the dataset.

Results. Table 1 shows the above scores measured for the five
tasks of our instruction videos dataset. Interestingly, we observe
relatively low order consistency errors over the five tasks with
an average error of only 6%. We believe this can be explained
by the goal of instruction videos to give clear, concise and
comprehensible audio-visual instructions on how to achieve a
given task. On average the videos are missing 27% of the steps,
which is relatively high. We believe this illustrates the difficulty
of defining the right granularity of the ground truth steps for
each task as some optional or implicit steps might be omitted
in some videos. Finally, on average 14% of the annotated steps
are repeated multiple times in the video. However, examining in
detail the per-class results, we observe that this relatively high
average score is mainly due to the Performing CPR task. CPR
is indeed characterized by repetitions of the same steps, namely
the alternation between compressions and giving breath. Overall,
the relatively high frequency of the missing and repeated steps
illustrate the difficulty of our problem. The relatively low order
consistency error will be used as an advantage in our method that
will be described next.

4 MODELLING NARRATED INSTRUCTION VIDEOS

We are given a set of N instruction videos all depicting the same
task (such as “changing a tire”). The n-th input video is composed
of a video stream of Tn segments of frames (xnt )Tn

t=1 and an audio
stream containing a detailed verbal description of the depicted
task. We suppose that the audio description was transcribed to raw
text and then processed to a sequence of Sn text tokens (dns )Sn

s=1.
Given this data, we want to automatically recover the sequence of
K main steps that compose the given task and locate each step
within each input video and text transcription.

We formulate the problem as two clustering tasks, one in text
and one in video, applied one after another and linked by joint
constraints on two modalities. In the first stage, we cluster the
text transcripts into a sequence of K main steps to complete the
given task. Empirically, we have found (see results in Section 5.3)
that it is possible to discover the sequence of the K main steps
for each task with high precision. However, the text itself gives
only a poor localization of each step in each video. Therefore, in
the second stage we accurately localize each step in each video by
clustering the input videos using the sequence ofK steps extracted
from text as constraints on the video clustering. To achieve this,
we use two types of constraints between video and text. First, we

assume that both the video and the text narration follow the same
sequence of steps. This results in a global ordering constraint on
the recovered clustering. Second, we assume that people perform
the action approximately at the same time that they talk about it.
This constraint temporally links the recovered clusters in text and
video. The important outcome of the video clustering stage is that
the K extracted steps get propagated by visual similarity to videos
where the text descriptions are missing or ambiguous.

We first describe the text clustering in Section 4.1 and then
introduce the video clustering with constraints in Section 4.2.

4.1 Clustering transcribed verbal instructions
The goal here is to cluster the transcribed verbal descriptions of
each video into a sequence of main steps necessary to achieve the
task. This stage is important as the resulting clusters will be used
as constraints for jointly learning and localizing the main steps in
video. We assume that the important steps are common to many of
the transcripts and that the sequence of steps is (roughly) preserved
in all transcripts. Hence, following [34], we formulate the problem
of clustering the input transcripts as a multiple sequence alignment
problem. However, in contrast to [34] who cluster manually
provided descriptions of each step, we wish to cluster transcribed
verbal instructions. Hence our main challenge is to deal with the
variability in spoken natural language. To overcome this challenge,
we take advantage of the fact that completing a certain task usually
involves interactions with objects or people and hence we can
extract a more structured representation from the input text stream.

More specifically, we represent the textual data as a sequence
of direct object relations. A direct object relation d is a pair
composed of a verb and its direct object complement, such as
“remove tire”. This representation contains relevant information
about the interaction (verb) between the demonstrator and the
surrounding environment (direct object complement), while being
compact. Such a direct object relation can be extracted from the
dependency parser of the input transcribed narration [10]. We
denote the set of all different direct object relations extracted
from all narrations as D, with cardinality D. For the n-th video,
we thus represent the text signal as a sequence of direct object
relation tokens: dn = (dn1 , . . . , d

n
Sn

), where the length Sn of
the sequence varies from one video clip to another. This step is
key to the success of our method as it allows us to convert the
problem of clustering raw transcribed text into an easier problem
of clustering sequences of direct object relations. The goal is now
to extract from the narrations the most common sequence of K
main steps to achieve the given task. To achieve this, we first
find a globally consistent alignment of the direct object relations
that compose all text sequences by solving a multiple sequence
alignment problem. Second, we pick from this alignment the K
most globally consistent clusters across videos.

Multiple sequence alignment model. We formulate the first
stage of finding the common alignment between the input se-
quences of direct object relations as a multiple sequence alignment
problem with the sum-of-pairs score [39]. In details, a global
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Fig. 3: Clustering transcribed verbal instructions. Left: The input raw text for each video is converted into a sequence of direct object
relations. Here, an illustration of four sequences from four different videos is shown. Middle: Multiple sequence alignment is used to align all
sequences together. Note that different direct object relations are aligned together as long as they have the same sense, e.g. “loosen nut” and
“undo bolt”. Right: The main instruction steps are extracted as the K = 3 most common steps in all the sequences.

alignment can be defined by re-mapping each input sequence dn of
tokens to a global common template of L slots, for L large enough.
We let (φ(dn))1≤l≤L represent the (increasing) re-mapping for
sequence dn at the new locations indexed by l: φ(dn)l represents
the direct object relation put at location l, with φ(dn)l = ∅ if a
slot is left empty (denoting the insertion of a gap in the original
sequence of tokens). See the middle of Figure 3 for an example
of re-mapping. The goal is then to find a global alignment that
minimizes the following sum-of-pairs cost function:∑

(n,m)

L∑
l=1

c(φ(dn)l, φ(dm)l), (4)

where c(d1, d2) denotes the cost of aligning the direct object
relations d1 and d2 at the same common slot l in the global
template. The above cost thus denotes the sum of all pairwise
alignments of the individual sequences (the outer sum), where the
quality of each alignment is measured by summing the cost c
of matches of individual direct object relations mapped into the
common template sequence. We use a negative cost when d1 and
d2 are similar according to the distance in the WordNet tree [12],
[27] of their verb and direct object constituents, and positive if
they are dissimilar (details are given in Section 5). As the verbal
narrations can talk about many other things than the main steps of
a task, we set c(d, d′) = 0 if either d or d′ is ∅. An illustration
of clustering the transcribed verbal instructions into a sequence of
K steps is shown in Figure 3.

Multiple sequence alignment as a quadratic program. Op-
timizing the cost (4) is NP-hard [39] because of the combinatorial
nature of the problem. The standard solution from computational
biology is to apply a heuristic algorithm that proceeds by incre-
mental pairwise alignment using dynamic programming [22]. In
contrast, we reformulate the multiple sequence alignment prob-
lem given by (4) as an integer quadratic program (IQP) with
combinatorial constraints. To the best of our knowledge, this is
a new formulation of the multiple sequence alignment (MSA)
problem for which we can apply the Frank-Wolfe algorithm [16]
and consistently obtain in our setting better values of the MSA
objective (4) than the current state-of-the-art MSA heuristic al-
gorithms. To be able to transform the MSA problem into an
IQP, we first correctly encode the important quantities of our
problem in a matrix form. There are three relevant quantities: (i)
the cost of aligning together two different direct object relations
(encoded in Co), (ii) the content of each individual sequences
(encoded in Yn) and (iii) the mapping of each sequence to the
common template (encoded in Un). We now give details about
these different variables and how to combine them in order to get
the final IQP formulation (6).

Cost matrix Co. We summarize the cost of aligning non-
empty direct object relations by the matrix Co ∈ RD×D. (Co)ij
is equal to the cost of aligning the i-th and the j-th direct object
relation from the dictionary together.

Individual sequences Yn. We encode the identity of a direct
object relation with a D-dimensional indicator vector. The text
sequence n can then be represented by an indicator matrix Yn ∈
{0, 1}Sn×D. The j-th row of Yn indicates which direct object
relations is evoked at the j-th position.

Mapping of the sequence Un. Similarly, the token re-
mapping (φ(dn))1≤l≤L can be represented as a L×D indicator
matrix where each row l encodes which token is appearing in slot
l (and a whole row of zero is used to indicates an empty ∅ slot).
This re-mapping can be constructed from the following two pieces
of information: the input sequence Yn and the mapping of each
element of the sequence to the global template. We represent the
latter by the decision matrix Un ∈ {0, 1}Sn×L that gives which
element of the sequence s is re-mapped to which global template
slot l. We thus have φ(dn) = UT

n Yn (as a L×D indicator matrix).
Quadratic cost. Given this encoding, the cost matrix Co,

and the fact that the alignment of empty slots has zero cost, we
can rewrite the MSA problem that minimizes the sum-of-pairs
objective (4) as follows:

minimize
Un,n∈{1,...,N}

∑
(n,m)

Tr(UT
n YnCoY

T
mUm)

subject to Un ∈ Un, n = 1, . . . , N.

(5)

In the above equation, the trace (Tr) is computing the cost of
aligning sequence m with sequence n (the inner sum in (4)).
Moreover, Un is a constraint set that encodes the fact that Un

has to be a valid (increasing) re-mapping.4 We can then eliminate
the video index n by simply stacking the assignment matrices
Un in one matrix U of size S × L. Similarly, we denote Y the
S×D matrix which is obtained by the concatenation of all the Yn
matrices. Finally, we can rewrite the equation (5) as a quadratic
program over the (integer) variable U :

minimize
U

Tr(UTBU), subject to U ∈ U . (6)

In this equation, the S × S matrix B is obtained from the input
sequences and the cost between different direct object relations by
computing B := Y CoY

T . It represents the pairwise cost at the
token level, i.e. the cost of aligning token s in one sequence to
token s′ in another sequence.

4More formally Un := {U ∈ {0, 1}Sn×L s.t. U1L = 1Sn and
∀l, (Usl = 1)⇒ (∀s′ > s, l′ ≤ l, Us′l′ = 0)}.
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Optimization using Frank-Wolfe. Problem (6) is an integer
quadratic program with combinatorial constraints for which the
Frank-Wolfe optimization algorithm has been used recently with
increasing success [5], [16], [17], [19]. We therefore also apply
Frank-Wolfe here. Following [5], we first perform a continuous
relaxation of the set of constraints U by replacing it with its convex
hull Ū . Note that the Frank-Wolfe optimization algorithm [16] can
solve quadratic program over constraint sets for which we have
access to an efficient linear minimization oracle. In the case of U ,
the linear oracle can be solved exactly with a dynamic program.
We note here that even with the continuous relaxation over Ū , the
resulting problem is still non-convex because B is not positive
semidefinite. However, the standard convergence proof for Frank-
Wolfe can easily be extended to show that it converges at a rate
of O(1/

√
k) to a stationary point on non-convex objectives [18].

Once the algorithm has converged to a (local) stationary point, we
need to round the fractional solution to obtain a valid encoding
U . We follow here a similar rounding strategy that was originally
proposed by [8] and then re-used in [17]: we pick the last visited
corner (which is necessarily integer) which was given as a solution
to the linear minimization oracle (this is called Frank-Wolfe
rounding).

We have observed empirically (see results in Section 5.2) that
the Frank-Wolfe algorithm was giving better solutions (in terms
of objective (4)) than the state-of-the-art heuristic procedures for
this task [14], [22]. Our Frank-Wolfe based solvers also offer us
greater flexibility in defining the alignment cost and scale better
with the length of input sequences and the vocabulary of direct
object relations.

Extracting the main steps. After a global alignment is
obtained, we sort the global template l by the number of direct
object relations aligned to each slot. Given K as input, the top
K slots give the main instruction steps for the task, unless there
are multiple steps with the same support, which go beyond K .
In this case, we pick the next smaller number below K which
excludes these ties, allowing the choice of an adaptive number of
main instruction steps when there is not enough saliency for the
last steps. This strategy essentially selects k ≤ K salient steps,
while refusing to make a choice among steps with equal support
that would increase the total number of steps beyond K . As we
will see in our results in Section 5.3, our algorithm sometimes
returns a much smaller number than K for the main instruction
steps, giving more robustness to the exact choice of parameter K .

Encoding of the output. We post-process the output of
multiple sequence alignment into an assignment matrix Rn ∈
{0, 1}Sn×K for each input video n, where (Rn)sk = 1 means
that the direct object token dns has been assigned to step k. If a
direct object has not been assigned to any step, the corresponding
row of the matrix Rn will be zero.

4.2 Discriminative clustering of videos under text con-
straints
Given the output of the text clustering that identified the important
K steps forming a task, we now want to find their temporal
location in the video signal. We formalize this problem as looking
for an assignment matrix Zn ∈ {0, 1}Tn×K for each input video
n, where (Zn)tk = 1 indicates the visual presence of step k
at time interval t in video n, and Tn is the length of video n.
Similarly as for the assignment matrixRn, we allow the possibility
that a whole row of Zn is zero, indicating that no step is visually
present for the corresponding time interval.

We propose to tackle this problem using a discriminative
clustering approach with global ordering constraints, as was suc-
cessfully used in the past for the temporal localization of actions
in videos [5], but with additional weak temporal constraints. In
contrast to [5] where the order of actions was manually given for
each video, our multiple sequence alignment approach automat-
ically discovers the main steps. More importantly, we also use
the text caption timing to provide a fine-grained weak temporal
supervision for the visual appearance of steps, which is described
next.

Temporal weak supervision from text. From the output of
the multiple sequence alignment (encoded in the matrix Rn ∈
{0, 1}Sn×K ), each direct object token dns has been assigned to
one of the possible K steps, or to no step at all. We use the tokens
that have been assigned to a step as a constraint on the visual
appearance of the same step in the video (using the assumption
that people do what they say approximately when they say it). We
encode the closed caption timing alignment by a binary matrix
An ∈ {0, 1}Sn×Tn for each video, where (An)st is 1 if the
s-th direct object is mentioned in a closed caption that overlaps
with the time interval t in video. Note that this alignment is only
approximate as people usually do not perform the action exactly
at the same time that they talk about it, but instead with a varying
delay. Second, the alignment is noisy as people typically perform
the action only once, but often talk about it multiple times (e.g.
in a summary at the beginning of the video). We address these
issues by the following two weak supervision constraints. First,
we consider a larger set of possible time intervals [t−∆b, t+∆a]
in the matrix A rather than the exact time interval t given by the
timing of the closed caption. ∆b and ∆a are global parameters
fixed either qualitatively, or by cross-validation if labeled data is
provided. Second, we put as a constraint that the action happens
at least once in the set of all possible video time intervals where
the action is mentioned in the transcript (rather than every time it
is mentioned). These constraints can be encoded as the following
linear inequality constraint on Zn: AnZn ≥ Rn.5

Ordering constraint. In addition, we also enforce that the
temporal order of the steps appearing visually is consistent with
the discovered script from the text, encoding our assumption that
there is a common ordered script for the task across videos. We
encode these sequence constraints on Zn in a similar manner
to [6], which was shown to work better than the encoding used
in [5]. In particular, we only predict the most salient time interval
in the video that describes a given step. This means that a
particular step is assigned to exactly one time interval in each
video. We denote by Zn this sequence ordering constraint set.6

Discriminative clustering. The main motivation behind dis-
criminative clustering is to find a clustering of the data that can be
easily recovered by a linear classifier through the minimization of
an appropriate cost function over the assignment matrix Zn. The
approach introduced in [3] allows to easily add prior information
on the expected clustering. Such priors have been recently intro-
duced in the context of aligning video and text [5], [6] in the form
of ordering constraints over the latent label variables. Here we use

5When Rsk = 0, then this constraint does not do anything. When Rsk =
1 (i.e. the text token s was assigned to the main action k), then the constraint
enforces that

∑
t∈As·

Ztk ≥ 1, where As· represents which video frames are
temporally close to the caption time of the text token s. It thus then enforces
that at least one temporally close video frame is assigned to the main action k.

6More formally Zn := {Z ∈ {0, 1}Tn×K s.t. 1TTn
Z1K = K and

∀t, (Ztk = 1)⇒ (∀t′ > t, k′ ≤ k, Zt′k′ = 0) and (∀t′ 6= t, Zt′k = 0)}.
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Changing a tire Make coffee Repot a plant

GT(11) K ≤ 7 K ≤ 10 K ≤ 15 GT(10) K ≤ 7 K ≤ 10 K ≤ 15 GT(7) K ≤ 7 K ≤ 10 K ≤ 15

put brake on grind coffee cover hole take piece
get tools out get tire get tire put filter keep soil
start loose loosen nut loosen nut loosen nut add coffee put coffee put coffee stop soil

lift car even surface take plant take plant take plant take plant
put jack put jack put jack fill chamber fill chamber put soil use soil use soil use soil

make noise loosen root loosen soil loosen soil loosen soil
raise vehicle fill water fill water fill water fill water place plant place plant place plant place plant

jack car jack car jack car jack car screw top put filter put filter
fill basket add top add soil add soil add soil

unscrew wheel remove nut remove nut remove nut see steam see steam fill pot
remove wheel take wheel take wheel put stove take minutes take minutes take minutes get soil
put wheel take tire take tire take tire make coffee make coffee make coffee give drink
screw wheel put nut put nut water plant water plant water plant water plant
lower car lower jack lower jack lower jack see coffee see coffee see coffee see coffee give watering

remove jack withdraw stove turn heat
tight wheel tighten nut tighten nut tighten nut pour coffee make cup make cup make cup
put things back take tire pour coffee

Precision 0.85 0.90 0.71 Precision 0.80 0.67 0.54 Precision 1.00 1.00 0.54
Recall 0.54 0.90 0.90 Recall 0.40 0.60 0.70 Recall 0.86 0.86 1.00

Performing CPR Jumping cars

GT(11) K ≤ 7 K ≤ 10 K ≤ 15 GT(12) K ≤ 7 K ≤ 10 K ≤ 15

open airway open airway open airway open airway get cars
check response open hood
call 911 have terminal
check breathing attach cable
check pulse put hand put hand connect red A connect cable connect cable connect cable

tilt head tilt head tilt head
lift chin lift chin lift chin charge battery charge battery charge battery
give breath give breath give breath connect red B connect end connect end connect end

give breath do compr. do compr. do compr. connect black A
give compression open airway open airway open airway connect ground

start compr. start compr. start car A start car start car start car
continue cpr start car B start vehicle

do compr. do compr.
put hand start engine

give breath give breath remove ground remove cable remove cable remove cable
remove black A disconnect cable disconnect cable disconnect cable
remove red B
remove red A

Precision 0.50 0.40 0.33 Precision 0.83 0.83 0.69
Recall 0.43 0.57 0.57 Recall 0.42 0.42 0.67

TABLE 2: Automatically recovered sequences of steps for the five tasks considered in this work. Each recovered step is represented by
one of the aligned direct object relations (shown in bold). Note that most of the recovered steps correspond well to the ground truth
steps (showed in italic). The results are shown for setting the maximum number of discovered steps, K = {7, 10, 15}. Note how our
method automatically selects less than K steps in some cases. These are the automatically chosen k ≤ K steps that are the most salient
in the aligned narrations as described in Section 4.1.

a similar approach to cluster the N input video streams (xt) into
a sequence of K steps, as follows. We represent each time interval
by a d-dimensional feature vector. The feature vectors for the n-th
video are stacked in a Tn × d design matrix denoted by Xn. We
denote by X the T × d matrix obtained by the concatenation of
all Xn matrices (and similarly, by Z , R and A the appropriate
concatenation of the Zn, Rn and An matrices over n). In order
to obtain the temporal localization into K steps, we learn a linear
classifier represented by a d × K matrix denoted by W . This
model is shared among all videos.

The target assignment Ẑ is found by minimizing the clus-
tering cost function h under both the consistent script ordering
constraints Z and our weak supervision constraints:

minimize
Z

h(Z) s.t. Z ∈ Z︸ ︷︷ ︸
ordered script

, AZ ≥ R︸ ︷︷ ︸
weak textual
constraints

. (7)

The clustering cost h(Z) is given as in DIFFRAC [3] as:

h(Z) = min
W∈RK×d

1

2T
‖Z −XW‖2F︸ ︷︷ ︸

Discriminative loss on data

+
λ

2
‖W‖2F︸ ︷︷ ︸

Regularizer

. (8)

The first term in (8) is the discriminative loss on the data that
measures how easy the input data X is separable by the linear
classifier W when the target classes are given by the assignments
Z . For the squared loss considered in eq. (8), the unique optimal
weights W ∗ minimizing (8) can be found in closed form, which
significantly simplifies the computation:

W ∗(Z) = (XTX + TλId)−1XTZ, (9)

where Id is the d-dimensional identity matrix. We obtain the
explicit form for h(Z) by substituting the expression (9) for
W ∗(Z) in equation (8) and properly simplifying the expression:

h(Z) =
1

2T
Tr(ZZTB), (10)

where B := IT − X(XTX + TλId)−1XT is a strictly posi-
tive definite matrix (and so h is actually strongly convex). The
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clustering cost is a quadratic function in Z , encoding how the
clustering decisions in one interval t interact with the clustering
decisions in another interval t′. Next, we explain how we can
optimize the clustering cost h(Z) subject to the constraints of
problem (7) using the Frank-Wolfe algorithm.

Frank Wolfe algorithm for minimizing h(Z). The Frank
Wolfe algorithm is well adapted for our problem as we know how
to efficiently solve linear programs over our constraints. Recall
that theses constraints encode several concepts. First, it imposes
the temporal consistency between the text stream and the video
stream. We recall that this constraint was written as AZ ≥ R,
where A encodes the temporal alignment constraints between
video and text (type I). Second, it includes the event ordering
constraints within each video input (type II). Finally, it encodes the
fact that each event is assigned to exactly one time interval within
each video (type III). The last two constraints are encoded in the
set of constraints Z . To summarize, let Z̃ denote the resulting
discrete feasible space for Z i.e. Z̃ := {Z ∈ Z |AZ ≥ R}.
We are then left with a problem in Z which is still hard to solve
because the set Z̃ is not convex. To approximately optimize h over
Z̃ , we again follow the strategy of [5], [6] by replacing Z̃ by its
convex hull conv(Z̃). We then use the Frank-Wolfe algorithm to
get a fractional solution Z∗ ∈ conv(Z̃). Finally, we find a feasible
candidate Ẑ ∈ Z̃ by using a rounding procedure. We now give
the details of these steps.

Linear program for our constraints. First, we note that
the linear oracle of the Frank-Wolfe algorithm can be solved
separately for each video n. Indeed, because we solve a linear pro-
gram, there is no quadratic term that brings dependence between
different videos in the objective, and moreover all the constraints
are blockwise in n. Thus, in the following, we will give details
for one video only by adding an index n to Z̃ , to Z and to T .
Formally, the linear oracle corresponds to the following problem:

min
Zn∈Z̃n

Tr(C>n Zn), (11)

whereCn ∈ RTn×K is a cost matrix that typically comes from the
gradient computation of h with respect to Zn at the current iterate.
We now show that this problem can be solved by an efficient
dynamic program.

Dynamic program. Using the formalism of [6], we cast
problem (11) as a search for an optimal path inside a cost matrix C̃
that we can solve using dynamic programing. From the constraint
of type III (unique prediction per step), we know that each column
k of Zn has exactly one 1 (to be found). From the ordering
constraint (type II), we know that if (Zn)tk = 1, then the only
possible locations for a 1 in the (k + 1)-th column is for t′ > t
(i.e. the pattern of 1’s is going downward when traveling from
left to right in Zn). Note that there can be “jumps” in between
the time assignment for two subsequent steps k and k + 1. In
order to encode this possibility using a continuous path search in
a matrix, we insert dummy columns into the cost matrix C . We
first subtract the minimum value from C and then insert columns
filled with zeros in between every pair of columns of C . In the
end, we pad C with an additional row filled with zeros at the
bottom. Finally, the problem that we are interested in is subject
to the additional linear constraints given by the clustering of text
transcripts (constraints of type I). These constraint can be added
by constraining the path in the dynamic programming algorithm.
This can be done for instance by setting an infinite alignment cost
outside of the constrained region. The resulting cost matrix C̃ is

Fig. 4: Illustration of the dynamic programming solution to the
linear program (11). (a) shows an example cost matrix C̃ and
the corresponding optimal path in red. The gray entries in the
matrix C̃ correspond to the values from the original cost matrix
C (see text). The white entries have minimal cost and are thus
always preferred over any gray entry. The orange entries have
maximal cost, e.g. ∞, and correspond to text constraints (type
I). These constraints reduce the number of possible paths. The
obtained latent variable solution Z is displayed in (b). Red and
white entries respectively correspond to the value 1 and 0.

of size (Tn + 1) × (2K + 1) and is illustrated along with the
corresponding update rules in Figure 4.

Extracting discrete temporal locations. At the end of the
Frank-Wolfe optimization algorithm, we obtain a continuous so-
lution for assignment matrix Z∗n that encodes the (fractional)
solution for the temporal location of each step in video n. By
stacking matrices for all videos together, we obtain a continuous
solution Z∗. From the definition of h, we can also look at the
corresponding model W ∗(Z∗) defined in equation (9) which is
shared among all videos. All Z∗n have to be rounded in order to
obtain a feasible point for the initial, non relaxed problem. Several
rounding options were suggested in [6]; we found experimentally
that the option using W ∗ gives better results in our case. More
precisely, in order to get a good feasible binary matrix Ẑn ∈ Z̃n,
we solve the following problem: minZn∈Z̃n

‖Zn−XnW
∗‖2F . By

expanding the norm, we notice that this corresponds to a simple
linear program over Z̃n as in equation (11) that can be solved
using again the same dynamic program detailed above. Finally,
we stack these rounded matrices Ẑn to obtain our predicted
assignment matrix Ẑ ∈ Z̃ .

5 EXPERIMENTAL EVALUATION

In this section, we first give the implementation details including
the description of extracted text and video features. Then we
present results divided into five main experiments: (i) in Sec-
tion 5.2, we evaluate the performance of our method for solving
the multiple sequence alignment problem, (ii) in Section 5.3, we
evaluate the quality of steps extracted from the transcribed nar-
rations, (iii) in Section 5.4, we evaluate the temporal localization
accuracy of the recovered steps in video using constraints derived
from the transcribed narrations, (iv) in Section 5.5, we explore
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the effects of the different parameters of our method, and finally
(v) in Section 5.6, we investigate the possibility of iterating the
two stages of our clustering approach. All the data and code are
available on our project webpage [2].

5.1 Implementation details.
Here we describe the extracted video and text features, followed by
the details of the WordNet distance used in the multiple sequence
alignment algorithm. Finally, we also discuss the running time of
the proposed approach and its scalability.

Video and text features. We represent the transcribed narra-
tions as sequences of direct object relations. For this purpose, we
run a dependency parser [10] on each transcript. We lemmatize
all direct object relations and keep the ones for which the direct
object corresponds to nouns. To represent a video, we use motion
descriptors in order to capture actions (such as loosening, jacking-
up, giving compressions) and frame appearance descriptors to
capture the depicted objects (e.g., tire, jack, car). In detail, we split
each video into 10-frame time intervals and represent each interval
by its motion and appearance descriptors aggregated over a longer
block of 30 frames. The motion representation is a histogram
of local optical flow (HOF) descriptors aggregated into a single
bag-of-visual-word vector of 2,000 dimensions [38]. The visual
vocabulary is generated by k-means on a separate large set of
training descriptors. To capture the depicted objects in the video,
we apply the VGG-verydeep-16 CNN [36] over each frame in a
sliding window manner over multiple scales. This can be done
efficiently in a fully convolutional manner. The resulting 512-
dimensional feature maps of conv5 responses are then aggregated
into a single bag-of-visual-word vector of 1,000 dimensions,
which aims to capture the presence/absence of different objects
within each video block. A similar representation (aggregated into
compact VLAD descriptor) was shown to work well recently for
a variety of recognition tasks [9]. The bag-of-visual-word vectors
representing the motion and the appearance are normalized using
the Hellinger normalization and then concatenated into a single
3,000 dimensional vector representing each time interval.

WordNet distance. For the multiple sequence alignment pre-
sented in Section 4.1, we set c(d1, d2) = −1 if d1 and d2
have both their verbs and direct objects that match exactly in the
WordNet tree (distance equal to 0). Otherwise we set c(d1, d2)
to be 100. We found this relatively strict requirement to work
well ensuring high-precision of the resulting alignment while
taking advantage of the semantic information contained in the
WordNet tree as it allows to align two expressions that are not
identical as long as they are in the same node of the tree. While
we have observed the WordNet distance to work well, we also
investigate using distance based on the word2vec embedding [26].
In detail, we use the average cosine similarity between the verbs
and the objects composing the direct object relations. If the cosine
similarity is greater than 0.77, we set c(d1, d2) = −1, otherwise
c(d1, d2) = 100. We use word2vec embedding pre-trained on
GoogleNews. We have observed that pre-training the embedding
on instruction videos results in a similar performance.

Running time and scalability. For the multiple sequence
alignment problem (with N = 30, D = 50), 400 iterations of our
algorithm take less than 10 seconds on a single 2.40 GHz core,
which is sufficient for convergence to a stationary point. For video

7This threshold has been chosen manually to ensure a good tradeoff
between precision and recall.

alignment (with N = 30, d = 3000, T = 20000), 600 iterations
take less than 20 minutes on the same hardware configuration.
Note that the discriminative clustering algorithm could be further
scaled-up to 1000s of videos using the Block-Coordinate Frank-
Wolfe algorithm [20], [31] as has been recently shown in [25].
This is possible as our constraints, similar to [25], decompose
over the different videos.

5.2 Results of multiple sequence alignment
In this section we evaluate the optimization performance of our
relaxation of the multiple sequence alignment (MSA) problem.
The (MSA) problem (6) is in general NP-hard [39], as is typical
for integer quadratic programs. However, significant amount of
work has been done in computational biology to develop efficient
heuristics to solve this problem, as it arises in several important
applications. We briefly describe below some of the existing
heuristics, and then compare the optimization performance with
our Frank-Wolfe optimization approach, which gave surprisingly
good empirical results.8

Standard methods. We compare performance to the standard
state-of-the-art method for multiple sequence alignment [22].
Similarly to [14], this method first aligns a pair of sequences
and merges them in a common template. Then it aligns a new
sequence to the template and updates the template. It continues
aligning additional sequences until no sequence is left. Differently
from [14], this method represents the template by a partial order
graph instead of a simple linear representation, which results in
a higher accuracy of the final alignment. For the experiments, we
use the author’s implementation [1].

Results. In Table 3, we give the value of the objective (6)
(lower is better) for the rounded solutions obtained by the two dif-
ferent optimization approaches for the MSA problem on our five
tasks. Interestingly, we observe that the Frank-Wolfe algorithm
consistently outperforms the state-of-the-art MSA method of [22]
in our setting.

5.3 Results of step discovery from text narrations
In the previous section we evaluated the optimization performance
of our multiple sequence alignment algorithm described in Sec 4.1.
In this section, we evaluate how well our multiple sequence align-
ment approach discovers the main steps of each task from the text
narrations. Table 2 shows the automatically recovered sequences
of steps for the five tasks considered in this work. The results
are shown for setting the maximum number of discovered steps,
K = {7, 10, 15}. Note how our method automatically selects less
than K steps in some cases. These are the automatically chosen
k ≤ K steps that are the most salient in the aligned narrations as
described in Section 4.1. This is notably the case for the Repotting
a plant task. Even forK ≤ 10, the algorithm recovers only 6 steps
that match very well the seven ground truth steps for this task.
This saliency based task selection is important because it allows
for a better precision at high K without lowering much the recall.
Please note also how the steps and their ordering recovered by our
method correspond well to the ground truth steps for each task.

8We stress here that we do not claim that our formulation of the multiple
sequence alignment (MSA) problem as a quadratic program outperforms
the state-of-the-art computational biology heuristics for problems arising in
biology. We report our observations when multiple sequence alignment is
applied to our problem set-up, which might have a structure for which these
heuristics are not appropriate.
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Task Changing tire Performing CPR Repotting plant Making coffee Jumping cars

Poa [22] 11.30 -3.82 1.65 -2.99 4.55
Ours using Frank-Wolfe -5.18 -4.51 -3.55 -3.86 -4.67

TABLE 3: Comparison of different optimization approaches for solving problem (6). (Objective value, lower is better).

For CPR, our method recovers fine-grained steps e.g. tilt head, lift
chin, which are not included in the main ground truth steps, but
nevertheless could be helpful in some situations. For Changing
tire, we also recover more detailed actions such as remove jack
or put jack. In some cases, our method recovers repeated steps.
For example, for CPR our method learns that one has to alternate
between giving breath and performing compressions even if this
alternation was not annotated in the ground truth. For Jumping
Cars our method learns that cables need to be connected twice (to
both cars). These results demonstrate that our method is able to au-
tomatically discover meaningful scripts describing very different
tasks. The results also show that the constraint of a single script
providing an ordering of events is a reasonable prior for a variety
of different tasks. In addition to displaying these qualitative results
we also report in Table 2 quantitative evaluation using precision
and recall. To compute these scores, we first manually define a
mapping between the discovered steps and the ground truth steps
with the following two constraints: (i) a ground truth step can
match to at most one discovered step and (ii) the ordering of the
discovered steps must match the ordering of the ground truth steps.
Once the discovered steps are mapped to the ground truth steps, we
compute precision and recall as follows. Precision is the number of
correctly discovered steps (mapped to ground truth) divided by the
number of all discovered steps. Recall is the number of correctly
discovered steps (mapped to ground truth) divided by the total
number of ground truth steps. Note that obtained precision and
recall values are relatively high, which demonstrates the strength
of the proposed multiple sequence alignment algorithm.

5.4 Results of localizing instruction steps in video
In the previous section, we have evaluated the quality of the
sequences of steps recovered from the transcribed narrations. In
this section, we evaluate how well we localize the individual
instruction steps in the video by running our complete two-stage
approach from Section 4.

Evaluation metric. To evaluate the temporal localization, we
need to have a one-to-one mapping between the discovered steps
in the videos and the ground truth steps. Following [23], we look
for a one-to-one global matching (shared across all videos of a
given task) that maximizes the evaluation score for a given method
(using the Hungarian algorithm). Note that this mapping is used
only for evaluation, the algorithm does not have access to the
ground truth annotations for learning.

The goal is to evaluate whether each ground truth step has
been correctly localized in all instruction videos. We thus use
the F1 score that combines precision and recall into a single
score as our evaluation measure. For a given video and a given
recovered step, our video clustering method predicts exactly one
video time interval t. This detection is considered correct if the
time interval falls inside any of the corresponding ground truth
intervals, and incorrect otherwise (resulting in a false positive for
this video). We compute the recall across all steps and videos,
defined as the ratio of the number of correct predictions over
the total number of possible ground truth steps across videos.

A recall of 1 indicates that every ground truth step has been
correctly detected across all videos. The recall decreases towards
0 when we miss some ground truth steps (missed detections). This
happens either because this step was not recovered globally, or
because it was detected in the video at an incorrect location. This
is because the algorithm predicts exactly one occurrence of each
step in each video. Similarly, precision measures the proportion
of correct predictions among all N ·Kpred possible predictions,
where N is the number of videos and Kpred is the number of
main steps used by the method. The F1 score is the harmonic
mean of precision and recall, giving a score that ranges between 0
and 1, with the perfect score of 1 when all the steps are predicted
at their correct locations in all videos.

Hyperparameters. We set the values of text constraint time
interval parameters, ∆b and ∆a, to 0 and 10 seconds. The setting
is the same for all five tasks. This models the fact that typically
each step is first described verbally and then performed on the
camera. We set λ = 1/(NKpred) for all methods that use (8). See
Section 5.5 for an analysis of the effects of these hyperparameters.

Baselines. We compare results to four baselines. To demon-
strate the difficulty of our dataset, we first evaluate a “Uniform”
baseline, which simply distributes instructions steps uniformly
over the entire instruction video. The second baseline “Video
only” [5] does not use the narration and performs only discrimina-
tive clustering on visual features with a global order constraint. In
particular, we compare to the improved model from [6], which
does not require a “background class” and yields a stronger
baseline equivalent to our model (7) without the weak textual
constraints. The third baseline “Video + BOW dobj” adds text-
based features to the “Video only” baseline (by concatenating the
text and video features in the discriminative clustering approach).
Here the goal is to evaluate the benefits of our two-stage clustering
approach, in contrast to this single-stage clustering baseline. The
text features are bag-of-words histograms over a fixed vocabulary
of direct object relations. An alternative set-up creating separate
bag-of-words histograms for nouns and verbs gave similar results
and is not considered here for brevity. The fourth baseline is our
own implementation of the alignment method of [24] (without
the supervised vision refinement procedure that requires a set
of pre-trained visual classifiers that are not available a-priori in
our case). We use [24] to re-align the speech transcripts to the
sequence of steps discovered by our method from Section 4.1 (as
a proxy for the recipe assumed to be known in [24]).9 To assess the
difficulty of the task and dataset, we also compare results with a
“Supervised” approach. For that, we divide theN input videos in 5
different folds. One fold is kept for the test set while the the other 4
are used as the trainining/validation dataset. With the 4 remaining
folds, we perform a 4-fold cross validation in order to choose the
hyperparameter λ. Once the hyper parameter is fixed, we retrain
a model on the 4 folds and evaluate it on the test set. By iterating
over the five possible test folds, we report variation in performance
with error bars. The supervised method learns classifiers W for

9Note that our method finds at the same time the sequence of steps (a
recipe in [24]) and the alignment of the transcripts.
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Fig. 5: Results for temporally localizing recovered steps in the input videos. We give in bold the number of ground truth steps.

all the visual steps. This is achieved by minimizing the cost
defined in (7) under the ground truth annotation constraints on
the training set. At test time, we simply apply classifiers W on
the test set performing least-square prediction of Ztest with the
ordering constraints.

Error bars for unsupervised methods. For the unsupervised
methods we compute the error bars in the following manner. Re-
call that the Frank-Wolfe algorithm solves a continuous relaxation
of the integer problem (7). To obtain an integer solution, we round
the continuous solution using the rounding method described in
Section 4.2. This rounding procedure is performed at each iteration
of the optimization. When the stopping criterion of the Frank-
Wolfe algorithm is reached (fixed number of iterations or target
sub-optimality in practice), we have as many rounded solutions
as the number of iterations. Our output integer solution is the
rounded solution that achieves the lowest objective. Note that
we are only guaranteed to lower the objective in the continuous
domain whereas the objective of the rounded solution can increase
(and often does), and hence there is no guarantee that the last
rounded solution will have the lowest objective. In order to
illustrate the variation of the performance during optimization,
we define error bars as the interval determined by the minimal and
maximal performance (measured by the F1 score) obtained after
visiting the best rounded point (the integer solution with the lowest
objective). This also explains why the error bars in Figure 5 are
not necessarily symmetric. Overall, the observed variation is not
very high, highlighting the stability of the optimization procedure.

Results. Results for localizing the discovered instruction steps
are shown in Figure 5. In order to perform a fair comparison to
the baseline methods that require a known number of steps K , we
report results for a range of K values. Note that in our case the
actual number of automatically recovered steps can be (and often
is) smaller than K . First, we note that for each task there is a
value of K for which our method outperforms the baselines. We
discuss the results for the different tasks next. For Change tire and
Perform CPR, our method consistently outperforms all baselines
for all values of K demonstrating the benefits of our approach.
For Repot, our method is comparable to text-based baselines,
underlying the importance of the text signal for this problem.
For Jump car, our method delivers the best result (for K = 15)
but struggles for lower values of K , which we found was due to
visually similar repeating steps (e.g. start car A and start car B)
which are mixed-up for lower values of K . For the Make coffee
task, the video only baseline is comparable to our method, which
by inspecting the output could be attributed to large variability of
narrations for this task. We also report results using the word2vec
text similarity metric (see ‘Our method (w2v)’ in Figure 5) instead
of the WordNet metric used in the first stage of our algorithm.

We observe that both metrics result in a similar performance.
Qualitative results of the recovered steps are illustrated in Figure 6.

5.5 Parameter analysis
In this section, we present a parameter sensitivity analysis divided
into two main experiments: (i) in Section 5.5.1 we evaluate the
sensitivity of our method to the choice of hyperparameter λ, which
controls the strength of the regularization, and hyperparameters
(∆b,∆a), which control the temporal caption-video alignment;
(ii) in Section 5.5.2 we analyze the two main factors that influence
the performance of the method, i.e. the number of constraints
that are extracted from the textual narration and their temporal
localization.

5.5.1 Hyperparameter analysis
Our method has two main hyperparameters. The first one, denoted
λ, controls the amount of regularization of the estimated classifier
parameters W in the discriminative loss (8). We use a single
fixed setting of λ as our method is unsupervised and has no
access to ground truth annotations for cross-validation at training
time. Hence in all our experiments we set λ = 1/(NKpred)
which is equal to the inverse of the number of predicted latent
variables. This choice is motivated by the form of the ridge
regression generalization bound discussed in [15]. The second set
of hyperparameters (∆b,∆a) adjusts the temporal alignment of
transcribed narrations to the video. In particular, it allows us to
model the fact that people usually perform the action after having
talked about it. In our work we set the value of ∆b (the ‘before’
delay) to 0 seconds and of ∆a (the ‘after’ delay) to 12 seconds.
In the following we quantify the effect of these hyperparameters
on the final performance.

In Figure 7a, we report the F1 score averaged over the five
tasks as a function of λ. As explained in Section 5.4, the error bars
(shown by the shaded area) represent the F1 score variation during
optimization. For this experiment, (∆b,∆a) is set to (0 s, 12 s) as
in Section 5.4. We observe that, (i) a good choice of λ can result
in up to 5% improvement on average across all five tasks, and (ii)
the right range of values is located around λ = 1/(NKpred) (see
red line in Figure 7a). We report here the average performance
but we have observed that the best setting of λ varies across
different tasks. For example for the performing cardiopulmonary
resuscitation (CPR) task, the good range of values for λ was a bit
higher (≈ 10−1) than for the other four tasks (≈ 10−4 − 10−3).
If a small annotated set is available, λ can be tuned for each task
using cross-validation. If not, then λ = 1/(NKpred) presents a
reasonable choice.

In Figure 7b, we report the average F1 score over the five
tasks as a function of (∆b,∆a). For this experiment, we set
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Fig. 6: Examples of three recovered instruction steps for each of the
five tasks in our dataset. For each step, we first show clustered direct object
relations, followed by representative example frames localizing the step in the
videos. Correct localizations are shown in green. Some steps are incorrectly
localized in some videos (red), but often look visually very similar.

10 -7 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0

F1
 s

co
re

0

0.05

0.1

0.15

0.2

0.25

0.3

F1 score
Value used in our paper

(a) Regularization strength λ (b) Subtitle delays (∆b,∆a)

Fig. 7: Sensitivity of the performance (measured by the F1 score) to
the different hyperparameters.

λ = 1/(NKpred). For very large (∆b,∆a) > (60, 60), the
method is almost equivalent to the video only baseline (with a
drop in performance of more than 5%) as the transcribed narration
provides only very weak constraints on the temporal localization
of the different steps. The good range for these hyperparameters
is asymmetric, centered around ∆a ≈ 15 s and ∆b ≈ 0 s. This
confirms the hypothesis that usually people first orally introduce a
step and only then perform the action.

5.5.2 Analysis of constraints from transcribed narrations
The overall performance of our method relies on the amount and
quality of constraints extracted from transcribed narrations. In this
section we quantify this dependence experimentally. We perform
two experiments.
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Fig. 8: Analysis of constraints extracted from transcribed narra-
tions.
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First, we assess the importance of a precise time localization of
each constraint. This type of mistake often occurs as the narration
is usually not precisely aligned with the video, i.e. the speaker
often first talks about the action before performing it. Figure 8a
shows how the overall performance (measured by average F1
score on all tasks) varies with respect to the localization noise
of extracted constraints. The set of constraints is fixed to those
discovered automatically by our method. When the localization
noise is 0, the temporal extent of each constraint obtained from
the narration is corrected to the manually obtained temporal extent
of the action performed in the video. When the localization noise
is 1 constraints correspond to those extracted automatically by
our method. In between values are obtained by interpolating the
temporal extent of each constraint between these two extreme
values. The average performance is obtained by 5-fold cross
validation. The error bars correspond to minimum and maximum
performance across the five folds. Interestingly, the results do not
show a drop in performance with increased localization noise in
the constraints. This suggests that our method is tolerant to some
amount of localization noise and the constraints extracted by our
method are localized reasonably well.

Next, in Figure 8b we study the influence of the amount
of extracted constraints. In particular, we vary the proportion
of extracted constraints from 0 (equivalent to the video only
setting) to 1 (extracted constraint for each step performed in
video). Note that we only use constraints that respect the ground
truth global ordering of steps. To remove the effect of temporal
localization, we use the manually corrected temporal extent for
each constraint corresponding to the zero localization noise in the
first experiment above. The graph shows average performance and
error bars (shaded region) obtained by 5-fold cross validation as
described in the first experiment above. Our automatic method
using multiple sequence alignment extracts from the transcribed
narration about 35% of constraints (red vertical bar). The results
suggest that increasing the number of extracted constraints can
significantly improve the overall performance. Hence, designing
better language models that could discover more constraints is an
important direction for future research.

5.6 Joint clustering of video and text

Recall that the proposed approach is formulated as two clustering
tasks, one in text and one in video, applied in sequence and linked
by joint constraints on the two modalities. To further investigate
the complementary nature of the two signals, we experiment here
with performing another iteration of our algorithm with the aim
of transferring information from the visual to the textual domain.
We proceed as follows. Once we obtain our temporal predictions
in videos (latent variable Z), we use the inferred Z to adjust
the values in the cost alignment matrix Co in multiple sequence
alignment of text sequences. More precisely, we match expressions
if their similarity is high (but with a slightly lower threshold than
in the first iteration) and if they were mentioned at least two times
within the predicted time interval of the same step in different
videos. We run the multiple sequence alignment with the new cost
matrix Co and use this solution to perform another iteration of
the video alignment procedure. This additional iteration results in
an average improvement of about 1% in the F1-score across all
tasks.

6 CONCLUSION AND FUTURE WORK

We have described a method to automatically discover the main
steps of a task from a set of narrated instruction videos in an
unsupervised manner. The proposed approach has been tested
on a new annotated dataset of challenging real-world instruction
videos containing complex person-object interactions in a variety
of indoor and outdoor scenes. Our work opens up the possibility
for large scale learning from instruction videos on the Internet.
Our model currently assumes the existence of a common script
with a fixed ordering of the main steps. While this assumption is
often true, e.g. one cannot remove the wheel before jacking up
the car, or make coffee before filling the water, some tasks can be
performed while swapping (or even leaving out) some of the steps.
Recovering more complex temporal structures is an interesting
direction for future work.
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