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Informed Nonnegative Matrix Factorization

Methods for Mobile Sensor Network

Calibration
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Abstract

In this paper, we consider the problem of blindly calibrating a mobile sensor network—i.e., de-

termining the gain and the offset of each sensor—from heterogeneous observations on a defined spa-

tial area over time. For that purpose, we propose to revisit blind sensor calibration as an informed

Nonnegative Matrix Factorization (NMF) problem with missing entries. In the considered framework,

one matrix factor contains the calibration structure of the sensors—and especially the values of the

sensed phenomenon—while the other one contains the calibration parameters of the whole sensor

network. The available information is taken into account by using a specific parameterization of the

NMF problem. Moreover, we also consider additional NMF constraints which can be independently

taken into account, i.e., an approximate constraint over the mean calibration parameters and a sparse

approximation of the sensed phenomenon over a known dictionary. The enhancement of our proposed

approaches is investigated through more than 5000 simulations and is shown to be accurate for the

considered application and to outperform a multi-hop micro-calibration technique as well as a method

based on low-rank matrix completion and nonnegative least squares.
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I. INTRODUCTION

Mobile crowdsensing appears to be a novel way to get measurements from large-scale low-

cost sensor networks [1], [2], [3]. It consists of acquiring geolocated and timestamped data

aggregated by mobile devices—e.g., smartphones—from a crowd of volunteers along their daily

moves. Mobile crowdsensing is increasingly used in participatory science—using the smartphone

communication facilities to connect to additional sensor devices—and some specific challenges

emerged. The first issue with mobile crowdsensing is the loss of privacy within the acquisition

of geolocated data. Such an issue has been well-studied in the literature [4] and some solutions

met in participatory science consist of using a trusted intermediate server—located between the

mobile sensors and the recipient of the experiment—where the collected data are processed and

anonymized [5].

Among the other challenges inherent to mobile crowdsensing, the sensor network calibration

is a key step to make sense of the collected data. A calibrated sensor allows recovering a physical

input y from the sensor output x. Calibrating a sensor consists of estimating some calibration

parameters, provided a sensor calibration model. Classical calibration models are offset [6], gain

[7], [8], gain/phase [9], [10], [11], gain/offset [12], [13], [14], [15], [16], [17], [18], nonlinear

[19], [20], [21], or multilinear [22] response models. Such models can also be extended to deal

with sensor drifts [22]. In most cases, the calibration is performed in a laboratory by inferring

some known physical inputs to the sensor outputs. When applied to a large-scale network—

and in particular with mobile crowdsensing where volunteers cannot be requested to regularly

go to a laboratory—the calibration must be performed “on the fly” and some so-called blind

or self-calibration techniques were proposed to that end. The latter can be classified into two

categories, i.e., macro- and micro-calibration. On the one hand, macro-calibration methods aim to

calibrate the whole sensor network in order to provide consistent sensor readings [11], [12], [13],

[18], [17], [19], [20]. They usually require strong assumptions such as knowledge of the signal

subspace [12], [13], [17], [19], sparse assumptions [11], or long integration time [18], [20]. On

the other hand, micro-calibration methods aim to iteratively calibrate one unique sensor from the

network at a given time [23], [24], [14]. To that end, they are usually exploiting measurements

provided by calibrated reference sensors and thus require the sensor network to be dense enough

to ensure cross-measurements between sensors.

In this paper, we consider the above crowdsensing framework with an intermediate server
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where we have access to all the collected information before anonymization [5]. We revisit

the self-calibration of a mobile sensor network as an informed matrix factorization problem,

which may be seen as a macro-calibration technique using micro-calibration assumptions. The

information provided in the factorization is due to both the considered application—which

provides a specific structure in one of the factor matrices—and the fact that a few observed data

are obtained using calibrated sensors. As the matrix to factorize is low rank and has missing

entries, the calibration problem meets some similarities with matrix completion [25], [26] or

collaborative filtering/recommender systems [27]. In particular, we aim to calibrate environmental

mobile sensors providing nonnegative outputs (e.g., voltages) which are due to nonnegative inputs

(e.g., gas concentrations) linked to the outputs through nonnegative calibration parameters. As

a consequence, the blind calibration problem can be tackled by informed Nonnegative Matrix

Factorization (NMF). We propose to that end four informed NMF techniques which were partially

and preliminary proposed in [15], [16]. In [15], we were showing how to write the calibration

problem in an informed NMF framework while we extended it in [16] by adding some sparse

assumptions in one column of one matrix factor. In this paper, we extend our previous work as

follows: (i) we incorporate a novel information in the NMF, which can be independently applied

to [15] or [16], and (ii) we provide an in-depth performance analysis of the proposed methods,

with a comparison with one state-of-the-art method [14].

The remainder of the paper thus reads as follows: in Section II we introduce the calibration

problem together with the definitions and assumptions that we use in this paper. In Section III we

propose four blind calibration methods named "IN-cal", "ACIN-cal", "SpIN-cal", and "SpAIN-

cal", which are informed NMF techniques using information such as the sensor response model,

the known average calibration parameter values or/and a sparse approximation of the observed

phenomenon, respectively. In Section IV, we investigate the performance of the above methods

and a comparison with a state-of-the-art micro-calibration technique [14]. We conclude and

discuss about future work in Section V while we provide the proof of some update rules and

investigate the estimation of the sensed field in Appendices A and B, respectively.

II. PROBLEM STATEMENT, DEFINITIONS AND ASSUMPTIONS

In this paper, we aim to calibrate a network composed of m geolocalized and timestamped

mobile sensors. We assume that each sensor of the network provides a reading y linked to an
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Fig. 1. From a scene S (with n = 16 spatial samples, m + 1 = 3 sensors and 2 rendezvous) to the data matrix X (white pixels

mean no observed value).

input phenomenon x through a calibration function F (.) which is assumed to be affine, i.e.,

x ≈ F (y) ≈ f1 + f2 · y, (1)

where f1 and f2 are the unknown sensor parameters, i.e., its offset and gain, respectively.

Calibrating the sensor network then consists of estimating the gain and the offset of each sensor.

To that end, our proposed methods are exploiting the following definitions.

Definition 1 ([24]): A rendezvous is a temporal and spatial vicinity between two sensors.

A rendezvous is then characterized by a spatial distance ∆d and a temporal duration ∆t . When

two sensors are in rendezvous, the fluctuations of the phenomenon between two locations closest

than ∆d during a time interval [t, t + ∆t ) are negligible. However, both highly depend on the

sensed physical phenomenon [24]. As an example, if one observe the variations of temperature

and of carbon monoxyde concentrations, the values of ∆d and ∆t for the latter will be much

lower than for the former [24].

Definition 2 ([15]): A scene S is a discretized area observed during a time interval [t, t +∆t ).

The size of the spatial pixels is set so that any couple of points inside the same pixel have a

distance below ∆d .

As shown in Fig. 1, two sensors sharing the same location of the scene are in rendezvous

and then should be exposed to the same physical input. However, defining a scene with an

appropriate distance ∆d might be quite complex and we will see in this paper how to relax it.

Denoting xi, j as the output provided by Sensor j at Location i of S, and assuming that each

of the considered (m + 1) sensors of the network has sensed the whole scene, we define the

n × (m + 1) data matrix X , [xi, j]i, j such that each of its column contains the measurements
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of one sensor at each location and each line contains the measurements of each sensor at one

location. The affine response model (1) then yields

X ≈ G · F, (2)

where

G =



1 y1
...

...

1 yn



and F =


f1,1 · · · f1,m+1

f2,1 · · · f2,m+1


, (3)

where ∀ j = 1, . . . ,m + 1, f1, j and f2, j are the unknown offset and gain associated with the j-th

sensor, respectively. Both factor matrices G and F thus contain the calibration model structure—

hence the column of ones in G to handle the offset in the calibration function of the sensors—and

the calibration parameters, respectively. Calibrating the network using factorization then consists

of estimating the matrices G and F which provide the best low-rank estimation of X , while

keeping the constrained structure in G.

In practical crowdsensing campaigns, the mobile sensors are usually unconstrained in their

movements—as they are carried by a crowd of volunteers—and thus sparsely sense the scene.

If Location i has been sensed by Sensor j then Eq. (1) is verified, otherwise the data point is

unavailable, i.e., xi, j is unknown. Denoting ΩX the domain where X is observed and PΩX ( · )

the sampling operator of X , the considered calibration problem able to handle missing values

reads

{G̃, F̃} = arg min
G,F

1
2
· ����PΩX (X − G · F)����2F ,

s.t. g1 = 1[n×1],

(4)

where g1 is the first column of G, 1[n×1] is a column vector of ones, and | | · | |F stands for

the Frobenius norm. Please note that Eq. (4) without the constraint on g1 is the formulation of

matrix factorization for the low-rank matrix completion problem [25]. In practice, the latter can

be solved using a weighted matrix factorization technique for example. The weighted extension

of Eq. (4) then reads

{G̃, F̃} = arg min
G,F

1
2
· | |W ◦ (X − G · F) | |2

F
,

s.t. g1 = 1[n×1],

(5)

where ◦ is the Hadamard product, and W , (wi, j )i, j is a properly chosen weight matrix, e.g.,

wi, j =




ρ j if xi, j is observed,

0 otherwise.
(6)
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The weight ρ j can be proportional to the confidence in the accuracy of Sensor j. If all the

sensors share the same confidence, one can set ρ j = 1, i.e., we set W to a binary matrix. At this

stage, we thus show that blindly calibrating a sensor network may be seen as a specific matrix

factorization and completion problem, for which we add some additional assumptions hereafter.

As X only contains sensor outputs—which are usually voltages—it is a nonnegative matrix.

Moreover, in our considered application where we aim to calibrate some environmental sensors,

the vector y , [y1, . . . , yn]T corresponds to a nonnegative physical phenomenon, e.g., a mass, a

proportion (gas, dust, humidity), or a temperature (which can be expressed in Kelvin degree). As

a consequence, G is also nonnegative. Lastly, many environmental sensors with affine response

model—e.g., [28] for temperature/humidity or [29] for particulate matter concentration—get

nonnegative calibration parameters and F can also be assumed to be nonnegative1. At this stage,

the calibration problem can then be tackled within the scope of informed NMF, i.e.,

{G̃, F̃} = arg min
G,F≥0

1
2
· | |W ◦ (X − G · F) | |2

F
,

s.t. g1 = 1[n×1].

(7)

Lastly, large-scale networks composed of low-cost sensors are usually deployed in order to

reinforce existing networks composed of few highly accurate calibrated sensors. Indeed, fusing

the large amount of data provided by the low-cost sensors with a few accurate measurements

may enhance the spatial sampling of the observed phenomenon—due to the dense deployment

of the low-cost sensors over a large area—while keeping the good accuracy of the precise

measurements [30]. In air quality monitoring, the measurements collected by low-cost sensors

can be melt with accurate measurements provided by authoritative air quality monitoring stations

for example. Such accurate sensor readings directly provide a fine estimation—considered as

ground truth—of the physical phenomenon y at the sensed locations. These punctually known

values of the physical phenomenon can then be modelled as the measurements provided by one

unique sensor—say the (m + 1)-th one—with gain and offset equal to 1 and 0, respectively.

1Please note that if F has no sign constraint, blind calibration can be revisited as a semi-NMF problem [21].
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Taking such an information into Eq. (7) leads to

{G̃, F̃} = arg min
G,F≥0

1
2
· | |W ◦ (X − G · F) | |2

F
,

s.t. g1 = 1[n×1],

gi,2 = xi,m+1 ∀i ∈ I,

fm+1 =



0

1


,

(8)

where I is the subset of locations that have been sensed by the reference sensors, gi,2 is the i-th

element of second column of G and fm+1 is the (m + 1)-th column of F. Equation (8) shows

that mobile sensor calibration can be tackled by NMF which (i) is using a specific structure

of the matrix factors and (ii) is able to handle missing data. Let us stress that contrary to

other applications of NMF such as source separation, we cannot afford to estimate F up to

a scale indeterminacy. Indeed, such an indeterminacy yields relative calibration—allowing the

consistency of the sensor readings only—but not the full sensor calibration. Moreover, Eq. (8) can

be solved if the available data points in X are “diverse” enough and in “sufficient quantities”. As

an extreme example, let us imagine that the sensed phenomenon is constant over the whole scene.

Then, the columns of X are constant and the estimation of G and F is not possible, even if all the

data points are available in X . As a consequence and as for any latent variable analysis technique,

we need some diversity in the data points in order to perform the factorization. Similarly, let us

assume that one sensor only senses once the observed phenomenon. Consequently, we cannot

estimate the corresponding column of F without additional assumptions. Moreover, let us assume

that the sensor network may be decomposed into two disjoint sets which do not share any sensor

rendezvous between both groups. Then, one can perform the full calibration of the set which

has rendezvous with authoritative sensors but only some relative calibration for the sensors of

the other group.

Lastly, please note that one do not need to perfectly recover G in order to perform calibration.

Indeed, the calibration parameters are only contained in F. This means that we can afford

some lines of X without any available entry, provided the above assumptions in terms of matrix

sampling and diversity are met. Such a scenario implies that G cannot be fully recovered while

F can.
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III. PROPOSED CALIBRATION METHODS

NMF finds applications in many domains such as blind source separation [31], low-rank

matrix completion [26], [32], recommendation system/collaborative filtering [33], classifica-

tion/clustering [34], or dictionary learning [35]. It is also increasingly used in environmental

monitoring [36]. It thus has been widely studied and many methods have been proposed to

perform it [37]. Some extensions also include weights [38] and/or known entries in the factor

matrices [39], or use some parametric cost functions [40]. However, to the best of the authors’

knowledge, using NMF as a blind calibration method has never been investigated before. In

this paper, we thus propose several NMF-based calibration methods which take into account the

above constraints to calibrate a mobile sensor network.

A. A natural technique based on the low-rankness of X

We here propose a natural approach to solve blind calibration, based on the low-rankness of

X . Let us first assume that X is complete. According to Eq. (8), the last columns of X and G

are equal. As a consequence, F can be derived from X and G, by nonnegative least squares

for example. However, since many entries of X may be missing, the above approach cannot be

applied directly. As a first stage, the missing values in X must be estimated. As X is low-rank,

the imputation of its missing entries using low-rank matrix completion techniques provides a

matrix denoted X comp which reads

X comp = arg min
X̃

rank(X̃ ) s.t. PΩX

(
X̃
)
= PΩX (X ) , (9)

where PΩX ( · ) is the sampling operator of X . As such a problem is NP-hard, it may be relaxed

as

X comp = arg min
X̃

���
���X̃

���
���∗ s.t. PΩX

(
X̃
)
= PΩX (X ) , (10)

where | | · | |∗ denotes the nuclear norm. In practice, many methods have been proposed to solve

Eq. (10), e.g., truncated SVD [41], [42]. However, by construction, X is known to be rank-2 and

can be written as the product of two nonnegative matrices, as shown in Eq. (2). Equation (9) can
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thus be solved by Nonnegative Matrix Factorization/Completion (NMF/C) methods [32], [33],

[26] which consist of solving2

{ Ã, S̃} = arg min
A,S≥0

����PΩX (X − A · S)����F . (11)

using an Alternating Direction Method (ADM) [32], multiplicative updates [33], or a Nesterov

gradient technique [26], respectively3. The product of the estimated matrices Ã · S̃ then provides

an estimation X comp of the completed version of X which satisfies both the known rank and the

nonnegative decomposition of X .

To summarize, a natural approach to perform blind calibration consists of

1) Estimating X comp using a low-rank matrix completion technique, e.g., based on truncated

SVD [42] or NMF/C [32].

2) Constructing G̃ as

G̃ ,
[
1[n×1] , xcomp

m+1

]
, (12)

where xcomp
m+1 is the (m+1)th column—i.e., the last—of X comp which corresponds to reference

measurements.

3) Estimating F̃ using nonnegative least squares by solving

F̃ = arg min
F≥0

���
���X

comp − G̃ · F���
���F . (13)

Despite its nice properties, this approach—using [42] in the completion stage—was shown not

to provide a good performance in our preliminary work [15], [16]. Indeed, its enhancement

is subject to the completion accuracy in the very fist stage. Using NMF/C techniques slightly

improves its calibration abilities but the whole approach does not reach the performance of the

methods proposed below.

B. Informed NMF for Sensor Calibration

In order to include the whole constraints into a new informed NMF method, we reformulate

the optimization problem (8) by using the parameterization proposed in [39]. The latter consists

of decomposing both the matrices G and F into the sum of their free parts—corresponding to

2It should be noticed that Eq. (11) is not similar to the considered calibration problem. Indeed, as in blind source separation,

A (respectively S) can be equal to G (respectively F) up to a permutation and a scale ambiguity.

3The initialization of such methods within the framework of the considered paper is described in Section III-E.
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the elements which are not subject to any constraint—and their known parts containing the fixed

known values in each matrix, i.e.,

G = ΩG ◦ ΦG + Ω̄G ◦ ∆G, (14)

and

F = ΩF ◦ ΦF + Ω̄F ◦ ∆F, (15)

where

• ΩG and ΩF (respectively Ω̄G and Ω̄F) are the binary matrices informing the locations of

the known (respectively unknown) values in G and F, respectively,

• ΦG and ΦF contain the constrained values in G and F, respectively,

• and ∆G and ∆F contain the unknown values in G and F, respectively.

The binary masks ΩG, Ω̄G, ΩF and Ω̄F are deployed in order to ensure the null intersection of

the known and free parts of each matrix, i.e., ΩG ◦ Ω̄G = 0 and ΩF ◦ Ω̄F = 0 [39].

Using Paramerizations (14) and (15), the optimization problem (8) then reads

{G̃, F̃} = arg min
G,F≥0

1
2
· | |W ◦ (X − G · F) | |2

F
,

s.t. G = ΩG ◦ ΦG + Ω̄G ◦ ∆G,

F = ΩF ◦ ΦF + Ω̄F ◦ ∆F .

(16)

As Eq. (16) is non-convex with respect to both G and F, one classical strategy consists of

splitting it into the following sub-problems

G̃ = arg min
G≥0

1
2
· | |W ◦ (X − G · F) | |2

F
,

s.t. G = ΩG ◦ ΦG + Ω̄G ◦ ∆G,

(17)

and

F̃ = arg min
F≥0

1
2
· | |W ◦ (X − G · F) | |2

F
,

s.t. F = ΩF ◦ ΦF + Ω̄F ◦ ∆F,

, (18)

that we aim to alternatingly and iteratively solve. For the update of F, the authors in [39]

proposed the following multiplicative update rule

F ← ΩF ◦ ΦF + Ω̄F ◦ ∆F ◦

[
GT · (W ◦ (X − G ·ΦF )+)

GT · (W ◦ (G ·∆F ))

]
, (19)

where the superscript + denotes the function defined as (z)+ , max(ε, z), where ε is a small

user-defined threshold. One can note that if F has no constrained part—i.e., if ΩF is null and if
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Ω̄F = 1[2×m+1]—then the whole matrix F is equal to its free part ∆F . The multiplicative update

rule (19) is then equivalent to the weighted version [38] of the well-known Lee and Seung

multiplicative update rule [43].

Similarly to F, we derive the update rules associated to Eq. (17) as

G ← ΩG ◦ ΦG + Ω̄G ◦ ∆G ◦

[
(W ◦ (X − ΦG · F)+) · FT

(W ◦ (∆G · F)) · FT

]
. (20)

One can note that in matrix factorization, a scale ambiguity between G and F is usually

observed. It is classically solved by normalizing the lines of F or the columns of G. However,

in the calibration framework that we consider in this paper, we aim to exactly recover the lines

of F (and the columns of G). As a consequence, we can not arbitrarily normalize them. In our

proposed calibration method, the scale ambiguity is actually tackled thanks to the calibrated

sensor readings in X . The constrained column in F then scales the whole factorization problem

as long as there are enough rendezvous into the data matrix X to link each mobile sensor—

possibly using a path between them—to at least two distinct reference measurements4. If there is

not enough reference measurements and/or not enough rendezvous between mobile sensors to be

calibrated and references ones, then the above Informed NMF-based calibration method—denoted

IN-cal below—performs the relative calibration of the network, i.e., sensors are consistent but a

scale ambiguity remains. The IN-cal algorithm is summarized in Algorithm 1.

Algorithm 1 Informed NMF-based calibration (IN-cal)
Require: G(0), F (0)

for iter = 1 to ITERMAX do

Updating G using Eq. (20)

Updating F using Eq. (19)

end for

C. Average-constrained extension of IN-cal

Most sensor manufacturers provide average calibration parameters associated with their sen-

sors. While being useful, this information is not used in the above IN-cal method. Moreover, it

4Please note that the scale ambiguity can be solved if the number of distinct sensed entries in the last column of X is at least

equal to the rank of X , which is 2 in this paper. When the rank of X is higher—as met in, e.g., [21] for blindly calibrating a

sensor with a polynomial model—this number increases as well.
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allows regularizing the calibration problem if the data sampling requirements are not satisfied

for some sensors, i.e., if they do not have enough rendezvous, or if no reference sensor readings

are available. Lastly, it should be noticed that such an information has been used in [11] for

a compressed-sensing calibration problem, or in [18], [6] for moment-based mobile sensor

calibration methods. However, we use it in a slightly different way, as we explain hereafter.

In the affine response model that we are considering in this paper, the average calibration

parameters are provided by the sensor manufacturers as a mean offset f̄1 and a mean gain f̄2.

In practice, these values are approximately equal to the average calibration parameters to be

estimated, i.e.,
1
m

·
m∑

i=1
f1,i ≈ f̄1 and

1
m

·
m∑

i=1
f2,i ≈ f̄2 . (21)

By defining f̄ ,
[

f̄1, f̄2
]T

, Eq. (21) then reads

1
m

· F ·


1[m×1]

0


≈ f̄ , (22)

where


1[m×1]

0


is the (m + 1) × 1 vector composed of a column of ones concatenated with a

zero, in order not to include the last column of F to the mean computation. One can note that

by using the parameterization (15)—and by noticing that the last column of Ω̄F is null—this

approximation reads
1
m

·
(
Ω̄F ◦ F

)
· 1[(m+1)×1] ≈ f̄ , (23)

which can then be included into our previous calibration approach. Indeed, it appears as an

extra-penalization term in Eq. (16), i.e.,

{G̃, F̃} = arg min
G,F≥0

1
2
· | |W ◦ (X − G · F) | |2

F
+
µ

2
·

�����

�����
1
m

·
(
Ω̄F ◦ F

)
· 1[(m+1)×1] − f̄

�����

�����

2

F

,

s.t. G = ΩG ◦ ΦG + Ω̄G ◦ ∆G,

F = ΩF ◦ ΦF + Ω̄F ◦ ∆F,

(24)

where µ is a user-defined weight. As for IN-cal, Eq. (24) may be decomposed into two sub-

problems. Actually, the sub-problem in G is the same as IN-cal and Eq. (20) still applies.

However, the average constraint affects the sub-problem relative to F, i.e.,

F̃ = arg min
F≥0

1
2
| |W ◦ (X − G · F) | |2

F
+
µ

2
·

�����

�����
1
m

·
(
Ω̄F ◦ F

)
· 1[(m+1)×1] − f̄

�����

�����

2

F

,

s.t. F = ΩF ◦ ΦF + Ω̄F ◦ ∆F .

(25)
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It should be noticed that normalizing the rows of F is classical in matrix factorization and is

usually performed after each update of F [34] or within the optimization problem [44]. Informed

NMF with normalization was also investigated in [45], [46]. However, such a normalization

implies rows of F to be exactly equal to the chosen means, which may lead to calibration errors

in the case of an inexact knowledge of the mean parameters in the considered application. Such

an estimation error is also a limitation of any blind calibration technique not using reference

sensors as ground truth, e.g., [11]. By considering the norm constraint as a penalization term

such as Eq. (25), then one can change the penalization weight depending whether or not the

sampling and diversity assumptions in X are satisfied to ensure calibration with the above IN-cal

method.

We derive in Appendix A the multiplicative update rule from Eq. (25), which reads

F̃ ← ΩF ◦ ΦF + Ω̄F ◦ ∆F ◦ B, (26)

where

B =
Ω̄F ◦

(
GT

(
W 2 ◦ XF

))
+

µ
m · diag

(
f̄
)
· Ω̄F

Ω̄F ◦
(
GT

(
W◦2 ◦

(
G ·

(
Ω̄F ◦ ∆F

)))
+

µ

m2 · diag
(
(Ω̄F ◦ ∆F

)
· 1[(m+1)×1]

)
· Ω̄F

. (27)

Equations (26) and (27) take into account the Average Constraint in IN-cal, hence the name

denoted ACIN-cal of this extension in the remainder of the paper. Its structure is summarized

in Algorithm 2.

Algorithm 2 Average Constrained extension of IN-cal (ACIN-cal)
Require: G(0), F (0), f̄, µ

for iter = 1 to ITERMAX do

Updating G using Eq. (20)

Updating F using Eqs. (26) and (27)

end for

D. Sparsity-constrained extension of IN-cal

In order to provide a good performance, the IN-cal method needs enough rendezvous between

sensors, which is not necessarily satisfied in practice. Moreover, properly discretizing the scene

S may be an issue, even for an expert.
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In this section, we thus propose to regularize the IN-cal method by including one more

constraint on the physical input phenomenon y, i.e., the second column of G. Indeed, we assume

that y allows a sparse decomposition according to a known dictionary D, i.e.,

∃ a ∈ Sp(Rp), s.t. y ≈ D · a, (28)

where p is the number of atoms in D and Sp(Rp) denotes the space of sparse vectors from

Rp, i.e., Sp(Rp) , {u ∈ Rp, s.t. | |u| |0 � p}, where | |u| |0 stands for the number of non-zeros

elements in u. This extra-constraint then leads to a new Sparsity-constrained extension of IN-cal,

denoted SpIN-cal. In environment monitoring, the dictionary D can be learned from realizations

of a physical model—e.g., a Gaussian plume diffusion model [47]—which provides patterns of

the observed signal y. The sparse decomposition of the observed phenomenon according to the

dictionary means that the observed physical phenomenon has to be a combination of a few of

these known patterns.

Including the constraint (28) into the factorization problem (16) leads to a novel problem with

a third unknown, i.e,

{G̃, F̃, a} = arg min
G≥0,F≥0,a

1
2
· | |W ◦ (X − G · F) | |2

F
+
λ

2
· | |g2 − D · a| |2

F
,

s.t. G = ΩG ◦ ΦG + Ω̄G ◦ ∆G,

F = ΩF ◦ ΦF + Ω̄F ◦ ∆F,

| |a| |0 � p,

(29)

where λ is the positive parameter which controls the strength of the sparsity of the contribution

vector a. This problem differs from classical sparse NMF [48], [49], [50], [51] which consists of

estimating a sparse matrix factor. On the contrary, we here look for a dense matrix with a sparse

decomposition, which meets some similarities with [52]. So as for the IN-cal and ACIN-cal

optimization problems, the cost function in Eq. (29) is non-convex with respect to both G, F,

and a. Moreover, as the sparse decomposition constraint in Eq. (29) only influence the update

of G, the subproblems that we have to care about read,

G̃ = arg min
G

1
2
· | |W ◦ (X − G · F) | |2

F
+
λ

2
· | |g2 − D · a| |2

F
,

s.t. G = ΩG ◦ ΦG + Ω̄G ◦ ∆G,

(30)

and

ã = arg min
a

λ

2
· | |g2 − D · a| |F s.t. | |a| |0 � p. (31)
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One can note that the update rule (19) still applies here, as the sparsity constraint does not

impact F. Noticing that

g2 = G · [0, 1]T , (32)

the penalization term in Eq. (30) can be rewritten as

λ

2
· | |g2 − D · a| |2

F
=

1
2
· ���

���
(√
λ · 1[n×1]

)
◦

(
D · a − G · [0, 1]T

) ���
���
2
F
. (33)

By defining

W ,
[
W,
√
λ · 1[n×1]

]
, X , [X,D · a] , and F ,


F, *.

,

0

1
+/
-


, (34)

it is straightforward to show that

1
2
· | |W ◦ (X − G ·F) | |2

F

=
1
2
· | |W ◦ (X − G · F) | |2

F
+
λ

2
· | |g2 − D · a| |2

F
,

(35)

and the optimization problem (30) then reads

G̃ ≈ arg min
G≥0

1
2
· | |W ◦ (X − G ·F) | |2

F
,

s.t. G = ΩG ◦ ΦG + Ω̄G ◦ ∆G .

(36)

The update rule (20) thus applies by replacing W , X , and F by W, X, and F, respectively.

Lastly, for the update of a, the optimization problem (31) provides a sparse approximation of

g2 and can be tackled in several ways. As is, Problem (31) is NP-hard and one can consider its

convex relaxation instead, i.e.,

a = arg min
ã
| |g2 − D · ã| |2

F
+ ν · | |ã| |1 , (37)

where ν is a user-defined threshold balancing the sparsity level. The above equation is the

exact formulation of the LASSO—or equivalently Basis Pursuit Denoising—problem which

has been extensively investigated since [53] and for which many algorithms may be found in

the literature [50]. However, the LASSO algorithms are usually sensitive to the choice of ν

that has to be carefully set [50]. As an alternative, such a problem can also be tackled using

greedy algorithms like Orthogonal Matching Pursuit (OMP) [54] for example. OMP iteratively

incorporates atoms into the sparse decomposition up to a maximum number p of selected atoms or

a given approximation error. Since we found OMP to provide a good performance in preliminary
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tests, we stick with this method in this paper but SpIN-cal might use a more recent sparse

approximation technique if needed.

One main interest of SpIN-cal is that it relaxes the rendezvous requirement needed in IN-cal

and ACIN-cal. Indeed, by using the dictionary, sensors are in virtual rendezvous as long as they

share the same atom support. The exact rendezvous assumption in IN-cal can thus be relaxed

provided some virtual rendezvous still exist. This implies that the Scene discretization can be

refined—i.e., ∆d can be set to a smaller value—without affecting the calibration enhancement.

Moreover, this allows estimating the whole scene even when no sensor senses a given location, as

shown in Appendix B. Moreover, we noticed in our preliminary work [16] that SpIN-cal needed

much less iterations than IN-cal to converge. The structure of SpIN-cal may be summarized in

Algorithm 3.

Algorithm 3 Sparsity constrained extension of IN-cal (SpIN-cal)
Require: G(0), F (0), D, λ

for iter = 1 to ITERMAX do

Updating a using OMP [54] to solve Eq. (31)

Constructing W, X, and F defined in Eq. (34)

Updating G using Eq. (20) with W, X, and F instead of W , X , and F, respectively

Updating F using Eq. (19)

end for

Please note that, as SpIN-cal and ACIN-cal extend IN-cal by adding extra-information in G

and F, respectively, it is straightforward to derive an extension of IN-cal, denoted SpAIN-cal,

which combines the sparse assumption on G and the average constraint on F, as shown in

Algorithm 4.

In the remainder of this paper, we investigate the performance of the low-rank-based approach

using NMF/C [32], and of the IN-cal, ACIN-cal, and SpIN-cal methods with respect to different

parameter values.

E. Discussion

In this subsection, we discuss some potential issues met with the above methods. First of all, it

should be noticed that these approaches require the matrices G and F to be initialized in order to

perform the updates. NMF initialization is known to be tricky, and classical strategies consist of
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Algorithm 4 Sparsity and Average constrained extension of IN-cal (SpAIN-cal)
Require: G(0), F (0), D, λ, f̄, µ

for iter = 1 to ITERMAX do

Updating a using OMP [54] to solve Eq. (31)

Constructing W, X, and F defined in Eq. (34)

Updating G using Eq. (20) with W, X, and F instead of W , X , and F, respectively

Updating F using Eqs. (26) and (27)

end for

a random initialization while some authors propose an initialization provided by experts [39], the

output of another factorization method [55], or of a physical model [56]. In our previous work

[15], [16], we used the natural method proposed in Section III-A as the input of the proposed

IN-cal and SpIN-cal methods, respectively. The low-rank completion stage was using the method

proposed in [42]. Unfortunately, such an initialization was time consuming and we replaced the

truncated SVD-based completion [42] by NMF/C [32]. However, as any NMF technique, NMF/C

must be initialized. This is done as follows: we randomly initialize F around the theoretical values

of the calibration parameters f̄ while we initialize G as follows. Its first column only contains

some ones while the second column g2 is randomly generated. The eventual negative entries of

both matrices G and F are then projected to a small non-negative threshold, in order to ensure

the nonnegativity of the whole matrices. The outputs of NMF/C with such an initialization were

then used to initialize the proposed informed NMF-based calibration methods. We finally noticed

in some preliminary tests that initializing the latter with the above random strategy provided the

same performance than using the output of the natural calibration method using NMF/C. As a

consequence, in this paper, we stick with the above random initialization strategy for the blind

calibration techniques proposed in this paper.

Another issue is the presence of the user-defined thresholds λ and µ in the proposed ACIN-cal,

SpIN-cal, and SpAIN-cal methods. Indeed, the calibration performance of these methods might

be linked to the choice of the values of such parameters. Even if we investigate their influence on

the enhancement of the proposed methods in Section IV, their optimization is out of the scope of

the paper. However, we here discuss some strategies possibly well-suited to that purpose. A first

technique might consist of (i) deriving multiple factor matrices with different values of µ and λ,
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Fig. 2. (a) The 10 × 10 simulated scene S (pollution field); (b) (top) the vectorized scene y, (bottom) three vectorized sensor

readings of y; (c-d): simulated dataset with 25 mobile sensor and 4 reference measurements (in the last column of X) with (c)

ρMV = 0.8 and ρRV = 0.9; (d) ρMV = 0.1 and ρRV = 0.1.

and (ii) providing actual solutions using late fusion, e.g., clustering the outputs of the multiple

runs. Late fusion is classically met with source separation [57] or multiple source localization

[58], when the same parameters are estimated several times. However, such a strategy may

degrade the calibration performance if some of the tested values of the user-defined thresholds

yield poor estimates of F. As an alternative, one can notice that the different terms of the cost

functions in Eqs. (25) and (29) might not be simultaneously optimized. As a consequence, no

unique solution might exist to solve them and one might consider multi-objective optimization

techniques to find the set of the best parameter values (in the sense of a Pareto front) instead

[59]. Combining multi-objective optimization with NMF was recently proposed in [60], [61] and

similar strategies might be used with the proposed techniques as well.

IV. EXPERIMENTAL VALIDATION

In this section, we investigate the performance of the proposed calibration methods. For that

purpose, we simulate a crowdsensing-like particulate matter sensing during a time interval [t, t +

∆t ), which satisfies the assumptions in Section II. The scene S is a 10× 10 discretized area—as

shown in Fig. 2(a)—which is observed by m+1 = 26 sensors, i.e., m uncalibrated and mobile dust

sensors [29] connected to mobile devices and one calibrated, high quality, and mobile sensor5

Once the scene is unfolded, y is a vector of length n = 100. The observed concentrations

in y range between 0 and 0.5 mg/m3, for which the sensor response is assumed to be affine

5Actually and as discussed above, we get k fixed, calibrated, and accurate sensors whose obtained values are modeled as

those of the (m + 1)-th sensor in the mobile sensor calibration problem.
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[29]. For each uncalibrated sensor, each observed data point represents a nonnegative voltage

linked to the corresponding ground truth point in y according to Eq. (1). In particular, following

the datasheet in [29], the offset and gain coefficients are randomly set according to a Gaussian

distribution centered around f̄1 = 0.9 V and f̄2 = 5 V/(mg/m3), respectively, and then projected

onto their respective interval of admissible values—provided by the manufacturer [29]—i.e.,

0 < f1, j < 1.5 and 3.5 < f2, j < 6.5, ∀ j = 1, . . . ,m. We then get a 26 × 100 theoretical

observation matrix for which we randomly keep k + l samples in X only, where k (respectively,

l) is the number of calibrated (respectively, uncalibrated) sensor samples—with k � l—hence

providing the irregular spatial sampling over the scene. Moveover, we remove data in X so that

each uncalibrated sensor is in rendezvous at most one time with the reference sensor, which

is a strong condition as discussed in Section IV-A. Indeed, the performance of the proposed

blind calibration methods not only depends on the number of sensed values in X but also on the

number of rendezvous between uncalibrated and calibrated sensors. We denote ρMV and ρRV

the proportions of missing values in X , and of rendezvous between the uncalibrated sensors and

the calibrated one, respectively. The resulting partially observed matrix X can then be plotted,

according to the values of these parameters, as shown in Figs. 2(c) and 2(d) for example.

Moreover, Gaussian noise realizations may be added to the observed uncalibrated sensor data

and the weight coefficients ρ j defined in Eq. (6) are set to ρ j = 1. Lastly, we construct a

dictionary D with p = 62 atoms, such that S can be decomposed using only 2 atoms of D, i.e.,

y is 2-sparse.

Let us stress that in all the tests performed in this paper, we use the same fixed scene S.

However, for each value of each tested parameter, i.e., the simulation of the sensor calibration

parameters, the proportions ρMV and ρRV, and the input signal-to-noise ratio (SNR), we repeat 40

times the experiment for the sake of statistical significance. Moreover, except when we provide

another criterion, the calibration accuracy is measured using the root mean-square error between

the m estimated f̃ 2, j and actual f2, j uncalibrated gains6, i.e.,

RMSE(f2, f̃2) =

√√√√√ m∑
j=1

( f2, j − f̃ 2, j )2

m
. (38)

6RMSEs computed over the estimated offsets, not plotted in the paper for space considerations, provide a similar performance

as the gain RMSEs.
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Fig. 3. Efficient calibration proportion according to the rendezvous proportion and the missing value proportion, blue color

means no efficient calibration within the trials while red means perfect calibration for all trials with Fig. 3(a): NMFC-cal;

Fig. 3(b): IN-cal; Fig. 3(c) ACIN-cal; Fig. 3(d): SpIN-cal.

A. Global performance of the proposed methods

In this subsection, we aim to characterize the enhancement provided by the proposed cali-

bration methods, i.e., the “natural” approach based on the low-rankness of X using the NMF/C

method to perform the completion of X , and the IN-cal, ACIN-cal, and SpIN-cal methods.

In a first series of tests, we make ρMV and ρRV vary from 0% to 95%, and from 0% to 90%,

respectively. For each pair of parameters (ρMV; ρRV), we generate 40 simulations for which we

run the above methods during 5 · 105 iterations after the same initialization. In this experiment,

we do not add additive noise, the values of µ and λ in Eqs. (25) and (29) are set to 10 and

10, respectively. Their influence on the calibration performance is investigated in Sect IV-C. It

should be noticed that the approximate mean calibrations parameters are set to the exact mean

parameters, which provides an upper bound of the expected performance of ACIN-cal. Actually,

such a perfect knowledge was also used in [11] for a compressed sensing calibration problem.

As explained above, we discuss the effects of the error of estimation of the mean calibration

values in Section IV-C. Inspired by the phase transition diagrams that are commonly used in

matrix completion, we count the proportions of cases when the achieved RMSEs are below 10−7

for each tested value of (ρMV; ρRV) and for each tested methods. The obtained diagrams are

plot in Figs. 3(a) to 3(d).

The natural approach often succeeds in calibrating the network when the network is dense, i.e.,

when the proportion ρMV of missing values is below 50% and the proportion ρRV of rendezvous

between calibrated and uncalibrated sensors is above 60%. Within these conditions, the proportion

of calibration sucess is between 80 and 100%, as shown in Fig. 3(a). When ρMV increases and/or

when ρRV decreases, the method completely fails as it never reaches an RMSE below 10−7 when
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ρMV ≥ 0.8 or ρRV ≤ 0.2.

As we can see in Fig. 3(b), the IN-cal method is much more versatile than the previous

technique as it almost always succeed in calibrating the network, except when there is no

rendezvous between uncalibrated and calibrated sensors or when the propotion ρRV of missing

values is equal to 95%. This shows the relevance of the proposed approach with its specific

parameterization. The loss of performance for the above “extreme" values of ρMV and ρRV weas

expected, as the assumptions needed by the method were not satisfied anymore.

The plot in Fig. 3(c) shows that ACIN-cal takes advantage of the average values of the

calibration parameters to regularize the calibration. In particular, normalizing the rows of F

provides some robustness to the calibration performance when there is no rendezvous between

calibrated and uncalibrated sensors. Let us stress again that these diagrams are obtained when

the average calibration parameters are perfectly estimated. Their poor estimation should provide

a much lower performance, as discussed in Section IV-C.

Lastly, as shown in Fig. 3(d), the SpIN-cal method outperforms all the above techniques as it

always succeeds in performing calibration in all the tests. This was expected as the dictionnary

provides a relaxed condition in terms of rendezvous which regularizes the problem. The SpAIN-

cal technique provides the same performance as SpIN-cal on these tests and the corresponding

diagram is not shown for the sake of readability.

We now deeper investigate the sensitivity of our proposed methods to (i) the missing value

proportion in the data matrix X—due to the network sampling—(ii) the proportion of mobile

sensors having a rendezvous with a reference, and (iii) the input SNR. Except when we make

these parameters vary, we set the proportions ρMV and ρRV of missing values and of rendezvous

between calibrated and uncalibrated sensors to 90% and to 30%, respectively. Moreover, except

when we test the influence of noise, we do not add noise in the simulated matrices. Each

experiment is repeated 40 times and all the methods are run after the same initialization—as

explained in Section III-E—and stopped after 5 · 105 iterations. We evaluate their performance

with the RMSE criterion (38).

1) Influence of the missing value proportion: In order to better characterize the impact of

the missing value proportion on our calibration methods, we make the missing value proportion

ρMV range between 0 and 95%.

Figures 4(a) to 4(e) show the achieved enhancement they provide. The plain curves and the

blue areas represent the median RMSEs and the spread of the reached RMSEs obtained for each
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Fig. 4. Evolution of the RMSE with respect to the missing value proportion: (a) Natural approach; (b) IN-cal; (c) ACIN-cal;

(d) SpIN-cal; (e) SpAIN-cal.

parameter value. One can note that the completion-based calibration is not providing satisfying

results—neither with the median, nor with the envelope—and is almost always outperformed

by all the informed NMF-based calibration methods. The IN-cal technique is performing well

from ρMV = 0% to ρMV = 90% with median RMSEs below 10−12. The large spread of the

envelope is due to the low convergence rate of the method in some cases. It should be noticed

that increasing the number of iteration highly reduces the spread, as shown in [15] where IN-cal

is run with 106 iterations instead of 5 · 105 as in this paper. For ρMV = 95%, the poor calibration

performance is due to the lack of data in X , which makes some uncalibrated sensors not being

connected with calibrated ones, even through a multiple path. As a consequence, the estimation

of F is done up to a scale ambiguity, as discussed in Section II.

ACIN-cal provides a slightly lower median calibration error than IN-cal and a much lower

spread. When the proportion of missing values is high, ACIN-cal provides a much higher

calibration error than with lower values of ρMV (but still much lower than IN-cal in the same

configuration). These results correspond to our expectations, as the average-based regularization
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Fig. 5. Evolution of the RMSE with respect to the input rendezvous proportion: (a) Natural approach; (b) IN-cal; (c) ACIN-cal;

(d) SpIN-cal; (e) SpAIN-cal.

in ACIN-cal was designed to cure calibration problems due to unavailable reference measure-

ments but not those due to some high proportions of missing values. However, one can note

that this regularization also speeds up the NMF convergence, as the envelope is very close to

the median RMSE for parameters ρMV below 95%.

As expected, the SpIN-cal technique is providing better results for all tested proportions of

missing value. The upper limit of the envelope is much lower than the one associated with

IN-cal, thanks to the regularization which speeds up the NMF convergence, as shown in [16].

Lastly, Fig. 4(e) shows that SpAIN-cal combines the "best of" SpIN-cal and ACIN-cal, as the

median performance is almost similar to SpIN-cal while the envelope is much reduced, as in

ACIN-cal.

2) Effect of the proportion of rendezvous between calibrated and uncalibrated sensors: In this

experiment, we make ρRV range between 0 to 100%. The obtained performance with respect

to the rendezvous proportion ρRV is shown in Figs. 5(a) to 5(e). As for the missing value

proportion, all proposed informed NMF methods almost always outperform the natural approach
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based on low-rankness using NMF/C. IN-cal provides a high performance as long as there

exist rendezvous between calibrated and uncalibrated sensors. When the proportion ρRV reduces

to zero, the classical NMF scale ambiguity cannot be fixed, thus leading to a drastic drop of

calibration enhancement. However, let us stress again that even if there is no rendezvous between

uncalibrated and reference sensors, IN-cal still performs relative calibration, which means that

the parameters of each sensor are well estimated up to a common scale ambiguity.

ACIN-cal thus provides a better performance than IN-cal, as it uses the knowledge of the

average calibration parameters to reduce the calibration error when relative calibration is per-

formed with IN-cal. While the RMSEs shown on Fig. 5(c) are almost always the lowest achived

by all the tested methods, let us stress again that the reached performance may be lowered in

the case of a coarser estimation of the mean parameters, as studied in Section IV-C.

Lastly, the performance achieved by both SpIN-cal and SpAIN-cal is constant regardless of

the rendezvous proportion. Indeed and as explained before, the strong rendezvous assumption

needed in IN-cal is not needed anymore by SpIN-cal and SpAIN-cal, since two sensors are in

rendezvous if they share the same atom support. The dictionary thus makes these methods robust

to the proportion of rendezvous between mobile and reference sensors. However and as noticed

above, the average information allows to reduce the spread of the reached RMSEs in SpAIN-cal

with respect to SpIN-cal.

3) Influence of the additive noise: To study the sensitivity of our proposed methods against

the input SNR, we make the input SNR vary from ∞ (no noise) to 0 dB by adding truncated

realizations of Gaussian noise to the data matrix X . The noise realizations are truncated in order

to keep nonnegative the entries of X .

The results obtained with respect to the input SNR are shown in Figs. 6(a) to 6(e) and are

quite similar for all the proposed informed NMF-based calibration methods, except for the lowest

tested input SNRs. Indeed, their median performance linearly decreases with the input SNR. One

might expect SpIN-cal and SpAIN-cal to provide better results than the reached ones. However,

it should be noticed that only G is estimated using the dictionary. This implies that the noise

present in the data still affects the estimation of F, which is mainly investigated in this paper.

Moreover, when the input SNR is 0 dB, the maximum RMSE reached with SpIN-cal is above

105, while all the other methods have a spread (much) below this value. In a few cases, the

atoms selected in the sparse decomposition did not correspond to the actual ones, which provide

a poor calibration enhancement. On the contrary, the additional average information allows to
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Fig. 6. Evolution of the RMSE with respect to the input SNR: (a) Natural approach; (b) IN-cal; (c) ACIN-cal; (d) SpIN-cal;

(e) SpAIN-cal.

reduce this issue in SpAIN-cal. Denoising the data in X using the dictionary is out of the scope

of this paper and is let for future work.

B. Comparison with a multi-hop calibration method

In this section, we propose to compare our calibration methods with the multi-hop technique

proposed in [14] which is a micro-calibration technique exploiting the rendezvous definition used

in our proposed IN-cal method, on which are based our methods.

This state-of-the-art approach consists of sequentially calibrating each mobile sensor of the

network, using their rendezvous with previously calibrated sensors. This method basically con-

sists of

1) selecting a mobile sensor to be calibrated,

2) calibrating this sensor by inferring its measurements in rendezvous with readings provided

by the previously calibrated mobile sensor or a reference sensor,

3) repeating this operation until each mobile sensor is calibrated.
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Fig. 7. Comparison of SpIN-cal with multi-hop calibration [14] with respect to the proportion of missing values in (a) noiseless

and (b) noisy scenarii.

This "multi-hop" calibration was designed for a mobile crowdsensing application when the

sensors are carried by tramways, thus always following the same paths and ensuring a very

large number of rendezvous, even with autoritative sensors. In such a configuration, this method

was shown to provide a good performance. However, when carried by volunteers, the sensor

network might not be that dense and the multiple rendezvous of a mobile sensor with a reference

one is not guaranteed. This is for example the case in the tests reported above, where each

mobile sensor is in rendezvous at most once with the calibrated sensor. We thus propose to

compare the performance of both the multi-hop and our proposed SpIN-cal methods on new

simulated data satisfying the requirements of [14]. These new simulations consist of randomly

removing data in X to match a desired missing value proportion ρMV that we make vary from

0 to 95%. We consider both noiseless and noisy scenarios and we do not pay attention to

the rendezvous proportion and the number of reference measurements in the data. Such an

experiment is repeated 40 times. Figs. 7(a) and 7(b) show the median and the spread of the

RMSEs—as defined in Eq. (38)—reached by the multi-hop (in red) and the SpIN-cal (in blue)

methods, without and with additive noise in the observed data matrix X (with an input SNR

around 30 dB), respectively. In Fig. 7(a), both methods provide a similar performance when

the number of missing values in X is low, i.e., ρMV ≤ 0.8. However, when ρMV is higher, our

proposed calibration approach outperforms [14], which is expected as the minimum number of

rendezvous between the calibrated sensor and any uncalibrated one might be below 2 in some

experiments. For more than 90% of missing values, both methods fail, due to the cases where at

least one sensor is providing less than two distinct measurements. The plots in Fig. 7(b) show



27

0 0.2 0.4 0.6 0.8 110−16

10−12

10−8

10−4

100

Rendezvous prop.
R

M
SE ACIN-cal : µ = 0

ACIN-cal : µ = 1.e − 4
ACIN-cal : µ = 1.e − 2
ACIN-cal : µ = 1

(a)

0 0.2 0.4 0.6 0.8 110−16

10−12

10−8

10−4

100

Rendezvous prop.

R
M

SE

ACIN-cal : µ = 0
ACIN-cal : µ = 1.e − 4
ACIN-cal : µ = 1.e − 2
ACIN-cal : µ = 1

(b)

Fig. 8. Influence of the value of µ on the calibration performance of ACIN-cal when the estimation error on f̄ is (a) equal to

1, and (b) equal to 1.e − 6.

that the median RMSEs reached by SpIN-cal are always below the one reached by the multi-

hop technique, even when the missing value proportion is low. When the number of missing

entries in X is high, the multi-hop method provides a poor calibration estimation accuracy while

the SpIN-cal method yields much lower RMSEs. Actually, when ρMV = 0.95, the performance

reached by SpIN-cal is almost the same in both the noiseless and the noisy configurations.

It should be noticed that when all the assumptions required by the calibration methods are

satisfied—i.e., at least two "diverse-enough" measurements per sensor, at least two rendezvous

with a reference for each sensor—the approach in [14] works faster than our proposed ones

which requires multiple iterations. However, let us stress again that these required conditions—

especially the number of rendezvous—are difficult to hold in real crowdsensing applications,

hence the need for new approaches able to handle a large proportion of missing data and a low

number of rendezvous, as proposed in this paper.

C. Influence of the values of λ and µ

In the proposed calibration methods, different parameters have been introduced and the choice

of their values have been partially discussed in Section III-E.

In the SpIN-cal method (Section III-D), two parameters have to be set, i.e., on the one hand,

the number p of atoms which decompose the signal using the dictionary D, and on the other

hand, the weight λ associated to the regularization term in Eq. (29). In the above simulations,

as the dictionary is constructed in order to perfectly infer the signal with two atoms, we set

p = 2 while the parameter λ is set to 10. We made vary λ from 0.5 to 10 in preliminary tests
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but we did not notice any significant differences between the obtained results. However, in some

real data, as the dictionary will not exactly fit to the observed signal, and as the number of

needed atoms is unknown a priori, these parameters have both to be set w.r.t. the confidence

of the dictionary. It should be noticed that the selection of both these parameters is tricky—and

highly subject to the construction of the dictionary—which is out of the scope of this paper, as

explained in Section III-E.

In ACIN-cal method proposed in Section III-C, as f̄ is provided by the sensor manufacturer,

the weight µ associated to the regularization term in Eq. (25) must be carefully chosen. In

our simulations, we set f̄ to the actual means of the calibration parameters—an optimistic

configuration which was also used in [11]—and µ = 10. However, as briefly explained in

Section III-C, in real situations the true mean parameters are not perfectly known, and Eq. (21)

is approximately true only. Setting a too high value for µ then constrains the means of the rows

of F to a wrong average, which thus provides a poor calibration accuracy. On the contrary, if one

select a small weight µ, then both the ACIN-cal and IN-cal methods might perform favorably.

The influence of µ is highlighted in Figs. 8(a) and 8(b) where we show the performance obtained

with ACIN-cal when we set the missing value proportion to 0.9, we add no noise, and we make

the rendezvous proportion vary from 0 to 100%. The tested values of µ are set to 0—in that

case, ACIN-cal reduces to IN-cal—1E-4, 1E-2, and 1. In Fig. 8(a), f̄ is chosen such that the

distance between f̄ and the true mean parameters is equal to 1 while in Fig. 8(b), f̄ is chosen

with an error of 1.e − 6.

Let us first focus on the case when µ = 0 on both figures. Indeed, in that case, ACIN-

cal is reduced to IN-cal, i.e., the average constraint in not taken into account. The calibration

performance is thus similar to the one studied above, i.e., IN-cal is able to perform calibration

provided there are enough rendezvous between calibrated and uncalibrated sensors. In the tests

in Section IV-A, a perfect estimation of the average calibration parameters was used and the

average constraint allowed to regularize the calibration problem and to reduce the spread. We

now detail the behaviour of ACIN-cal when the average constraint does not perfectly fit to the

theoretical average values.

In Fig. 8(a), the error due to the average calibration parameter is high and affects the calibration

performance for any non-null value of µ. Indeed, when µ = 1, the median RMSE remains around

1 even when the rendezvous proportion ρRV is equal to 1, i.e., when all the data are available. This

shows that the average information has a major impact on the factorization. When µ decreases,
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the RMSEs are slightly lower—as the impact of the average constraint is more balanced by the

factorization—except when ρRV = 0 where the RMSE obtained with IN-cal and the error due

to the average constraint are similar.

Fig. 8(b) shows a slightly different behaviour. In that case, the error due to the average

calibration is rather low. As a consequence, when ρRV = 0, the average constraint in ACIN-

cal allows to improve the RMSE with respect to IN-cal. However, when µ = 10−4, the weight

due to the average constraint is too low and ACIN-cal almost behaves as IN-cal. When ρRV

increases—i.e., when the assumptions needed by IN-cal to perform favorably are satisfied—we

find the same behaviour as above, i.e., the highest tested value of µ makes ACIN-cal stick to

the average calibration estimation error while lower values of µ provide lower RMSEs.

These tests show the importance of the error due to the average constraint on the calibration

performance, hence the interest to take it into consideration as a penalized optimization term in

ACIN-cal. As discussed in Section III-E, the automatic selection of the best value of µ is out

of the scope of this paper but could be investigated, e.g., using late fusion or multi-objective

optimization.

V. CONCLUSION

In this paper, we proposed four informed NMF techniques for mobile sensor calibration. These

methods can take care of the constraints met in crowdsensing applications such as the being able

to handle missing data and few rendezvous between uncalibrated and calibrated sensors. We

deeply investigated their performance on 4800 data simulations and showed they outperformed

a natural technique based on low-rank matrix completion. In particular, our sparsity-based

and average-constrained SpIN-cal and SpAIN-cal methods were shown to be robust to both

the missing value proportion ρMV and the rendezvous proportion ρRV. We then compared

the performance of SpIN-cal with a state-of-the-art multi-hop calibration technique over 400

simulations and showed our approach to be more versatile in noiseless and noisy configurations.

Our work shows that matrix factorization is a promising way to perform mobile sensor calibration

and opens the way to many problems.

In our future work, we will investigate other sensor responses, e.g., nonlinear and multi-linear

models for which specific constraints and update rules must be derived. Moreover, we will aim

to learn a representation of the sensed phenomenon from the irregularly observed signals, instead

of using a fixed dictionary as in this paper. In addition, we will investigate the enhancement
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provided by data denoising using sparse approximation on the calibration performance. Lastly, we

will investigate the performance of the tested methods on real mobile crowdsensing experiments.

APPENDIX A

PROOF OF ACIN-CAL UPDATE RULE FOR F

In this appendix, we aim to derive the update rule for F in the ACIN-cal method. We here

denote J the cost function used in Eq. (25). J can be written as a sum J , J1 + J2 where

J1 = | |X − G · F | |2
F
,

s.t. F = ΩF ◦ ΦF + Ω̄F ◦ ∆F,
(39)

and

J2 =
µ

2
·

�����

�����
1
m

·
(
Ω̄F ◦ F

)
· 1[(m+1)×1] − f̄

�����

�����

2

F

,

s.t. F = ΩF ◦ ΦF + Ω̄F ◦ ∆F .

(40)

Then, introducing the constraint of Eq. (40) in J2 leads to

J2 =
µ

2
·

�����

�����
1
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·
(
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Noticing that Ω̄F ◦ΩF = 0 and Ω̄F ◦ Ω̄F = Ω̄F , we derive
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The derivative of Eq. (42) with respect to the (i, j)-th element of ∆F then reads

∂J2
∂∆Fi j

= µ ·


1
m

*
,

m+1∑
k=1
Ω̄Fik

·∆Fik
+
-
− f̄i


· 1

m
· Ω̄Fi j, (43)

whose matrix extension reads

∂J2
∂∆F

=
µ

m2 · diag
((
Ω̄F ◦ ∆F

)
· 1[(m+1)×1]

)
· Ω̄F −

µ

m
· diag

(
f̄
)
· Ω̄F . (44)

Following the heuristic optimization procedure, we associate the positive part of Eq. (44) with

the positive part of the derivative of J1 and the negative part of Eq. (44) to the negative part of

the derivative of J1, which leads to

∂J+ = Ω̄F ◦
(
GT

(
W◦2 ◦

(
G ·

(
Ω̄F ◦ ∆F

)))
+

µ

m2 · diag
(
(Ω̄F ◦ ∆F

)
· 1[(m+1)×1]

)
· Ω̄F,, (45)
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and

∂J− = Ω̄F ◦
(
GT

(
W 2 ◦ XF

))
+
µ

m
· diag

(
f̄
)
· Ω̄F . (46)

The heuristic update rule for ∆F then reads

∆F ← ∆F ◦
∂J−

∂J+
, (47)

and the global update for F thus reads

F ← ΩF ◦ ΦF + Ω̄F ◦ ∆F ◦
∂J−

∂J+
, (48)

which turns out to be the update rule in Section III-C.

APPENDIX B

ESTIMATION OF THE SENSED FIELD

In this paper, we aim to calibrate the responses of a sensor network, i.e., we aim to accurately

estimate F in the NMF problem. However, the estimate of G and more precisely of its second

column provides an estimation of the sensed field y, as shown in 3. In this appendix, we aim to

investigate its estimation accuracy with the proposed calibration methods. For that purpose, we

consider again the experiments in Section IV-A.

Actually, depending on the chosen calibration approach, not all the entries of y can be

estimated. Indeed, we assumed the existence of rendezvous between sensors but we did not

assume that each location of the Scene was sensed by at least one sensor. This implies that some

entries of y are not accessible through the sensed data in X . Moreover, as one calibrated sensor

provides some values, their corresponding entries in g2 are known. In the experiments reported

below, we thus consider two performance criteria denoted RMSE1(y, g2) and RMSE2(y, g2).

RMSE1(y, g2) (respectively RMSE2(y, g2)) consists of a RMSE computed between y and g2 on

the accessible data in g2 (the whole vector y, respectively) without taking into account the known

entries.

Fig. 9 shows the evolution of these performance criteria with respect to the rendezvous

proportion, in the same experiment as in Section IV-A2 for the calibration performance. In

all these plots, the envelope and the median of RMSE1(y, g2) and RMSE2(y, g2) are plotted in

blue and red, respectively.

Fig. 9(a) put on light the fact that the natural approach based on low-rankness of X completely

fails to estimate the sensed field as both measures are very high. On the contrary—and up to the
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Fig. 9. Evolution of the RMSE1 (in blue) and RMSE2 (in red) with respect to the rendezvous proportion: (a) Natural approach;

(b) IN-cal; (c) ACIN-cal; (d) SpIN-cal; (e) SpAIN-cal.

calibration limits of the methods which were already discussed—the four proposed methods are

able to derive accurate estimations of y in its accessible locations. However, for the locations

when no sensor provides readings, only the sparsity-based techniques, i.e., SpIN-cal and SpAIN-

cal, provide a consistent performance. On the contrary, IN-cal and ACIN-cal fail in estimating

these missing entries.

These tests highlight the interest of matrix factorization techniques which not only allow to

perform sensor calibration but also derive the sensed phyiscal phenomenon.

REFERENCES

[1] R. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state and future challenges,” IEEE Communications Magazine,

vol. 49, no. 11, pp. 32–39, November 2011.

[2] M. Talasila, R. Curtmola, and C. Borcea, “Mobile crowd sensing,” 2015.

[3] L. Wang, D. Zhang, Y. Wang, C. Chen, X. Han, and A. M’hamed, “Sparse mobile crowdsensing: challenges and

opportunities,” IEEE Communications Magazine, vol. 54, no. 7, pp. 161–167, July 2016.

[4] D. Christin, A. Reinhardt, S. Kanhere, and M. Hollick, “A survey on privacy in mobile participatory sensing applications,”

Journal of systems and software, vol. 84, no. 11, pp. 1928–1946, 2011.



33

[5] N. Haderer, R. Rouvoy, and L. Seinturier, “Dynamic deployment of sensing experiments in the wild using smartphones,”

in IFIP Intl. Conf. on Distributed Applications and Interoperable Systems, 2013, pp. 43–56.

[6] B.-T. Lee, S.-C. Son, and K. Kang, “A blind calibration scheme exploiting mutual calibration relationships for a dense

mobile sensor network,” IEEE Sensors Journal, vol. 14, no. 5, pp. 1518–1526, May 2014.

[7] H. Carfantan and J. Idier, “Statistical linear destriping of satellite-based pushbroom-type images,” IEEE Trans. on

Geoscience and Remote Sensing, vol. 48, no. 4, pp. 1860–1871, Apr. 2010.

[8] C. Schulke, F. Caltagirone, F. Krzakala, and L. Zdeborova, “Blind calibration in compressed sensing using message passing

algorithms,” in NIPS 26, 2013, pp. 566–574.

[9] P. H. Schönemann, “On metric multidimensional unfolding,” Psychometrika, vol. 35, no. 1, pp. 349–366, Mar. 1970.

[10] M. Pollefeys and D. Nister, “Direct computation of sound and microphone locations from time-difference-of-arrival data,”

in Proc. of ICASSP, March 2008, pp. 2445–2448.

[11] C. Bilen, G. Puy, R. Gribonval, and L. Daudet, “Convex optimization approaches for blind sensor calibration using sparsity,”

IEEE Trans. Signal Processing, vol. 62, no. 18, pp. 4847–4856, Sept. 2014.

[12] L. Balzano and R. Nowak, “Blind calibration of sensor networks,” in Proc. of IPSN, 2007, pp. 79–88.

[13] J. Lipor and L. Balzano, “Robust blind calibration via total least squares,” in Proc. of ICASSP, May 2014, pp. 4244–4248.

[14] O. Saukh, D. Hasenfratz, and L. Thiele, “Reducing multi-hop calibration errors in large-scale mobile sensor networks,” in

Proc. of IPSN, 2015.

[15] C. Dorffer, M. Puigt, G. Delmaire, and G. Roussel, “Blind calibration of mobile sensors using informed nonnegative matrix

factorization,” in Proc. of LVA-ICA, ser. LNCS, 2015, vol. 9237, pp. 497–505.

[16] ——, “Blind mobile sensor calibration using a nonnegative matrix factorization with a relaxed rendezvous model,” in Proc.

of ICASSP, Mar. 2016, pp. 2941–2945.

[17] ——, “Outlier-robust calibration method for sensor networks,” in Proc. of ECMSM, 2017.

[18] C. Wang, P. Ramanathan, and K. Saluja, “Moments based blind calibration in mobile sensor networks,” in Proc. of ICC

’08, May 2008, pp. 896–900.

[19] C. Wang, P. Ramanathan, and K. K. Saluja, “Calibrating nonlinear mobile sensors,” in Proc. of SECON, Jun. 2008, pp.

533–541.

[20] ——, “Blindly calibrating mobile sensors using piecewise linear functions,” in Proc. of SECON, Jun. 2009, pp. 1–9.

[21] C. Dorffer, M. Puigt, G. Delmaire, and G. Roussel, “Nonlinear mobile sensor calibration using informed semi-nonnegative

matrix factorization with a vandermonde factor,” in Proc. of SAM, Jul. 2016.

[22] R. Piedrahita, Y. Xiang, N. Masson, J. Ortega, A. Collier, Y. Jiang, K. Li, R. Dick, Q. Lv, M. Hannigan, and L. Shang, “The

next generation of low-cost personal air quality sensors for quantitative exposure monitoring,” Atmospheric Measurement

Techniques, vol. 7, no. 10, pp. 3325–3336, 2014.

[23] E. Miluzzo, N. D. Lane, A. T. Campbell, and R. Olfati-Saber, “CaliBree: A self-calibration system for mobile sensor

networks,” in Proc. of DCOSS, ser. LNCS, vol. 5067, 2008, pp. 314–331.

[24] O. Saukh, D. Hasenfratz, C. Walser, and L. Thiele, “On rendezvous in mobile sensing networks,” in Proc. of REALWSN,

ser. LNCS, vol. 281, 2014, pp. 29–42.

[25] J. P. Haldar and D. Hernando, “Rank-constrained solutions to linear matrix equations using PowerFactorization,” IEEE

Sig. Proc. Letters, vol. 16, no. 7, pp. 584–587, July 2009.

[26] C. Dorffer, M. Puigt, G. Delmaire, and G. Roussel, “Fast nonnegative matrix factorization and completion using Nesterov

iterations,” in Proc. of LVA/ICA, vol. LNCS 10179, 2017, pp. 26–35.

[27] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” Computer, vol. 42, no. 8,

pp. 30–37, Aug 2009.



34

[28] Sensirion Corp., “SHT1x humidity and temperature sensor,” 2008, datasheet.

[29] Sharp Corp., “GP2Y1010AU0F compact optical dust sensor,” 2006, datasheet.

[30] E. Cochran, J. Lawrence, A. Kaiser, B. Fry, A. Chung, and C. Christensen, “Comparison between low-cost and traditional

MEMS accelerometers: a case study from the M7.1 Darfield, New Zealand, aftershock deployment,” Annals of Geophysics,

vol. 54, no. 6, 2012.

[31] A. Cichocki, R. Zdunek, A. H. Phan, and S.-I. Amari, Nonnegative matrix and tensor factorizations: applications to

exploratory multi-way data analysis and blind source separation. John Wiley & Sons, 2009.

[32] Y. Xu, W. Yin, Z. Wen, and Y. Zhang, “An alternating direction algorithm for matrix completion with nonnegative factors,”

Frontiers of Mathematics in China, vol. 7, no. 2, pp. 365–384, 2012.

[33] S. Zhang, W. Wang, J. Ford, and F. Makedon, “Learning from incomplete ratings using non-negative matrix factorization,”

in Proceedings of the 2006 SIAM International Conference on Data Mining. SIAM, 2006, pp. 549–553.

[34] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-negative matrix factorization,” in Proceedings of the

26th annual international ACM SIGIR conference on Research and development in informaion retrieval. ACM, 2003,

pp. 267–273.

[35] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix factorization and sparse coding,” Journal of

Machine Learning Research, vol. 11, no. Jan, pp. 19–60, 2010.

[36] M. Puigt, G. Delmaire, and G. Roussel, “Environmental signal processing: new trends and applications,” in Proc. of ESANN,

2017, pp. 205–214.

[37] N. Gillis, “The why and how of nonnegative matrix factorization,” in Regularization, Optimization, Kernels, and Support

Vector Machines. Chapman and Hall/CRC, 2014, pp. 257–291.

[38] D. Guillamet, J. Vitria, and B. Schiele, “Introducing a weighted non-negative matrix factorization for image classification,”

Pattern Recognition Letters, vol. 24, no. 14, pp. 2447–2454, 2003.

[39] A. Limem, G. Delmaire, M. Puigt, G. Roussel, and D. Courcot, “Non-negative matrix factorization under equality

constraints—a study of industrial source identification,” Applied Numerical Mathematics, vol. 85, pp. 1–15, Nov. 2014.

[40] A. Cichocki, S. Cruces, and S. Amari, “Generalized alpha-beta divergences and their application to robust nonnegative

matrix factorization,” Entropy, vol. 13, pp. 134–170, 2011.

[41] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization,” Foundations of Computational Mathematics,

vol. 9, no. 6, pp. 717–772, 2009.

[42] S. R. Becker, E. J. Candès, and M. C. Grant, “Templates for convex cone problems with applications to sparse signal

recovery,” Math. Progr. Comp., vol. 3, no. 3, pp. 165–218, 2011.

[43] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” in Advances in Neural Information

Processing Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. MIT Press, 2001, pp. 556–562.

[44] H. Lantéri, C. Theys, C. Richard, and C. Févotte, “Split gradient method for nonnegative matrix factorization,” in Proc.

of EUSIPCO, 2010.

[45] A. Limem, M. Puigt, G. Delmaire, G. Roussel, and D. Courcot, “Bound constrained weighted NMF for industrial source

apportionment,” in Proc. of MLSP, 2014.

[46] R. Chreiky, G. Delmaire, M. Puigt, G. Roussel, D. Courcot, and A. Abche, “Split gradient method for informed non-negative

matrix factorization,” in Proc. of LVA/ICA, vol. LNCS 9237, 2015, pp. 376–383.

[47] J. M. Stockie, “The mathematics of atmospheric dispersion modeling,” Siam Review, vol. 53, no. 2, pp. 349–372, 2011.

[48] P. O. Hoyer, “Non-negative sparse coding,” in Proc. of NNSP, 2002, pp. 557–565.

[49] ——, “Non-negative matrix factorization with sparseness constraint,” Journal of Machine Learning Research, vol. 5, pp.

1457–1469, November 2004.



35

[50] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A survey of sparse representation: Algorithms and applications,” IEEE

Access, vol. 3, pp. 490–530, 2015.

[51] J. Le Roux, F. J. Weninger, and J. R. Hershey, “Sparse NMF—half-baked or well done?” Mitsubishi Electric Research

Labs, Tech. Rep. TR2015-023, 2015.

[52] R. Hamon, V. Emiya, and C. Févotte, “Convex nonnegative matrix factorization with missing data,” in Proc. of MLSP,

2016.

[53] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society. Series B

(Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[54] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal Matching Pursuit: recursive function approximation with application

to wavelet decomposition,” in Proc. of Asilomar Conf. on Signals, Systems and Comput., 1993.

[55] D. Benachir, Y. Deville, S. Hosseini, M. S. Karoui, and A. Hameurlain, “Hyperspectral image unmixing by non-negative

matrix factorization initialized with modified independent component analysis,” in Proc. of WHISPERS, 2013.

[56] M. Plouvin, A. Limem, M. Puigt, G. Delmaire, G. Roussel, and D. Courcot, “Enhanced NMF initialization using a physical

model for pollution source apportionment,” in Proc. of ESANN, 2014, pp. 261–266.

[57] I. Meganem, Y. Deville, and M. Puigt, “Blind separation methods based on correlation for sparse possibly-correlated

images,” in Proc. of ICASSP, 2010, pp. 1334–1337.

[58] D. Pavlidi, A. Griffin, M. Puigt, and A. Mouchtaris, “Real-time multiple sound source localization and counting using a

circular microphone array,” IEEE Trans. on Audio, Speech, and Language Processing, vol. 21, no. 10, pp. 2193–2206,

October 2013.

[59] C. A. Coello Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary algorithms for solving multi-objective

problems, 2nd ed. Springer, 2007.

[60] K. Foley, D. Greene, and P. Cunningham, “Optimizing conflicting objectives in NMF using Pareto simulated annealing,”

in Proc. of AICS, 2010.

[61] F. Zhu and P. Honeine, “Biobjective nonnegative matrix factorization: Linear versus kernel-based models,” IEEE Trans.

on Geoscience and Remote Sensing, vol. 54, no. 7, pp. 4012–4022, 2016.


	Introduction
	Problem Statement, Definitions and Assumptions
	Proposed Calibration methods
	A natural technique based on the low-rankness of X
	Informed NMF for Sensor Calibration
	Average-constrained extension of IN-cal
	Sparsity-constrained extension of IN-cal
	Discussion

	Experimental Validation
	Global performance of the proposed methods
	Influence of the missing value proportion
	Effect of the proportion of rendezvous between calibrated and uncalibrated sensors
	Influence of the additive noise

	Comparison with a multi-hop calibration method
	Influence of the values of  and 

	Conclusion
	Appendix A: Proof of ACIN-cal update rule for F
	Appendix B: Estimation of the sensed field
	References

