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This paper introduces lfo -for Low Frequency Operators -a graph-based Javascript (ES2015) API for online and o✏ine processing (i.e. analysis and transformation) of data streams such as audio and motion sensor data. The library is open-source and entirely based on web standards. The project aims at creating an ecosystem consisting of platform-independent stream operator modules such as filters and extractors as well as platform-specific source and sink modules such as audio i/o, motion sensor inputs, and file access. The modular approach of the API allows for using the library in virtually any Javascript environment. A first set of operators as well as basic source and sink modules for web browsers and Node.js are included in the distribution of the library. The paper introduces the underlying concepts, describes the implementation of the API, and reports on benchmarks of a set of operators. It concludes with the presentation of a set of example applications.

INTRODUCTION

In many domains, software environments provide the possibility to integrate components that are compliant to a specific API to extend them by particular functionalities. Such interfaces may be used to extend host environments such as operating systems, applications, and libraries. The interest of such interfaces is two fold. From the point of view of the host environment, they allow for extending its functionalities by components that can be developed and distributed independently. On the other hand, developers can focus on the implementation of specific extensions and significantly reduce their dependency on platform-specific issues. In some cases, such extensions are referred to as plugins. In case that multiple host environments implement a given plugin interface, a compliant plugin can be integrated in either of the environments.

Many sound editing and music performance applications implement one or multiple plugin interfaces (e.g. VST, Au-dioUnits, and LADSPA) for real-time and o✏ine audio processing. The VAMP interface [START_REF] Cannam | The VAMP Audio Analysis Plugin API: A Programmer's Guide[END_REF] initially has been created for the SonicVisualiser [START_REF] Cannam | Sonic visualiser: An open source application for viewing, analysing, and annotating music audio files[END_REF] audio editing and visualization environment. The interface allows for implementing plugins that extract information from audio streams and produce multi-dimensional data streams. Apart from its initial host environment, the interface has been implemented by several applications such as Audacity 1 and Sonic Annotator. 2 The PiPo interface [START_REF] Schnell | A Plugin Interface for A↵erent Data Stream Processing Modules[END_REF] provides a more general formalization of the processing of multi-dimensional data streams. While other audio processing interfaces only consider audio streams, the PiPo interface allows modules to consume and to produce streams of di↵erent dimensions and rates. Apart from some experimental implementations, the interface has been integrated into the Max 3 audiovisual programming environment and existing modules are dedicated to the processing of audio and motion data streams.

The recent evolution of web standards and Javascript APIs such as Web Audio [START_REF] Rogers | Web Audio API -W3C Editor's Draft[END_REF] and DeviceOrientation [START_REF] Tibbett | DeviceOrientation Event Specification -W3C Candidate Recommandation[END_REF] permitted the development of audio and music applications that were previously available as native applications only. In the past years, the web platform has integrated elaborated audio and music applications that could profit from the formalization of plugin interfaces such as, for example, audio tools [START_REF] Finch | Peaks.js: Audio waveform rendering in the browser[END_REF][START_REF] Mann | Interactive Music with Tone[END_REF][START_REF] Katspaugh | [END_REF] and collaborative audio editors [START_REF] Monschke | Building a Collaborative Music Production Environment Using Emerging Web Standards[END_REF]. Unfortunately, available audio processing libraries such as Meyda [START_REF] Rawlinson | Meyda: an audio feature extraction library for the Web Audio API[END_REF] and tone.js [START_REF] Mann | Interactive Music with Tone[END_REF] are not always modular nor provide an interface to easily integrate additional components.

The lfo library defines a modular framework to develop processing modules that can be connected to graphs. The interface provides a general formalization of multidimensional streams and, abstractions (i.e. Javascript classes) for modules that transform these streams. As the PiPo interface, the design of lfo focuses on processing that transforms incoming data streams or extracts information from them to produce reduced output streams of relatively low rate. The available modules distributed with the library implement

CONCEPTS AND FORMALIZATION

The basic idea, lfo shares with the PiPo library, is to create a framework for software modules that implement algorithms to be applied to a↵erent data streams in interactive systems. Typically, these data streams are generated by input peripherals such as sensors and other input devices or ready from files and databases. The algorithms used to process the data streams usually reduce their information rate and/or dimensionality in terms of operations such as filtering, mapping, or analysis. The processed data may drive the generation and modulation of audiovisual rendering, such as audio synthesis and visualizations, or may be used to control output peripherals such as actuators and motors. Especially for the purpose of simulation, debugging and batch processing, data streams may also be read from and stored into files and databases. While some transformations, such as simple filters or scaling, solely alter the values of incoming data frames, others may reduce their dimensionality (e.g. an RMS or a projection onto principal components) or even produce a data stream of a di↵erent temporality. A sample rate converter, for example, would transform an incoming stream of frames in a given rate into a stream of a di↵erent rate. An onset detector could receive a stream of a constant sample rate to produce a stream of aperiodic time-tagged markers.

Graphs of Modules

The lfo API implements a graph based approach. As shown in figure 1, a graph generally consists of a source module, one or more operator modules and/or a terminating sink module. 4 While the output of one module can be connected to the inputs of multiple other modules, each module accepts only a single input.

A source module usually acts as an interface to an underlying -usually platform-dependent -API for data acquisition, such as device sensor APIs (e.g. DeviceMotion, De-viceOrientation), network reception, and file input. Other source modules, such as oscillators, may output data that is generated algorithmically. A source module defines the attributes of the source data stream, such as frame rate and frame size, and outputs a stream of frames into the modules connected to its output. The operator modules usually implement platform-independent algorithms that process an incoming data stream and output a transformed stream. An operator can accept any kind of stream at its input or be limited to a certain kind of input stream. While the output stream of some operators inherit the attributes of the input stream, other operators may output a di↵erent kind of stream defining new attributes. A sink module often acts as an interface to system outputs such as peripherals, network transmission, file or database storage. Moreover, the visual rendering of a data stream is usually implemented as a sink.

Insofar the platform-dependencies of a graph are limited to its source and sink modules, stream processing that is implemented by platform-independent operator modules can easily be applied across di↵erent platforms and within different configurations on the same platform. For example,
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A list of available modules is available in the documentation of the library at http://wavesjs.github.io/waves-lfo/. the same stream processing (i.e. an operator or a chain of operators) that is applied to the accelerometer inputs of a mobile web-client to control the parameters of a Web Audio synthesis engine can be easily adapted to render the data on a graphical display (e.g. for debugging), or to transform a data stream read from a file by a Node.js application to control a synthesizer via a MIDI connection.

Streams of Frames

In the formalization of data streams underlying the lfo API, a stream is a succession of frames that consists of a time-tag (i.e. a timestamp associating each frame in a stream to a point in time regarding an arbitrary reference common to all modules of a graph) and data (i.e. the payload of the frame). Currently, the frame data can have one of three types:

• vector , an array of values corresponding to di↵erent dimensions (e.g. x, y, z or mean, stddev, min, max ) • signal , an array of time-domain values corresponding to a fragment of a signal • scalar , a single value that can be arbitrarily considered as a one-dimensional vector or as a signal fragment of one sample The data stream produced by an lfo module is characterized by a set of stream parameters:

• frame size, number of values in the frame data (i.e. number of vector dimensions or signal samples). • frame rate, number of frames per second for streams of regularly sampled frames (0 otherwise). • frame type, type of the frame (i.e. vector, signal or scalar ). • source sample rate, sample rate of the source stream (if any) in samples per second • source sample count, block size of the source stream • description, an array of strings describing the output dimensions of vector and scalar frames (e.g. ['x', 'y', 'z'], ['mean', 'stddev', 'min', 'max']) The output stream parameters of a module are propagated to its connected modules. An operator module can define its output stream parameters as a function of its incoming stream parameters.

IMPLEMENTATION

The distribution of the lfo library provides four di↵erent entry points (see example in figure 2):

• waves-lfo/common contains all platform-independent operators and a few source and sink modules which do not depend on platform specific functions (e.g. EventIn, Logger). • waves-lfo/client additionally exposes source and sink modules specific to web-browsers, such as bindings with the Web Audio API and real-time canvas rendering of the output streams (e.g. AudioInNode, WaveformDisplay, VuMeterDisplay). • waves-lfo/node includes bindings with the file system such as audio file loading and decoding as well as reading and writing of json and csv files. • waves-lfo/core exposes the BaseLfo class and should be imported when creating extensions of the library. The high-level API of the library is strongly inspired by the Web Audio API interface. To create a graph, modules are connected from source to sink (see example in figure 3) using the connect method inherited from the BaseLfo class. However, while an audio graph usually connects multiple inputs to a single output, lfo graphs are composed of a single source that can be connected to multiple outputs. Similarly to the Web Audio API, source modules expose start and stop methods that allow to control the state of the graph. The example in figure 3 also shows how a graph is initialized and started. When the init method is called, the source makes sure that each module of the graph is ready to handle incoming frames. Since the initialization of certain modules can be asynchronous, promises are used to synchronize the initialization of the graph. As part of the initialization, the source also propagates its stream parameters to the modules connected to its outlet. During this step, each module can define its own stream parameters and allocate additional memory. Stream parameters are propagated step by step through the graph down to the sink. When all modules of the graph finish their initialization -beginning from the the sink(s) and successively resolving the promises back to the source -, the source can safely start to produce frames and propagate them through the graph.

This initialization procedure allows for optimizing the performance of an lfo graph when processing an incoming data stream.

Independent of the data type (i.e. vector, signal or scalar), the data sent within the frames from one module to another is implemented as a Float32Array. The time-tag associated to each frame -a Number -is usually defined by the source of the graph using a high precision clock such as performance.now or process.hrtime.

Standalone Module API

As show in the example in figure 4, many operators can be used as standalone modules allowing for applying their algorithm to arbitrary data bu↵ers without connecting the modules to an lfo graph. This alternative API allows, for example, to use the same implementation of a filter -including the initialization and state -as an lfo module or as a filter object that can be applied to any succession of values or arrays without explicitly using the lfo formalism. Moreover, compound lfo operators can use the standalone API of other operators. Our implementation of an Mfcc module, for example, uses the standalone API of the Fft, Mel and Dct operators. 

Bring Your Own Modules

An important motivation for the development of lfo was the idea to create an ecosystem of stream processing modules.

While the development of applications can benefit from a rich set of modules implementing di↵erent functionalities, developers of processing algorithms may appreciate an environment to test and debug their code as well as to easily compare its performance with available implementations of similar features. In this sense, the design of the library aims at creating an easy-to-use API on both ends, the integration of existing modules into an application and the development and distribution of new modules. As shown in the example of figure 5, an lfo module implements an ES2015 class that extends the BaseLfo class. The base class constructor must be called with the definition of the module's parameters 5 and the user defined options that override the default parameters. To handle incoming data stream of di↵erent types, a module has to implement predefined interfaces and follow a small set of conventions. To process incoming vector frames the derived class has to implement the processVector interface. Similarly, processing signal frames requires the derived class to implement the processSignal interface.

According to the type of frames output by the previous module, incoming frames will be routed to the appropriate processing method. If the module does not implement the required interface, an error is thrown when the source is started. To handle scalar frames -which can be considered as vector as well as signal frames -the module first looks for a processScalar method, but falls back on processVector or processSignal if processScalar is not implemented.

For consistency as well as for performance considerations, a module should comply with the following rules:

• Any memory allocation that depends on the modules configuration and/or its stream parameters -for example to create internal ring bu↵ers -should be done in the processStreamParams method called during the 5 Parameters are defined using a small library that implements casting and constraints for a small set of types such as integer, float, enum -https://github.com/ircam-jstools/parameters new operator dedicated at scaling frames by an arbitrary factor. The module implements the processVector interface and can then consume incoming frames of vector type. The example also shows how parameters of a module are defined using a small abstraction that enforces parameters casting.

initialization of the graph. • A module must not modify incoming frames, but write the output data into its own frame.data bu↵er automatically allocated during the initialization of the graph (see code example in figure 5). To implement a standalone API, the module should provide one or several input methods (i.e. inputVector, inputSignal, inputScalar) following the same conventions as the processing methods.

BENCHMARKS

In order to assess the implementation of the operators distributed with the lfo library, we produced benchmarks that compare them with the PiPo C/C++ library and the Meyda (version 4.0.5) Javascript library [START_REF] Rawlinson | Meyda: an audio feature extraction library for the Web Audio API[END_REF]. While the C/C++ benchmarks use the hayai framework6 , the Javascript benchmarks are based on benchmark.js. As shown in the example of figure 6, each iteration of the benchmarks consists in the extraction of a given feature on a whole sound file of 1 second (44100 samples) using di↵erent frame sizes (i.e. 256, 1024 and 4048 samples) without overlap. The last and incomplete frame is always dropped. The results are expressed in number of iterations per second which, given the nature of an iteration, easily allows to evaluate the real-time performance of the implemented algorithms. To get consistent and comparable results across di↵erent libraries, only the processing functions -using the standalone API of the lfo modules -are benchmarked. The measured algorithms, implemented by all tested libraries, are an Fft, an Rms, and Mfcc extraction.

The benchmarks have been performed on a MacBook Pro with a 2.8 GHz Intel Core i7 CPU and 16 GB of 1600 MHz DDR3 RAM under MacOS 10.11.6. The tested Javascript environments are Node.js (8.1.4), Google Chrome (59.0.3071.115, 64-bit), Firefox (54.0. The comparison of the lfo operators to the PiPo C/C++ implementations shows that, the library performs 5.4 to 13.5 times slower than native code for the FFT, 1.1 times to 3 times slower for the RMS and 4.4 to 9.3 times slower for the MFCC extraction. All in all, these results show that the library performs well compared to native binaries, while leaving room for improvements. The comparison to Meyda shows that the lfo operators largely outperform the functions provided by the currently most popular Javascript library available. The particularly bad performance of Meyda's RMS is certainly due to the fact that the library calculates an FFT for all audio features even if the result of the FFT is not used by the requested feature.

The benchmarks show large di↵erences between di↵erent environments. On average, Safari is 1.2 times faster and Firefox 1.4 times faster than Google Chrome. The relatively poor performance of environments based on the V8 Javascript engine (i.e. Google Chrome and especially Node.js) are particularly unexpected.

Mobile Devices

Since many of our envisaged use cases imply mobile devices, our benchmarks include mobile browsers on Android and iOS. The performance of the library was measured using the same test program on both platforms. The benchmarks on Android (6.0.1) use Google Chrome (59.0.3071.125) and Firefox (54.0.1) running on a Samsung A3 (2017) with a octa-core 1.6 GHz CPU and 2 GB RAM (referred to as device A). On iOS (10.3.2) we used Safari running on an iPhone 5C with a dual-core 1. As expected, measured results are drastically slower by an order of magnitude compared to laptop results, and however they show that the library remains usable even in this constrained context. As an example, the slowest measurement (i.e. MFCCs in Google Chrome with a frame size of 4096 samples, or about 93 ms) still performs 27 times faster than real-time with a processing time of approximately 3.4 ms for each frame.

WebAssembly

The WebAssembly open standard [START_REF] Wagner | WebAssembly[END_REF], by enabling the usage of a binary format inside browsers, o↵ers a new way to improve the performance of algorithms while remaining platform independant. The technology has been released as a minimum viable product in Mars 2017. Even if Assembly implementations of some lfo operators are still too experimental to be shipped with the library, they give an idea of the performance improvements enabled by this technology. For this purpose, we have developed an alternative implementation of the FFT lfo operator based on a standard C implementation of the algorithm compiled to WebAssembly (.wasm) using emscripten. 8Benchmarks were run using the same setup as in previous tests, using Google Chrome and Firefox on the MacBook Pro and the Android device. Results are shown in table 3 Measurements show an improvement of overall performances by a factor of 1.9 on average. This confirms that the library would greatly benefit from using small WebAssembly modules as algorithmic units inside operators.

EXAMPLE APPLICATIONS

To illustrate some use cases of the library and its integration into applications, we present a set of example applications.

Mosaicking

The example application shown in figure 7 implements interactive audio mosaicking. This synthesis technique refers to the process of recomposing the temporal evolution of a given target audio file from segments cut out of source audio materials [START_REF] Schnell | Real-Time Audio Mosaicking[END_REF]. In the application, the user can record an excerpt of speech that is analysed by an lfo graph to extract the MFCCs of successive frames. The result of the analysis is used to control a concatenative synthesis process that recomposes the recorded excerpt (i.e. the target) using grains extracted from another audio file (i.e. the source). The source file is analysed server-side in Node.js using the same lfo graph as on the client-side. The application highlights how a graph of operators can be reused across di↵erent environments by simply providing platform-specific sources and sinks. 

Figure 1 :

 1 Figure 1: A basic lfo graph composed of a source, two operators and a sink. The figure also highlights the articulation between platform agnostic operators and platform specific sources and sinks.
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 1 import as lfo from waves lfo / node ;

Figure 2 :

 2 Figure 2: A code example that shows how to import the waves-lfo/node entry point, giving access to source and sink modules specific to the Node.js platform.

Figure 3 :

 3 Figure 3: A code example that highlights the creation of a basic lfo graph that computes the Root Mean Square of signal frames of 512 samples and log the result in the console. The graph is composed of a source, the AudioInBuffer, an operator, the Rms, and a sink, the Logger.

Figure 4 :

 4 Figure 4: A code example that highlights the use of an operator, here the Rms operator, with the standalone API.

Figure 5 :

 5 Figure 5: A code example that highlights the creation of a

Figure 6 :

 6 Figure6: A pseudo-code example that highlights how the benchmarks are created to achieve comparability across the di↵erent libraries. A benchmark iteration consists in the processing of an entire bu↵er of one second sliced in frames of di↵erent sizes.

Figure 7 :

 7 Figure 7: Screenshot of an example application that implements audio mosaicking, a concatenative synthesis technique based on MFCC descriptors of two audio files. The application has been published at the following URL: https://cdn.rawgit.com/wavesjs/waves-lfo/ master/examples/mosaicking/index.html

Table 1 :

 1 1, 64-bit), and Safari (10.1). Detailed results are reported in table 1. Number of iterations per second for computing the FFT, RMS and MFCC of a sound file of 1 seconds at di↵erent frame sizes with no overlapping. The benchmarks compare three libraries, PiPo, Meyda and lfo.

	Frame size	256	1024	4096	
			FFT			
	PiPo (C/C++)	4,078	3,494	3,068	it/s
	Node.js	lfo meyda	330 61.27	285 53.67	266 40.48	it/s it/s
	Chrome	lfo meyda	455 129	388 123	358 79.10	it/s it/s
	Firefox	lfo meyda	542 157	503 180	446 30.60	it/s it/s
	Safari	lfo meyda	673 23.88	623 18.76	562 18.00	it/s it/s
			RMS			
	PiPo (C/C++)	28,662	28,498	31,954	it/s
	Node.js	lfo meyda	11,640 57.58	13,844 51.53	15,328 40.16	it/s it/s
	Chrome	lfo meyda	13,670 112	17,098 108	19,887 73.53	it/s it/s
	Firefox	lfo meyda	9,547 74.38	18,774 79.60	27,317 29.96	it/s it/s
	Safari	lfo meyda	28,284 17.66	21,691 16.35	15,472 16.53	it/s it/s
			MFCC		
	PiPo (C/C++)	2,622	2,604	2,219	it/s
	Node.js	lfo meyda	301 36.34	279 31.60	268 28.38	it/s it/s
	Chrome	lfo meyda	382 52.85	366 38.71	348 36.66	it/s it/s
	Firefox	lfo meyda	449 72.76	473 82.77	444 27.13	it/s it/s
	Safari	lfo meyda	543 10.90	538 10.28	508 11.16	it/s it/s

  3 GHz CPU and 1 GB RAM (referred to as device B ). Detailed results are reported in table 2.

	Frame size	256	1024	4096	
			FFT		
	Chrome (A)	37.95	32.80	27.85	it/s
	Firefox (A)	41.21	36.25	30.98	it/s
	Safari (B )	41.04	34.50	30.76	it/s
			RMS		
	Chrome (A)	1,249	1,512	1,698	it/s
	Firefox (A)	933	1,543	1,856	it/s
	Safari (B )	887	1,612	1,748	it/s
			MFCC		
	Chrome (A)	33.29	31.39	27.45	it/s
	Firefox (A)	36.24	34.48	30.97	it/s
	Safari (B )	35.24	33.37	30.65	it/s

Table 2 :

 2 Number

of iterations per second on mobile devices for computing the FFT, RMS, MFCC of a sound file of 1 seconds at di↵erent frame sizes with no overlapping.

  .

	Frame size		256	1024	4096	
	PiPo (C/C++)		4,078 3,494 3,068 it/s
	Chrome	js wasm	455 826	388 720	358 673	it/s it/s
	Firefox	js wasm	542 1,166 1,044 970 503 446	it/s it/s
	Chrome Android	js wasm	37.95 32.80 27.45 it/s 67.84 60.20 50.66 it/s
	Firefox Android	js wasm	41.21 36.25 30.98 it/s 82.84 77.86 67.78 it/s

Table 3 :

 3 Number of iterations per second for computing the FFT of a sound file of 1 seconds at di↵erent frame sizes with no overlapping. For each tested browser, performance of C/C++ and vanilla Javascript are compared to the performance of the WebAssembly execution.

https://github.com/nickbruun/hayai

https://benchmarkjs.com/

https://github.com/kripken/emscripten

http://cosima.ircam.fr/
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Segmentation

In the example application shown in figure 8, the audio stream captured from the microphone is sent into an lfo graph and analysed in real-time. The loudness and detected onsets are displayed on screen using simple visual elements. To illustrate o✏ine abilities of the library, the user can also record few seconds from the audio stream. The recorded audio bu↵er is sent into a similar lfo graph using the same onset detection for o✏ine segmentation. The extracted markers are displayed on top of the waveform of the recorded bu↵er using the waves-ui library [START_REF] Matuszewski | Interactive Audiovisual Rendering of Recorded Audio and Related Data with the WavesJS Building Blocks[END_REF]. 

Networked Graph

The last example application is a proof of concept that highlights the ability to create lfo graphs composed of several subgraphs distributed across multiple platforms over the network. The application consists of two di↵erent webclients. The first client, running on a mobile device, contains the source of the graph and produces frames extracted from DeviceOrientation events (i.e. measuring the orientation of the mobile device using inertial sensors and compass). The frames are propagated through the server to the other web-client to be graphically displayed on screen. The networked lfo graph is composed of three sub-graphs -one on each client and one on the server -that are connected through WebSocket sources and sinks.

The source code of the application is available at the following URL: https://github.com/wavesjs/waves-lfo/tree/ master/examples/networked-graph

CONCLUSIONS

We have presented the lfo library highlighting underlying concepts and giving some details of its implementation. The benchmarks show that the implemented modules perform very well compared to existing Javascript libraries and comparable C/C++ implementations.

We hope that the lfo API and formalism will be picked up by other contributors and will foster the development of an ecosystem of modules implementing a large range of algorithms as well as new platform bindings. The library easily allows for developing modules that are distributed independently of the core of the library. 9 Even if the library has been designed with interactive audio processing and music information retrieval in mind, the lfo formalism does not prevent the use of existing modules in other applications nor the integration of processing algorithms from other domains.

9

While currently the distribution of the library includes a set of operators, sources and sinks, these modules may be separated from the core and distributed independently in the future.