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RARE-EVENT ANALYSIS OF
MODULATED ORNSTEIN-UHLENBECK PROCESSES

H. M. JANSEN1,3, M. MANDJES1, K. DE TURCK2, S. WITTEVRONGEL3

ABSTRACT. This paper studies Ornstein-Uhlenbeck (OU) processes in a random environ-
ment. The OU model has found widespread use in networking, as a Gaussian approx-
imation of the user-level dynamics that allows explicit analysis; adding modulation to it
allows incorporating phenomena in which the users’ activity level is affected by exogenous
factors. The focus lies on rare-event analysis: under a specific scaling of the parameters in-
volved, we establish the large deviations asymptotics of the probability that the process
reaches an extreme value. The decay rate of this probability is generally only implicitly
available (as the solution to a variational problem), but specializing to the case of Markov
modulation we succeed in devising efficient numerical procedures.
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1. INTRODUCTION

In the performance analysis of communication systems, various canonical elements can
be distinguished. At a detailed time-scale, the amount of information stored at an indi-
vidual network node is modeled as a (stable) queue. The simplest among these is the
classical M/M/1 queue, but substantially more general queues are amenable for analy-
sis. Under rather general circumstances — most notably, it is required that the variance
of the amount of traffic entering in a time window of given length be finite — such sys-
tems can be approximated by Brownian motion reflected at 0; see e.g. [18, Chs. V, IX]. At
a somewhat coarser time-scale, the number of clients simultaneously present is typically
modeled by a mean-reverting process: users enter the system at a roughly constant rate,
but the departure rate is roughly proportional to the number of users present. The sim-
plest model in this class is the M/M/∞ queue, which can also be approximated by its
Gaussian counterpart. As it turns out, this Gaussian process is the well-known Ornstein-
Uhlenbeck (OU) process; see e.g. [16, Section 6.6] and [18, Section 10.4].
In this paper we concentrate on models of the latter kind: mean-reverting models, essen-
tially corresponding to the user-level dynamics. The focus is on developing techniques
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to analyze their rare-event behavior: we present results that facilitate the evaluation of
the probability that at a given point in time the user-level congestion level is unusually
high. Motivated by the reasoning above, we consider the situation that the underlying
dynamics are of the OU type, but we add one distinguishing complication: we allow the
system to react to a random environment. This means that the parameters of the OU pro-
cess depend on the state of an external, independently evolving, process — this process
is typically referred to as the background process. From a practical standpoint, incorporat-
ing such modulation offers substantial advantages: it enables the modeling of all sorts of
phenomena in which the users’ activity level is affected by exogenous factors.

To state our contributions, let us now introduce our model in somewhat greater detail.
We consider the process (M(t))t>0, to be thought of as the aggregate user activity level.
A ‘normal’ (non-modulated, that is) OU process is given, for parameters γ, σ2 > 0 and
α ∈ R, through the stochastic differential equation (SDE)

dM(t) = (α− γM(t)) dt+ σ dB(t),

where (B(t))t>0 is a standard Brownian motion. This OU process, which can be used to
approximate the number of customers in specific classes of infinite-server models, has
been studied in detail. In particular it has been proven that M(t) has a Normal distribu-
tion (with parameters that are explicit functions of α, γ, σ2, and t); the long term mean is
given by α/γ, whereas the long term variance is σ2/(2γ). In addition, the distribution of
the running maximum has been derived, albeit in terms of special functions [1, 7].
The modulated OU process, which is the object of interest of this paper, is represented by
the SDE

dM(t) = (α(J(t))− γ(J(t))M(t)) dt+ σ(J(t)) dB(t),

where (J(t))t>0 is the (independently evolving) background process. We allow a great
level of generality with respect to the modulating process J(·); the assumptions imposed
amount to requiring that certain functionals of the modulating process satisfy the large
deviations principle. A concrete example to keep in mind, also featuring in our earlier
work [13], is that of J(·) corresponding to a finite-state irreducible Markov process.

The main contributions of this paper are the following. In the first place we derive a large
deviations principle with which we can assess the probability that M(t) exceeds some
(large) threshold; we do so in an asymptotic regime in which the parameters are scaled,
comparably to how this was done in prior work [12]. However, to derive the large devia-
tions principle, we take an approach that strongly differs from the approach in [12]. This
different approach is inspired by the approach in [14] and leads to an expression of the
large deviations rate function that is particularly amenable to numerical evaluation. The
resulting expressions of the decay rate of the probability of interest are in terms of varia-
tional problems, with an insightful decomposition into (i) the impact of the background
process and (ii) that of the driving Brownian motion (conditional on the background pro-
cess).
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Then we specifically focus on the numerical evaluation of these variational problems for
the special case that the background process corresponds to an irreducible continuous-
time finite-state Markov chain. We do so by setting up various numerical schemes which
are provably equivalent (as they correspond to the same Hamilton-Jacobi-Bellman equa-
tions), but that differ in terms of numerical features. In particular, we managed to reduce
the number of dimensions of the variational problem that needs to be solved from 2 to 1.
We then consider the special case in which the background process is relatively slow, in
which we find intuitively appealing results; notably, we prove that, along the most likely
path, the background process jumps at most 2d − 2 times, with d the number of states
of the background process; this is in stark contrast with earlier findings for the infinite-
server queue in [4], where the background process jumps at most d− 1 times.
In previous work on modulated mean-reverting processes there was a strong focus on the
central limit regime [2, 5, 13]; under various conditions convergence to an ordinary (i.e.,
non-modulated) OU process has been established. Related results on large deviations for
modulated infinite-server queues can be found in e.g. [4, 14, 17], whereas diffusion-type
processes are considered in e.g. [12, 15].

This paper is organized as follows. Section 2 defines our model and proves the large
deviations asymptotics of the probability of our interest, which are presented in terms of
a so-called large deviations principle [8, Section I.2]. Section 3 then derives the rate function
for the special case that the background process is an irreducible continuous-time finite-
state Markov chain. Next, in Section 4, we focus on the numerical evaluation of the decay
rate; in addition explicit properties are given for the case that the background process
evolves slowly. The last section covers a number of illustrative examples.

2. LARGE DEVIATIONS PRINCIPLE

In this section, we prove the large deviations principle (LDP) for an appropriately scaled
modulated OU process. Let us first define modulated OU processes and next recall the
definition of the LDP.
Let B(·) be a standard Brownian motion and let the background process J(·) be an in-
dependent càdlàg stochastic process taking values in Rd. Additionally, let α : Rd → R,
γ : Rd → R, and σ : Rd → [0,∞) be continuous functions. Then we define the modulated
OU process via the SDE

dM(t) = (α(J(t))− γ(J(t))M(t)) dt+ σ(J(t)) dB(t).

Following the arguments of [13], it turns out that a solution to the above SDE exists and
is unique. Moreover, the arguments in [13] also show that M(t) has a ‘mixed Normal
distribution’, i.e., it has a Normal distribution with random mean

m(t) ≡ mJ(·)(t) := M(0) exp

(
−
∫ t

0
γ(J(r)) dr

)
+

∫ t

0
α(J(s)) exp

(
−
∫ t

s
γ(J(r)) dr

)
ds

and random variance

v(t) ≡ vJ(·)(t) :=

∫ t

0
σ2(J(s)) exp

(
−2

∫ t

s
γ(J(r)) dr

)
ds.
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Informally, the ‘mixed Normal’ property entails that, conditional on the path of the back-
ground process between 0 and t, the random variable M(t) has a Normal distribution.
We scale α 7→ nα and σ2 7→ nσ2. To stress the dependence on the scaling parameter n,
we call the resulting process Mn(t); the corresponding random parameters are denoted
by mn(t) and vn(t). We also allow for a scaling of the process J(t): that is, J(t) 7→ Jn(·),
where conditions on the process Jn(·) will be specified below, but broadly speaking the
scaling should be such that an appropriately scaled and centered version of the vector
(mn, vn) admits an LDP.
Let us briefly recall the definition of an LDP. Given some Hausdorff topological space X
and a sequence of random variables {Xn}n∈N taking values in X , we say that Xn satisfies
the LDP with speed n1−2β and rate function I if

lim sup
n→∞

n2β−1 logP(Xn ∈ F ) ≤ − inf
a∈F

I(a)

for all closed sets F ⊂ X and

lim inf
n→∞

n2β−1 logP(Xn ∈ G) ≥ − inf
a∈G

I(a)

for all open sets G ⊂ X . Here, I is a nonnegative lower semicontinuous function and
β ∈ [0, 1/2). If β = 0, then this definition coincides with the classical definition of an LDP.
If β ∈ (0, 1/2), then this definition gives the definition of an MDP (moderate deviations
principle). If we do not specify the speed of an LDP, we mean the classical LDP. For more
background on LDPs and MDPs, see e.g. [8] and [10].
The following theorem, which is the main result of this section, states that under the
proviso that a scaled and centered version of mn(t) jointly with a scaled version of vn(t)

satisfies the LDP, then so does an appropriately centered and scaled version of Mn(t).

This LDP is in terms of two functions L and ψ, where L : R× [0,∞)→ [0,∞] is given by

L (x, y) :=


0 if x = 0,

1
2

x2

y
if x 6= 0, y > 0,

∞ if x 6= 0, y = 0,

and ψ : R×[0,∞)→ [0,∞] is some rate function. Given ψ, we define the set Ψ := {(m, v) :

ψ(m, v) <∞}.

Theorem 2.1. Let ρ(t) be a random variable and let β ∈
[
0, 1

2

)
. Suppose that the random vector

(1)
(
nβ
(
mn(t)

n
− ρ(t)

)
,
vn(t)

n

)
satisfies the LDP with speed n1−2β in R× [0,∞) with rate function ψ. Then

nβ
(
Mn(t)

n
− ρ(t)

)
satisfies the LDP with speed n1−2β , with the corresponding rate function I given by

(2) I(x) := inf
(m,v)∈Ψ

[L (x−m, v) + ψ(m, v)].
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Proof. The proof consists of a lower bound and an upper bound.
We start with the lower bound. LetG ⊂ R be open and let x ∈ G. Take any δ > 0 such that
B(x, δ) ⊂ G (where B(x, δ) is an open ball of radius δ and center x) and fix (m, v) ∈ Ψ.
Let ε = δ/2 and denote

An ≡ An(ε) :=

{
nβ
(
mn(t)

n
− ρ(t)

)
∈ B(m, ε),

vn(t)

n
∈ B(v, ε)

}
.

Because ψ(m, v) <∞, there exists Nε ∈ N such that P(An) > 0 for all n ≥ Nε. Now write

P
(
nβ
(
Mn(t)

n
− ρ(t)

)
∈ G

)
> P

(
nβ
(
Mn(t)

n
− ρ(t)

)
∈ B(x, δ)

)
> P

({
nβ
(
Mn(t)

n
− ρ(t)

)
∈ B(x, δ)

}
∩An

)
= P

(
nβ
(
Mn(t)

n
− ρ(t)

)
∈ B(x, δ)

∣∣∣∣An

)
P(An)(3)

and observe that, as we took ε = δ/2,

P
(
nβ
(
Mn(t)

n
− ρ(t)

)
∈ B(x, δ)

∣∣∣∣An

)
= P

(
nβ−1(Mn(t)−mn(t)) + nβ

(
mn(t)

n
− ρ(t)

)
∈ B(x, δ)

∣∣∣∣An

)
> P

(
nβ−1(Mn(t)−mn(t)) ∈ B(x−m, δ/2)

∣∣∣An

)
.

Recall that the random variable nβ−1(Mn(t)−mn(t)) has a Normal distribution with
mean 0 and (random) variance n2β−1 vn(t)/n. As a consequence, it is easy to see that
the following lower bound applies:

lim inf
n→∞

n2β−1 logP
(
nβ−1(Mn(t)−mn(t)) ∈ B(x−m, δ/2)

∣∣∣An

)
> lim inf

n→∞
inf

σ2∈B+(v,ε)
n2β−1 logP

(
N
(

0, n2β−1σ2
)
∈ B(x−m, δ/2)

)
.(4)

Here,B+(v, ε) := B(v, ε)∩[0,∞) and N
(
a, b2

)
represents a Normally distributed random

variable with mean a and variance b2. Observe that B+(v, ε) is nonempty, since P(An) >

0. We are left with evaluating the behavior of the lower bound (4).
If v − ε > 0, then (4) equals

lim inf
n→∞

inf
σ2∈B(v,ε)

n2β−1 log

∫ x−m+δ/2

x−m−δ/2

1√
2πn2β−1σ2

e
− 1

2
z2

n2β−1σ2 dz

= lim inf
n→∞

inf
σ2∈B(v,ε)

n2β−1 log

∫ x−m+δ/2

x−m−δ/2
e
− 1

2
z2

n2β−1σ2 dz

= lim inf
n→∞

n2β−1 log

∫ x−m+δ/2

x−m−δ/2
e
n1−2β

(
− 1

2
z2

v−ε

)
dz

= − inf
a∈B(x−m,δ/2)

1

2

a2

v − ε = − inf
a∈B(x,δ/2)

L (a−m,max{0, v − ε}).

The penultimate equality follows from Varadhan’s Lemma [8, Thm. 4.3.1].
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The case that v − ε 6 0 should be dealt with separately. If in addition to v − ε 6 0 also
0 6∈ B(x−m, δ/2), then (4) equals

lim inf
n→∞

n2β−1 logP(N (0, 0) ∈ B(x−m, δ/2)) = −∞
= − inf

a∈B(x,δ/2)
L (a−m,max{0, v − ε}).

We finally consider the case that v − ε 6 0 and 0 ∈ B(x−m, δ/2). It is readily seen that
in this case there exists δ′ > 0 such that B(0, δ′) ⊂ B(x−m, δ/2). As a consequence, (4) is
bounded below by

lim inf
n→∞

inf
σ2∈B+(v,ε)

n2β−1 logP
(
N
(

0, n2β−1σ2
)
∈ B

(
0, δ′

))
= lim inf

n→∞
inf

σ2∈(0,v+ε)
n2β−1 logP

(
N
(

0, n2β−1σ2
)
∈ B

(
0, δ′

))
= lim inf

n→∞
inf

σ2∈(0,v+ε)
n2β−1 logP

(
N (0, 1) ∈ B

(
0,
√
n1−2β δ′/

√
σ2
))

= lim inf
n→∞

n2β−1 logP
(
N (0, 1) ∈ B

(
0,
√
n1−2β δ′/

√
v + ε

))
= 0 = − inf

a∈B(x,δ/2)
L (a−m,max{0, v − ε}).

Now recalling the definition of An, lower bound (3), and using that ε = δ/2, we thus
obtain for any open G,

lim inf
n→∞

n2β−1 logP
(
nβ
(
Mn(t)

n
− ρ(t)

)
∈ G

)
> lim inf

n→∞
n2β−1 logP

(
nβ
(
Mn(t)

n
− ρ(t)

)
∈ B(x, δ)

∣∣∣∣An

)
+ lim inf

n→∞
n2β−1 logP(An)

> − inf
a∈B(x,δ/2)

L (a−m,max{0, v − δ/2})− inf
(m̌,v̌)∈B(m,δ/2)×B(v,δ/2)

ψ(m̌, v̌).

The next step is to take δ ↓ 0 and to use the lower semicontinuity of both L and ψ, so as
to obtain that

lim inf
n→∞

n2β−1 logP
(
nβ
(
Mn(t)

n
− ρ(t)

)
∈ G

)
> −L (x−m, v)− ψ(m, v).

Since this holds for any x ∈ G and (m, v) ∈ Ψ, it follows that

lim inf
n→∞

n2β−1 logP
(
nβ
(
Mn(t)

n
− ρ(t)

)
∈ G

)
> − inf

x∈G
inf

(m,v)∈Ψ
[L (x−m, v) + ψ(m, v)],

as required.
We now turn to the upper bound. To prove this large deviations upper bound, take any
closed set F ⊂ R. Let µn denote the probablity measure on R × [0,∞) induced by the
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random vector (1). Then

P
(
nβ
(
Mn(t)

n
− ρ(t)

)
∈ F

)
= P

(
nβ−1(Mn(t)−mn(t)) + nβ

(
mn(t)

n
− ρ(t)

)
∈ F

)
=

∫
R×[0,∞)

P
(
N
(

0, n2β−1v
)

+m ∈ F
)

dµn(m, v)

6
∫
R×[0,∞)

2 exp

(
− inf
x∈F

L
(
x−m,n2β−1v

))
dµn(m, v)

=

∫
R×[0,∞)

2 exp

(
n1−2β

[
− inf
x∈F

L (x−m, v)

])
dµn(m, v),

where the inequality follows from [9, Lemma 4.1]. Consequently, we have, as an imme-
diate application of Varadhan’s Lemma [8, Thm. 4.3.1],

lim sup
n→∞

n2β−1 logP
(
nβ
(
Mn(t)

n
− ρ(t)

)
∈ F

)
6 sup

(m,v)∈R×[0,∞)

[
− inf
x∈F

L (x−m, v)− ψ(m, v)

]
= − inf

x∈F
inf

(m,v)∈Ψ
[L (x−m, v) + ψ(m, v)].

This completes the proof. �

Remark 2.2. The decomposition featuring in (2) lends itself to an appealing interpreta-
tion. The term ψ(m, v) can be interpreted as the ‘cost’ of the background behaving such
thatMn(t) has meanm and variance v, whereas L (x−m, v) is the ‘cost’ of a Gaussian ran-
dom variable with mean m and variance v attaining the value x. Similar decomposition
results can be found in e.g. [12, 15, 17].

3. THE MARKOV-MODULATED ORNSTEIN-UHLENBECK PROCESS

In this section we derive the LDP for the Markov-modulated OU (MMOU) process M(·),
i.e., the OU process that is modulated by an irreducible Markov chain J(·) with state space
{1, . . . , d} and generator matrix Q. For ease of exposition, we assume that M(0) = 0, but
we note that this assumption can be easily lifted. The scaling J(·) 7→ Jn(·) we consider
first corresponds to a linear scaling of the generator matrix, which means that Jn(·) is the
Markov-chain generated by nQ; the section is concluded with a few reflections on the
case that Q is scaled sublinearly in n.
We use the following strategy to establish the LDP. First, we show that the empirical
measure induced by the Markov chain satisfies the LDP in an appropriate space. Then,
we observe that (1) may be viewed as a continuous map defined on this space. Third, we
invoke the Contraction Principle [8, Thm. 4.2.1] to derive the LDP for (1) and thus obtain
from Thm. 2.1 the LDP for the scaled MMOU process together with the corresponding
rate function.
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Following [12], we define Mt as the space of d-dimensional functions ν : [0, t]×{1, . . . , d} →
R that may be represented as νi(s) =

∫ s
0 Kν(i; r) dr, where Kν(i; ·) : [0, t] → [0, 1] is Borel

measurable and satisfies
∑d

i=1Kν(i; r) = 1 for all r ∈ [0, t]. The function Kν is referred to
as the kernel of ν. We may interpret ν as a function measuring the amount of time a pro-
cess has spent in each state, where Kν(i; r) is the infinitesimal fraction of time the process
spends in state i at time r. As Mt is a subspace of the space of continuous functions, we
equip Mt with the supremum norm.
Let Zn be the empirical measure corresponding to the Markov chain Jn(·), i.e.,

Zn(i; s) :=

∫ s

0
1{Jn(r)=i} dr

for i ∈ {1, . . . , d} and s ∈ [0, t]. Then Zn is a random element of Mt and [12, Cor. 3.3]
asserts that Zn satisfies the LDP in Mt with the corresponding good rate function given
by ∫ t

0
Ĩ(Kν(s)) ds(5)

for ν ∈Mt, where Ĩ is the rate function defined as

Ĩ(Kν(s)) := sup
u>0

[
−

d∑
i=1

(Qu)i
ui

Kν(i; s)

]
,(6)

where u > 0 is meant coordinatewise; for further background on the underlying LDP see
e.g. [11, Thm. IV.14].
We know that Mn(t) has a Normal distribution with random mean mn(t) and random
variance vn(t). Now the crucial insight is that the joint behavior of mn(t) and vn(t) (as
captured by (1)) is a continuous function of Zn. Indeed, defining

ζm(ν)(t) :=

∫ t

0

d∑
i=1

α(i)Kν(i; s) exp

−∫ t

s

d∑
j=1

γ(j)Kν(j; r) dr

ds

and

ζv(ν)(t) :=

∫ t

0

d∑
i=1

σ2(i)Kν(i; s) exp

−2

∫ t

s

d∑
j=1

γ(j)Kν(j; r) dr

ds,

it is readily verified that ν 7→ (ζm(ν), ζv(ν)) constitutes a continuous map from Mt to
R× [0,∞) and that (1) coincides with (ζm(Zn), ζv(Zn)) when β = 0 and ρ(t) = 0.
Since Zn satisfies an LDP in Mt, it follows from the Contraction Principle that (1) satisfies
the LDP in R× [0,∞) with corresponding rate function

ψ(m, v) = inf
ν∈Mt:(ζm(ν),ζv(ν))=(m,v)

∫ t

0
Ĩ(Kν(s)) ds.

Then Thm. 2.1 implies that 1
nMn(t) satisfies the LDP with rate function

(7) I(x) = inf
(m,v)∈Ψ

[L (x−m, v) + ψ(m, v)].
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We can also consider the case where the background chain is scaled at a slower speed, that
is Q 7→ nαQ, for α ∈ [0, 1). With slight abuse of notation, we denote by Jnα(·) a Markov
chain with generator nαQ and by Znα its empirical measure. For the moment, assume
that α > 0. Then we know from [12, Cor. 3.3] that Znα satisfies the LDP in Mt with speed
nα and rate function given by Eqn. (5). Since this rate function is finite everywhere (cf.
[11, Lem. IV.22]), it follows that

lim inf
n→∞

1

n
logP(Znα ∈ G) = lim inf

n→∞

1

n1−α
1

nα
logP(Znα ∈ G) = 0

for every nonempty open set G ⊂ Mt. Consequently, Znα satisfies the LDP in Mt with
speed n and rate function 0 if α > 0. This also trivially holds for the case α = 0. It follows
that, under the scaling Q 7→ nαQ for some α ∈ [0, 1), the random vector (1) satisfies the
LDP in R× [0,∞) with speed n; the corresponding rate function ψ(m, v) is 0 when there
exists a ν such that ζm(ν)(t) = m and ζv(ν)(t) = v, and∞ elsewhere.

4. REFORMULATION OF THE VARIATIONAL PROBLEM

In this section, we reformulate the variational problem (7) in which the LDP correspond-
ing to MMOU was presented, in a form that is easier to solve numerically. As it will turn
out, the new formulation offers additional insight as well.
To this end, we transform the problem that we found in the previous section into the
control problem (A) and derive its Hamilton-Jacobi-Bellman equation. By doing so, we
reduce the dimension of the control problem from 2 dimensions to just 1. Next, we point
out an equivalent (but at first appearance very different) control problem (B), followed
by some observations on the numerical procedure. We conclude this section by demon-
strating some properties of the model in the slow regime. Note that in this section, we
will make use of various concepts in optimal control and calculus of variations. We refer
to [3] for an excellent introduction to all of these topics.

4.1. The control problem and its HJB equation. We formulate a variational problem that
yields the decay rate of the (rare) event that the Markov-modulated OU process reaches
value a at time T , conditional on it starting off from level x at time t; the scaling considered
corresponds to β = 0 in the terminology of Section 2.

From (7), we have immediately have that

I(a) = inf
ν∈Mt

[
L (a− ζm(ν), ζv(ν)) +

∫ T

t
Ĩ(Kν(s)) ds

]
.

For numerical convenience, instead of dealing with the vectors ν that record the occu-
pation measures, we will work with their kernels Kν(·), which we denote as π(·) in this
section. They consist of non-negative entries that add up to 1, and can be viewed as local
‘frequencies’ to be in a certain state averaged over a small interval of time. We can show
that an optimization over π can be translated into one over ν and vice versa.
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Then, by rewriting ζm(ν) and ζv(ν), we straightforwardly transform the LDP into varia-
tional problem (A): for t < T ,

(A) JA(x, t) = inf
π(·)

(
(m(T )− a)2

2v(T )
+

∫ T

t
Ĩ(π(s))ds

)
where, for s ∈ (t, T ],

ṁ(s) =

d∑
i=1

πi(s)(αi − γim(s)), m(t) = x,

v̇(s) =
d∑
i=1

πi(s)(σ
2
i − 2γiv(s)), v(t) = 0.

Here Ĩ(·) is the large-deviations rate function of Eq. (6).

We now derive the HJB equation for this control problem (which is slightly non-standard
due to the occurrence of final costs etc.). In this derivation, we tacitly assume that the
value function JA is differentiable with respect to t and x without proving it, as we feel
that a fully rigorous treatment would be beyond the scope of the paper.

By invoking Bellman’s principle on time t + ∆t and position x + a′∆t (without loss of
generality) we find

JA(x, t) = inf
a′,π(.)

(∫ t+∆t

t
Ĩ(π(s))ds+

(m(t+ ∆t)− x− a′∆t)2

2v(t+ ∆t)
+ JA(x+ a′∆t, t+ ∆t)

)
.

After ‘Tayloring’, dividing by ∆t and ignoring o(∆t)-terms, it turns out that

0 = inf
a′,π

(
Ĩ(π) +

∑
i(πi(t)(αi − γia)− a′)2

2
∑

i πi(t)σ
2
i

+ a′ ∂xJ
A + ∂tJ

A

)
,

this is due to the fact that

m(t+ ∆t)− x− a′∆t = m(t) + ∆t ·
∑
i

πi(t)(αi − γix)− x− a′∆t,

while
v(t+ ∆t) = ∆t

∑
i

πi(t)σ
2
i .

As there are no constraints on a′, we can find the minimum by differentiating and finding
the zero of the resulting expression:

∂xJ
A =

∑
i πi(αi − γix)− a′∑

i πiσ
2
i

,

leading to
a′ = ∂xJ

A
∑
i

πiσ
2
i +

∑
i

πi(αi − γix).

We conclude that we have found the relation

(8) ∂tJ
A + inf

π

(
Ĩ(π) + ∂xJ

A
∑
i

πi

(
αi − γix− ∂xJA

1

2
σ2
i

))
= 0.
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In order to gain some intuition for this HJB equation, we define control problem (B) that
has —as it will turn out— the same HJB equation:

(B) JB(x, t) = inf
π(·),x(·)

(∫ T

t

n(s)2

2
∑

i πi(s)σ
2
i

ds+

∫ T

t
Ĩ(π(s))ds

)
,

where, for a given path x(·),

n(s) := ẋ(s)−
∑
i

πi(s)(αi − γix(s)); x(t) = x,

for s ∈ (t, T ]. Evidently, the value of x(T ) should match the target level a. In approach
(B) the decay rate is expressed as an integral over ‘local’ costs; it is a special case of the
sample-path LDP that was derived in [12, Thm. 3.1].

Problem (B) can be considered as the standard HJB use case:

∂tJ
B + inf

π,n

(
Ĩ(π) + ∂xJ

B

(∑
i

πi(αi − γia) + n

)
+

n2

2
∑

i πiσ
2
i

)
= 0.

The optimization over n can be done explicitly, and doing so, we eventually find the same
equation for JB as for JA. We thus conclude equivalence of both HJB equations.
Observe that the variational problems (A) and (B) have a markedly different appearance:
both involve an optimization over pathsπ(·) (recording the evolution of the state frequen-
cies of the background process), but the other term in the minimization looks significantly
different.

4.2. Solving the HJB equation with the Pontryagin minimum principle. We now point
out how the HJB equation (8) can be solved numerically. There are several widely differ-
ent solving strategies (see e.g. [3]). We mention the direct approach (that is, discretizing
the partial differential equation and translating the problem into a nonlinear program),
dynamical programming approaches, and approaches based on Pontryagin’s minimum
principle. We have opted for the latter because as we will see, it is an excellent fit with
a minimal numerical burden. Corresponding to the HJB equation (8), we identify the
Hamiltonian 1:

H(x, θ,π) = Ĩ(π) + θ
∑
i

πi

(
αi − γix−

1

2
σ2
i θ

)
.

From this we readily derive the Pontryagin equations. Following the standard procedure,
we find the state equation

ẋ(t) = ∂θH =
∑
i

πi(t)
(
αi − γix(t)− σ2

i θ(t)
)
,

and the co-state equation
θ̇(t) = −∂xH =

∑
i

πi(t)γi θ(t).

1The Hamiltonian in control theory was conceived of by Lev Pontryagin and was inspired by (but differ-
ent from) the Hamiltonian in mechanics. It can be viewed as an extension of the idea of Langrange multipli-
ers. See e.g. [3].
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Due to the local optimality principle, we thus obtain

π(t) = arg min
π
H(x(t), θ(t)),

upon which the boundary conditions x(0) = x and x(T ) = a are imposed. As we have
two boundary conditions on x(·), but none on θ(·), we have a so-called two-point boundary
problem. Also for this subproblem, there are different approaches, but one of the simplest
is the shooting method, which consists of repeatedly guessing and refining the value of
θ(0) which leads the system to the desired target a. As θ(0) is a scalar in this case, and the
reached final point is monotone in θ(0), we can solve it efficiently by what boils down to
a secant method.
Once we have solved this system of two ordinary differential equations and one opti-
mization problem, we find the decay rate by plugging the optimal paths x(·) and π(·)
back into the formula (B).
Note that we can also solve the original control problem (A) directly by Pontryagin’s
method. However, as this constitutes a control problem with two state dimensions (i.e.,
m and v), it is numerically more cumbersome than the approach taken here (in particular
it requires a two-dimensional shooting method, which is numerically more fragile).

4.3. The slow regime. In this subsection we consider the (limiting) regime where the
background chain is slow. What we mean by this, is that α 7→ nα and σ2 7→ nσ2 as before,
but the background process (and thus the entries of the Q matrix) remains unscaled, or
is sublinearly scaled (e.g. by a factor nα for some α ∈ [0, 1). Intuitively speaking, this
effectively entails that the probability for the background chain to follow a deviant path
dominates the probability of the OU process doing so, and hence the contribution corre-
sponding to the integral over I(π(t)) in the control problems (A) and (B) vanishes. We
refer to the remarks at the end of Section 3 that indicate how this intuition can be made
rigorous.
The Hamiltonian of the control problem under consideration therefore has the following
shape:

(9) H(x, θ,π) =

d∑
i=1

πiθ

(
αi − γix−

1

2
σ2
i θ

)
.

We note that the Hamiltonian is stationary along the optimal path (x?(t), θ?(t),π?(t)).
Indeed, when the final time t of the control problem is fixed and the Hamiltonian does
not depend explicitly on time (∂tH ≡ 0), then

H(x?(t), θ?(t),π?(t)) ≡ constant.

Also, according to the Pontryagin principle, the optimal costate θ?(t) satisfies

θ̇?(t) = −∂xH =

d∑
i=1

π?i (t)γiθ
?(t).

We see that θ?(t) is a monotone increasing (decreasing, respectively) function under the
proviso that θ?(0) > 0 (θ?(0) < 0, respectively). We concentrate for now on θ?(0) > 0, but
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an analogous reasoning can be made for θ?(0) < 0; it is obvious that θ?(0) = 0 is a trivial
case.
Without loss of generality, suppose that the Hamiltonian along the optimal path equals
the number H . Then, the optimal path of the state x?(θ) (considered as a function of the
co-state, which we can do, as the co-state is monotonously increasing), is given by

(10) x?(θ) =
1

θ
min

i∈{1,...,d}

(
− σ

2
i

2γi
θ2 +

αi
γi
θ − H

γi

)
,

where we used the fact that γi > 0 for all i ∈ {1, . . . , d}.. Notice that in this expression
the minimum is taken over d concave parabolas (observe that all coefficients σ2

i /(2γi) are
non-negative). In case some σi are zero, the corresponding parabolas degenerate into
straight lines.
To construct an optimal path x?(t) satisfying x?(0) = x and x?(T ) = a, we first identify
the θ0 and θT satisfying x?(θ0) = x and x?(θT ) = a, and then construct the accompanying
θ?(t). Note that by fixingH , we fix the time T at which the desired end point a is reached,
so we have to vary H to find the path that reaches a at time T (which can be done by an
elementary bisection procedure).

We proceed by establishing structural properties of the resulting optimal path. The fol-
lowing lemma identifies an upper bound on the number of jumps in the background
process along the optimal path.

Lemma 4.1. In the slow regime, the optimal path of the background process of a OU process
modulated by a Markov chain with d states is at most 2d − 2, and for every d there is a set of
parameters for which this maximum number of jumps is reached.

Proof. We order the parabolas according to the times they become the minimal parabola
for the first time. Parabola 1 is necessarily the parabola with the smallest quadratic coef-
ficient σ2

i /(2γi), parabola 2 is the one that becomes minimal after that, etc. Now, if at a
certain point θ1 the minimal parabola changes from n ∈ {1, . . . , d} back to m ∈ {1, . . . , d}
(withm < n), then this means that parabolasm+1,m+2, . . . , n cannot be minimal parabo-
las in (θ1,∞), as they have intersected already twice with parabola m: once on their way
to becoming the minimal parabola, and once giving back the top spot to parabola m (at
θ1 for parabola n, before that for the parabolas m + 1, . . . , n − 1).We say that the parabo-
las m + 1,m + 2, . . . , n become inactive at θ1, or remain inactive, in case a previous jump
instant made them already so.
A maximal number of jumps is thus achieved when at each jump instant either a fresh
parabola becomes minimal, or causes only 1 parabola to become inactive. In such a
scheme, each parabola except the first one has two jumps associated with it (when it
becomes minimal for the first time and when it becomes inactive. Hence the total number
of jumps is at most 2d− 2. �

Remark 4.2. We can contrast the result of Lemma 4.1 with the corresponding infinite-
server case, where it was found that for d background states there are at most d−1 jumps.
This was shown by proving that along the optimal path all states are visited at most once;
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see [6] for the variant of the Markov-modulated infinite-server queue in which the service
times are sampled upon arrival, and [4] for the variant in which the hazard rate of leaving
the system changes is determined by the current state of the background process.
Compared to Markov-modulated infinite server queue, in the MMOU case the set of pos-
sibilities is much richer. As two striking examples, we mention the ’necklace’, which
follows a path of the type

1 ◦ 2 ◦ 1 ◦ 3 ◦ 1 ◦ 4 ◦ 1 ◦ 5 ◦ 1 ◦ · · · ◦ 1 ◦ d ◦ 1

(with d visits to state 1, and one visit to the other d− 1 states, corresponding with 2d− 2

jumps) and the ’lotus’

1 ◦ 2 ◦ 3 ◦ · · · ◦ (d− 1) ◦ d ◦ (d− 1) ◦ · · · ◦ 1

(with every state except the d-th being visited twice, also corresponding with 2d − 2

jumps).

5. NUMERICAL EXPERIMENTS

In this section, we illustrate the numerical procedures detailed in the previous section,
as well as the observation of the maximum number of jumps. Specifically we consider
Ornstein-Uhlenbeck processes modulated by a two-state background Markov process; to
keep the number of parameters limited, we assume that the transition rate matrix is of
the form

Q =

(
−q q

q −q

)
for some q > 0.

In the first set of experiments, we choose the parameters α1 = −2, α2 = 2, γ1 = 1, γ2 = 4,
σ2

1 = 2, σ2
2 = 2, and q = 0.01. If an OU process with parameters α1, γ1, σ

2
1 were active all

the time, it would converge (as t→∞) to −2, if an OU process with parameters α2, γ2, σ
2
2

were active all the time, it would converge (as t→∞) to 1
2 . On average, the background

process is (due to the symmetry of Q) half of the time in state 1, and half of the time in
state 2. We fix the starting level at a0 = 3.

In Fig. 1 we plot, as a function of the target level a ≡ at,

J(a) := J(at, t),

for t = 1. The graph is obtained by solving for each value of a the associated HJB
equations. We observe that J(·) is convex (as expected), and has the value 0 around the
mean position at time t = 1. The green dot corresponds with a = 0.15, the red dot with
a = −2.13, and the blue dot with a = 1.56. For these three values of a, we show in Fig.
2 the optimal paths of the Markov modulated OU process (which is the function a(·), as
was introduced in Section 4.2), and in Fig. 3 the optimal path of the state frequencies π(·)
of the background process (which in terms of the ‘local fraction of time’ spent in state 1,
i.e., π1(·)).
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FIGURE 1. Decay rate versus target a reached at time t = 1. As explained
in the text, the colored dots link this plot to the next two plots.

◦ As a = 0.15 corresponds to the process’ expected value at time 1, hardly any effort
is needed to reach this value, explaining that the state frequencies are consistently
close to 1

2 .
◦ The target value a = −2.13 is substantially smaller than the mean. Fig. 3 indicates

that the most likely way of reaching this target value is (roughly) by staying in
state 2 until t = 0.2, and then stating in state 1 until t = 1; this makes sense,
as state 2 corresponds with a long term of −2, as we observed above. Because q
is relatively small we are ‘close to’ the slow regime described in Section 4.3; this
explains why the transition of the path in Fig. 3 from the value 0 to the value 1 is
rather sharp. For the same parameter set and q = 0, we would find a background
path with 1 transition.
◦ The target value a = 1.56 is larger than the mean. The graph shows that in this

case it is apparently optimal to be in state 1 till roughly t = 0.6, then visit state
2 between 0.6 and 0.85 (taking advantage of the higher variance), and then to
be again in state 1 until time 1 (taking advantage of the higher mean); again the
transitions along this path are rather sharp, and correspond to a path with 2 jumps,
which is the maximal amount for a 2-state Markov chain.

In the second set of experiments, we take the same parameters as before (i.e., α1 = −2,

α2 = 2, γ1 = 1, γ2 = 4, σ2
1 = 2, σ2

2 = 2), but we fix the target value (at a = 1.56;



16 H. M. JANSEN1,3, M. MANDJES1, K. DE TURCK2, S. WITTEVRONGEL3

0.0 0.2 0.4 0.6 0.8 1.0

t

−3

−2

−1

0

1

2

3
a
(t

)

FIGURE 2. The optimal paths corresponding to the three scenarios in Fig. 1.
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FIGURE 3. The background paths corresponding to the three scenarios in
Fig. 1.
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corresponding to the blue dot in the first set of experiments) and vary the value of q. We
observe that the decay rate takes on the form of an ‘S’. This can be explained as follows.

◦ When q is small, then the cost of varying the background path is small as well,
and the decay rate is dominated by the ‘OU’ term (which explains why we have
an almost flat section in the curve), and we find the familiar two jump background
path (see blue curve).
◦ As q and thus the cost of altering the background path increases, the optimal back-

ground path gets more rounded and follows the sharp transitions we found earlier
only approximatively (green curve).
◦ For large q (red curve), the cost of altering the background path dominates, so the

background path keeps close to the stationary value. As this path carries no ‘cost’,
the decay rate is again almost flat for large q.
◦ The fact that the decay rate is increasing when q is increasing can be intuited as

follows. As we already observed in Remark 2.2, the rate function can be thought
of as the cost of deviating from the mean behavior. The rate function featuring in
the LDP for a modulated OU process consists of two cost terms: the cost of a nor-
mal distribution deviating from its mean and the cost of the background process
deviating from its mean to produce parameters m and v. When the background
process J is the Markov chain described above, then a larger q implies that J con-
verges faster to its mean (equilibrium) behavior. Consequently, a larger q makes
it more difficult to deviate from the mean behavior and thus leads to a larger cost.
This explains why the decay rate is increasing as q is increasing.

The intuitive reasoning above is, in fact, already reflected in the form of the
rate function Ĩ in Eqn. (6). Indeed, this rate function is a linear function of the
generator matrix of J , so increasing q will increase the decay rate.

To conclude this section, let us consider the slow regime in detail (for the same set of
parameters and targetting a = 1.56 at time t = 1 as before). From our previous numerical
calculations, we determine that this target corresponds with θ(0) = −0.4, while θ(1) =

−20 and from this we have from (9) that H = 1.84. In the final figure, we plot the two
parabolas of Eqn. (10) and see that indeed two bumps are encountered.
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