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Abstract
Dose-response (or ‘concentration-effect’) relationships commonly occur in
biological and pharmacological systems and are well characterised by Hill
curves. These curves are described by an equation with two parameters: the
inhibitory concentration 50% (IC50); and the Hill coefficient. Typically just the
‘best fit’ parameter values are reported in the literature. Here we introduce a
Python-based software tool,  , and describe the underlying BayesianPyHillFit
inference methods that it uses, to infer probability distributions for these
parameters as well as the level of experimental observation noise. The tool also
allows for hierarchical fitting, characterising the effect of inter-experiment
variability. We demonstrate the use of the tool on a recently published dataset
on multiple ion channel inhibition by multiple drug compounds. We compare the
maximum likelihood, Bayesian and hierarchical Bayesian approaches. We then
show how uncertainty in dose-response inputs can be characterised and
propagated into a cardiac action potential simulation to give a probability
distribution on model outputs.
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1 Introduction
In this article we describe the approach our software tool takes to 
inferring parameters of dose-response curves from experimental 
data. This introduction addresses the problem, standard approach, 
and our motivation for developing an approach that also character-
ises uncertainty in dose-response parameters, due to variability in 
the data.

1.1 Dose-response curves
‘Dose-response’ (or ‘concentration-effect’) curve-fitting is gener-
ally performed to describe how increasing compound concentra-
tion provokes a response in a process. ‘Dose-response’ generally 
relates to in-vivo experiments where a drug dose is administered 
but the concentration at the relevant site is not precisely known; 
whereas ‘concentration-effect’ generally relates to in-vitro experi-
ments where the concentration is accurately applied. We will refer 
to both as ‘dose-response’ in this article for simplicity. In the case 
study we will pursue, the ‘response’ is binding and blocking of ion 
channels, measured via inhibition of ion currents. Dose-response 
curves are summarised by two parameters: an inhibitory concentra-
tion 50% (IC50) value, that is the concentration of the compound 
that gives 50% of the maximum effect; and a Hill coefficient, which 
sets the ‘steepness’ of the curve as it passes the IC50. Examples of 
dose-response data and a fitted curve are given in Figure 1.

The equation for a dose-response curve was proposed by Hill 
(1910), and subsequently another name for the curve is a Hill curve 
(Weiss, 1997). If we let x be the concentration of a compound, we 
describe the effect of the compound by 

	   
( ) 100

response ; 50, : ,
50

1
DR Hillf x IC Hill

IC
x

= =
 +   

	       (1)

where IC50 and Hill are parameters that take positive values. In our 
motivating example this response will be “% block” of a particular 
type of ion channel.

1.2 Standard fitting procedure
A Hill curve is often fitted to all data points simultaneously, to 
obtain ‘average’ IC50 values and Hill coefficients for a particular 
curve. This gives the most likely set of parameter values. For exam-
ple, Crumb et al. (2016) recently published dose-response screen-
ing data for 30 compounds on 7 different ion channels, along with 
best-fit IC50 values and Hill coefficients. But taking this approach, 
there is no associated probability given to these IC50 and Hill val-
ues; different possible ranges for these parameter values are not 
considered. The usual fitting procedure can also give rise to mod-
els which differ in behaviour from each individual experiment, as 
shown by Pathmanathan et al. (2015) in the case of inactivation of 
the fast sodium current in action potential models, and as we will 
show in the case studies below.

1.3 Variability and uncertainty
Real-world experiments exhibit intrinsic and extrinsic variabil-
ity. The characterisation of this variability is becoming of greater 
importance as we move to quantitatively predictive models, par-
ticularly as part of the global cardiac modelling effort (Johnstone  
et al., 2016a; Mirams et al., 2016; Pathmanathan et al., 2015). 
Intrinsic variability describes fluctuations that may be due to inher-
ent randomness, and extrinsic variability describes differences 
between individuals (in this case cells/experiments). Variability 
contributes to uncertainty, but there are other sources of uncertainty 
when modelling and performing experiments (Vernon et al. (2010) 
provide a good introduction). There will also be observation error, 
which arises from imperfect measurements, thus introducing more  
uncertainty.

If we are going to use a model to predict future behaviour, or 
infer some underlying behaviour, we want to study the impact of 
uncertainty and give probabilistic predictions. Here, if there is a 
distribution of parameter values that could have given rise to the 
experimental dose-response data, we would like to capture this 
distribution (uncertainty characterisation). When using these data 
as inputs to further simulations (as discussed below in Section 6) 
we would then construct a distribution of possible outputs corre-
sponding to the distribution of inputs, a process known as uncer-
tainty propagation. The whole process is known as uncertainty  
quantification, or UQ (US National Research Council, 2012), and 
is part of a framework for ensuring safety-critical simulations are 
reliable which is known as validation, verification and uncertainty 
quantification, or VVUQ (Pathmanathan & Gray, 2013).

1.4 Motivation
As part of the Comprehensive in vitro Pro-arrhythmia Assay  
initiative (CiPA, Fermini et al., 2016; Sager et al., 2014), it is pro-
posed that pharmaceutical compounds be tested on up to 7 ion  
channels that both strongly influence ventricular repolarisation and 
are frequently blocked by pharmaceutical compounds. The pro-
posal is for ion channel screening data to be passed into an in silico 
human ventricular action potential model to see if the compound 
produces pro-arrhythmic behaviour, or indicators of such behav-
iour, at the whole-cell level.

In this article we present a software tool to infer distributions of 
possible dose-response curves from experimental data. When mak-
ing predictions of block at a given concentration, these distributions 

Figure 1.  A dose-response curve fitted to experimental data for 
hERG block by amiodarone from the Crumb et al. (2016) dataset. 
A dose-response curve is shown fitted to all data points at once with 
a least-square-differences algorithm, with the resulting parameters 
shown at the top of the graph.
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of possible dose-response curves provide us with a probabil-
ity distribution for the level of block at that concentration. To 
illustrate the consequences of this, we use the distributions of 
block (for multiple ion channels) inferred from data provided in  
Crumb et al. (2016) as inputs into an in silico action potential  
model. We then run forward simulations to predict a distribution 
of outputs — in this case action potential durations resulting from 
application of a compound at a particular concentration. We show 
that given the limited number of repeats of ion-channel experi-
ments, there are wide ranges of predicted action potentials, with 
overlapping results for different compounds with different associ-
ated pro-arrhythmic risks.

1.5 Our approach
To explore and characterise the uncertainty in the dose-response 
measurements published by Crumb et al., and to propagate these 
uncertainties into model predictions, we use a Bayesian statisti-
cal framework to explore different possible dose-response curves 
that may have produced these data. Each dose-response curve is 
assigned a likelihood score, which, roughly speaking, describes 
how well the curve fits the data. Instead of computing point- 
estimates for the IC50 value and Hill coefficient, we infer prob-
ability distributions of these parameters, as well as a distribution 
for the possible observational noise. This provides us with a 
method for propagating uncertainty in experimental data into 
simulations by drawing parameters from these inferred distribu-
tions, and using these samples as simulation inputs.

We describe two different types of Bayesian statistical mod-
els: one where all data points are treated equally (as though they 
were obtained from the same experiment); and another where we  
believe that each repeat of an experiment has distinct properties 
(through some source of inter-experiment variability) and there-
fore its own set of parameters to infer. The first case we will refer 
to as ‘single-level’, and the second case as ‘hierarchical’. The  
single-level case does not consider extrinsic variability, since we  
are assuming that all data points are generated by the same  
behaviour. The hierarchical case does consider extrinsic variabil-
ity, which we model by assuming that each experimental dataset 
was generated according to its own IC50 value and Hill coefficient, 
which may vary across experiments.

2 Bayesian statistical modelling approach
We use a Bayesian framework to quantify the uncertainty present  
in the ion channel screening data. The tool reads in doses in μM,  
but instead of working with IC50 in μM, we work with pIC50, 
where 

	    ( ) [ ]( )1050 log Molar 6 log 50 Molar ,pIC IC  = − µ  	       (2)

with square brackets indicating units. This transformation makes it 
much easier for fitting algorithms to explore the parameter space, as 
linear variation in IC50s does not result in linear changes to dose-
response curves, which are commonly plotted on log scales. The 
dose-response model we therefore work with in practice is 

       ( ) ( )( )6 50% channel block ; 50, : ;10 , .pIC
DRf x pIC Hill f x Hill−= = 	       (3)

So we assume that the underlying behaviour is described by the 
dose-response model, f, given by Equation (3). We assume that 
an experimental observation is Normally distributed around 
some underlying behaviour with some standard deviation, σ (that 
has the same units as the measured response). That is, given an 
applied compound concentration, x, our statistical model is that the 
response, y, is a Normally-distributed random variable with mean  
f(x; pIC50, Hill) and standard deviation σ, that is: 

		  ( )( )2; 50, , .y f x pIC Hill σ∼N 	                       (4)

When we have noisy data, different sets of parameters might  
allow us to fit the equation to the experimental data equally well. 
In our Bayesian framework, we treat these model parameters 
as random variables, in part due to the uncertainty introduced  
through observational error and any parameter identifiability  
problems (see e.g. Daly et al. (2015); Raue et al. (2009); Siekmann 
et al. (2012) for a discussion of how identifiability relates to  
inferred probability distributions). We therefore want to infer a 
probability distribution, instead of point-estimates, for the param-
eters pIC50, Hill and σ. This probability distribution, p(θ |data), is 
the posterior distribution of the parameters, θ, given the observed 
experimental data.

The posterior distribution is defined using Bayes’ Theorem: 

	             ( ) ( ) ( )
( ) ( )

|
| ,

| d

p data p
p data

p data p
θ

θ θ
θ

θ θ θ
=

∫ 	                       (5)

where p(data|θ) is the likelihood of the parameters θ under our 
model given the observed data y, and p(θ) is the prior distribution 
of the parameters θ. The prior distribution contains our prior knowl-
edge or belief about the parameters before observing any data.

The integral in the denominator of Equation (5) is generally intrac-
table, so we use Markov chain Monte Carlo (MCMC) methods to 
approximate p(θ |data). MCMC methods only require that we can 
evaluate the posterior distribution, pointwise, up to a factor of a 
constant, so it is enough to have that 

	 	 ( ) ( ) ( )| | ,p data p data pθ θ θ∝ 	                       (6)

to allow us to construct an approximation to the posterior  
distribution.

3 Single-level model
In our example, each experiment consisted of applying one or more 
concentrations of a compound to a cell and measuring the degree of 
block of an ion current. There were multiple recordings, leading to 
multiple response data-points at each concentration.

3.1 Methods
In this statistical model, we will assume that there is no inter-
experiment variability, so all data points are (effectively) from one 
experiment, and all the data points are generated using the same set 
of parameter values. Under this model, the data for hERG block by 
amiodarone (Crumb et al., 2016), for example, is generated by the 
process schematic shown in Figure 2.
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Under our statistical model shown in Figure 2, all data points y(j)  
are identically independently distributed according to 

	 	 ( ) ( )( )( )2; 50, , ,j jy f x pIC Hill σ∼N 	                       (7)

where x(j) is the applied compound concentration, and j = 1, …, K, 
where K is the total number of data points. The likelihood of the 
parameters pIC50, Hill, and σ, given a single data point y(j) is then 

         
( )( )

( ) ( )( )( )2

22

; 50,1
| 50, , exp .

22

j j

j
y f x pIC Hill

p y pIC Hill σ
σπσ

 − = −   
	       (8)

In practice, we work with the log of the target distribution, and 
therefore the log of the likelihood given in Equation 8. For more 
details on the implementation, see Johnstone et al., (2016a,  
Supplement B2).

In the data published by Crumb et al., any observations below 
0% or above 100% were capped to 0% or 100%, respectively  
(W. Crumb, personal communication), because these extreme  
values are assumed to be due to observational error. Accordingly, 
we truncate the normal distribution in Equation (7) at 0 and 100, 
since these are imposed bounds on the data for % channel block 
(it would be better not to filter the data in this way, as, before mak-
ing this adjustment, we observed repeated zero entries leading to 
the erroneous conclusion that there was almost no noise σ on the 
data).

Since pIC50, Hill, and σ are parameters that we infer, we need to 
specify a prior distribution across them, corresponding to p(θ ) in 
Equation (5). We choose independent uniform distributions for 
each parameter, but we could have chosen a more informative prior 
based on previous ion channel screening data, where available. We 
allow Hill to take values in (0,10). The Hill coefficient must be 
positive and describes the steepness of the dose-response curve, so 
after a certain point, increasing the Hill coefficient does not make 
a noticeable difference to the curve, so we choose 10 as a gener-
ous upper bound, above any biologically-plausible drug-binding we 
are aware of. Similarly, a compound that has no measurable effect 

could be thought of as having a very large IC50, and it makes no 
difference practically to model it as having an even larger IC50. 
This corresponds to a negative pIC50 value, and so we choose to 
allow pIC50 to take values in (-1,15) as values outside this inter-
val will not have much effect (see Figure 3). We let σ, which is a  
standard deviation parameter and therefore also positive, take val-
ues in (0,50), where 50 is a generous upper bound for observa-
tional error, which we expect to be closer to 5–10% in practice.

As described in our previous publication (Johnstone et al., 2016a), 
we first perform a covariance matrix adaptation evolution strategy 
optimisation (CMA-ES, Hansen, 2006) to find an optimal starting 
point for exploring possible parameter sets. We then use an adap-
tive Metropolis-Hastings MCMC algorithm (Haario et al., 2001) 
to infer p(θ |data), where θ = {pIC50, Hill, σ}. Briefly, we want 
to construct a sequence (Markov chain) of parameter-value sets 
that approximate samples from the left-hand-side of Equation (5). 
A set of parameter values is proposed by sampling from a mul-
tivariate normal distribution. The likelihood of these parameters 
(roughly goodness-of-fit) is then computed and accepted into the 
chain with a non-zero probability, computed as the ratio of likeli-
hoods between the current parameters’ likelihood and the proposed 
parameter’s likelihood. If a set of parameter values gives a very 
low likelihood, corresponding to a very bad fit to the data, these 
parameter values are discarded and a new set of parameter values is 
proposed. As the MCMC algorithm runs, the covariance matrix of 
the proposal distribution skews in the directions where more sets of 
parameters are being accepted into the chain. After a large number 
of iterations, we discard the first quarter (or any suitably large frac-
tion) of samples, known as ‘burn-in’ when the MCMC algorithm 

Figure 2. Statistical model for the generation of dose-response 
data. All non-shaded variables are parameters for which we wish 
to infer probability distributions. y = {y (1), …, y (K)} is the vector of all 
experimentally-recorded response data points.

Figure 3.  Large IC50 values are indistinguishable when they are 
orders of magnitude above the relevant concentration range. 
Here we show the effect of decreasing pIC50 (increasing IC50), 
while maintaining Hill = 1. The shaded “region of interest” covers 
the minimum and maximum concentrations in the data published 
by Crumb et al.. As pIC50 decreases, there is no significant 
change to the dose-response curve across the relevant range 
of concentrations — all predictions are close to zero response. 
As a result we somewhat artificially ‘cap’ pIC50 priors to exclude  
pIC50 < −1, otherwise (for datasets with no response signal) 
convergence of minimisation and MCMC algorithms is difficult if not 
impossible.
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was still finding the best regions of parameter space. Then we plot 
normalised histograms of the remaining samples to approximate the 
posterior distribution.

The posterior distribution in the single-level model is given by (up 
to a factor of a constant) 

     ( ) ( )( ) ( ) ( ) ( )150, , | | 50, , 50 ,jK
jp pIC Hill p y pIC Hill p pIC p Hill pσ σ σ=∝ ∏y   (9)

where the first term on the right-hand-side is given by  
Equation (8).

3.2 Results
In Figure 4 we plot normalised marginal and pairwise histograms 
for the values of the parameters for each sample of the MCMC algo-
rithm output, which are approximate projections of the posterior 
distribution across these parameters. The spread in each distribution 
corresponds to the uncertainty in that parameter; if a parameter’s 
marginal posterior distribution is narrower, we are more certain 
about its value from the observed data.

Before propagating these uncertainties, we first draw (pIC50, Hill) 
samples from the MCMC output, and plot dose-response curves 
with these parameter values. Examples are given in Figure 5, where 
amiodarone has a measurable blocking effect on hERG, but no 

measurable effect on Kir2.1. As we take more samples, the plot-
ted curves build up a distribution of possible dose-response curves 
given the experimental data. For each compound concentration, we 
then have a range of possible responses with their relative probabil-
ity densities being given by the density of dose-response curves at 
that concentration.

4 Hierarchical (multi-level/mixture) model
When we plot the ion channel screening data and group the 
data points according to their respective experimental repeats, 
instead of treating them as data points from one experiment as in  
Section 3, we see that data points from the same experiment  
generally keep their relative position. That is, we often see that 
the highest value at each concentration was observed during the 
same experiment, as shown for the amiodarone and hERG case in  
Figure 6.

4.1 Methods
The intra-experiment correlation seen in Figure 6 suggests that each 
experiment has its own distinct properties. We model this as inter-
experiment variability in the pIC50 value and Hill coefficient. That 
is, we treat each experiment as having its own pIC50 and Hill for 
which we will attempt to infer distributions. We let N

e
 be the number 

of experiments performed. The vector of data points obtained from 
experiment i is yi, where i = 1, …, N

e
.

Figure 4. Matrix plot of normalised marginal and pairwise marginal histograms of the MCMC algorithm output samples for each 
parameter, in the amiodarone and hERG example. The well defined narrow distributions, with lack of cross-correlation, suggest each 
parameter is being successfully inferred from the data.
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Figure 6. Data for hERG block by amiodarone suggests 
inter-experiment variability. Different whole-cell patch-clamp 
experiments are plotted with different colours. In this case, the 
responses are consistently in the same ordering relative to the other 
experiments at each compound concentration (e.g. Experiment 2 
always shows the largest response, and Experiment 1 always the 
smallest). This suggests inter-experiment variability that is distinct 
from observational error σ.

Figure 5. Inferred dose-response curves from MCMC (pIC50, Hill) samples. A: amiodarone with measurable effect on hERG. B: amiodarone 
with no measurable effect on Kir2.1. Outside of the range of measured concentrations, the MCMC algorithm was unable to find narrow ranges 
for possible parameter values, because the experimental data does not contain enough information.

We take a hierarchical approach and assume that there is some 
‘higher-level’ distribution that governs how these parameters vary 
across experiments (see Congdon, 2010, for an introduction to this 
approach).

Hill coefficient and pIC50 distributions for ion channel screen-
ing datasets of up to N

e
 > 12,000 repeats were published in Elkins  

et al. (2013), there they were found to fit independent log-logistic 

and logistic distributions, respectively. We assume the same type of 
distributions would occur here (if the experiments were repeated 
enough): that is, each experiment’s Hill

i
 is drawn from a log-logistic 

distribution with parameters α and β; and each experiment’s pIC50
i
 

is drawn from a logistic distribution with parameters μ and s. We 
have assumed that the observational errors are drawn from the same 
Normal distribution across all N

e
 repeats, so we infer just a single 

noise standard deviation parameter σ. A schematic of this hierar-
chical statistical model is given in Figure 7, with the ‘mid-level’ 
parameters and ‘bottom-level’ data points being independently dis-
tributed according to 

		     Hill
i
∼log-logistic(α,β ),	                   (10)

	                   ( )50 logistic , ,ipIC sµ∼ 	                     (11)

	            
( ) ( )( )( )2; 50 , , ,j j
i i i iy f x pIC Hill σ∼N 	     (12)

where y
i
( j) is the jth concentration entry in experiment i’s responses 

y
i
. We suppose that every experiment i has K

i
 data points (to gener-

alise to cases where different experiments tests different numbers of 
concentrations), so j = 1, …, K

i
 and i = 1, …, N

e
.

We now need to specify prior distributions over the ‘top-level’ 
parameters (in Figure 7): α, β, σ, μ, and s. Prior distributions are 
chosen to contain any prior information or beliefs we have about the 
parameters before observing the data. We can therefore inform our 
choice of prior distributions by considering previously-published 
ion channel screening data. We use gamma distributions for all of 
these, since gamma distributions, in general, only put probability 
on positive values, and because these parameters are all positive, 
with the exception of μ. μ, however, can take any value and repre-
sents the centre of the logistic distribution. For μ, we used a gamma 
distribution which is shifted along the x-axis down to -4, so there 
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is little probability mass below -2. We choose this because as the 
pIC50 value becomes lower and lower, the IC50 becomes larger, 
and eventually any possible compound effects occur well above 
the experimental concentrations. This was illustrated above in  
Figure 3, where dose-response curves (with Hill = 1) have been 
plotted for varying values of pIC50. The shaded “region of interest” 
covers the minimum and maximum concentrations in the data pub-
lished by Crumb et al. Ion channel screening is generally performed 
at concentrations that range to well-above therapeutic concentra-
tions, and so we do not want to infer how a compound will behave 
at even higher concentrations. These gamma prior distributions 
were tuned to cover values provided by Elkins et al. (2013), but 
also allow more room for variation. Plots of the prior distributions 
for α, β, μ, s, and σ are given in Figure 8.

In addition to covering the values published by Elkins et al.,  
we restricted β to be greater than 2, so that all log-logistic distri-
butions generated would have no probability mass at 0, and also 
the gradient of the probability density function would be zero. This  
prevents Hill coefficients equal to 0 from being sampled by the  
MCMC algorithm. We also enforce that σ be greater than 10−3, 

Figure 7. Hierarchical statistical model for dose-response data.  
i indexes the individual experiments. All non-shaded variables are 
parameters for which we wish to infer probability distributions.

Figure 8. Prior distributions. Blue: Gamma distributions used as the prior distributions over α, β, μ, s and σ. Grey: histograms of parameter 
estimates for different strongly-blocking control compounds, with large numbers of repeats, as previously published in Elkins et al. (2013). 
However, we want to be able to fit to all compounds, including ineffective ones that elicit no response, hence the increased width of the prior 
distributions on certain parameters (μ particularly).
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since we believe there is always the possibility of observation error, 
and hence there must be a positive standard deviation, we also run 
into division-by-zero numerical problems with the evaluation of the  
target distribution if we sample σ = 0 (see Equation (8)).

The choice of prior distribution will have an effect on the  
posterior distributions (via Equation (6)). However, the more 
information that is contained in our data, the less effect we expect  
our prior distribution to have on our posterior distribution. For 
example, Figure 9 shows how the marginal posterior distribution 
for the ‘top-level’ parameters correspond to their respective prior 
distributions in the case of synthetic data, where we fit to differ-
ent numbers of experimental datasets. This synthetic data were  
generated by sampling pIC50 values from a logistic distribution 
with μ = 6 and s = 0.1, and Hill coefficients were sampled from a 
log-logistic distribution with α = 1 and β = 5. Normally-distributed 
observation noise with standard deviation σ = 1 was added to the 
dose-response model at every concentration.

We want to infer the posterior probability distribution for α, β, μ, 
s, σ, Hill

i
 and pIC50

i
, for i = 1, …, N

e
, giving a total of 5 + 2N

e
  

parameters. Using Bayes’ Theorem, the posterior distribution in 
Equation (6) is now given by 

( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1

, , , , ,{ } ,{ 50 } |{ }

| , , 50 | , 50 | , .

e e e

e

N N N
i i i i i

N
i i i ii
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p Hill pIC p Hill p pIC s p p p p s p
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= = =

=
∝ ∏

i

i

y

y (13)

We use the same adaptive Metropolis-Hastings MCMC algo-
rithm as in Section 3.1 to infer a posterior distribution from the 
experimental data. Since we have many more parameters than in 
the non-hierarchical case, we expect to have to run our MCMC 
algorithm for more iterations to adequately approximate the poste-
rior distribution. For most cases in this dataset, we have N

e
 = 3 or  

N
e
 = 4, which is not too demanding since our mathematical  

model is a simple analytic expression, and does not require solv-
ing differential equations as our previous work did (Johnstone  
et al., 2016a). However, if N

e
 became very large, we may have to 

use alternative MCMC techniques.

Figure 9. A comparison between marginal posterior distributions for ‘top-level’ parameters in the hierarchical model, with their 
respective Gamma (Γ) prior distributions. The number of (synthetic) experimental datasets, Ne, being fitted was increased. As we fit to 
more experiments, the prior distributions have a smaller effect on the posterior distributions. Where the black line for the prior distributions 
looks as if it lies along the x-axis (for μ and σ, the prior distribution was much wider than the marginal posterior distribution; there is a lot of 
information on these parameters with just one experiment).
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Figure 10. Normalised marginal histograms for the ‘top-level’ parameters, α, β, μ, s, and σ after running the fitting the hierarchical 
model to the amiodarone and hERG dataset using the MCMC algorithm. Most of these distributions are narrower than their respective 
prior distributions in Figure 8, with the exception of β. We therefore conclude that the experimental data does not contain much information 
about β, in line with the synthetic data study shown in Figure 9.

4.2 Implementation
Our tool PyHillFit (Johnstone et al., 2016b) takes a CSV file of 
dose-response points as its input. The file should be comma sepa-
rated values (.CSV) in the following format for each line:

compound name, channel name, experiment number, dose (μM), 
response (% inhibition)

The Monte Carlo algorithms were written in Python using  
NumPy 1.11.0 for numerical linear algebra (van der Walt et al., 
2011), and functions from the SciPy 0.15.1 library (Jones et al., 
2001). Pandas 0.17.1 was used to read the input data csv files 
(McKinney, 2010). cma 1.1.6 was used for initial optimisation 
to find best-fit parameter values (Hansen et al., 2003), which act 
as starting positions for the MCMC algorithms. All figures were 
plotted in matplotlib 1.5.1 (Hunter, 2007).

PyHillFit output takes the form of files listing samples of the  
posterior distributions for the dose-response curve parameters, 

together with some visualizations of these (as shown throughout 
this article).

4.3 Results
As before, we plot normalised marginal histograms to approxi-
mate the marginal posterior distributions for each parameter. Such  
histograms are plotted for α, β, μ, s, and σ in Figure 10 for the 
amiodarone and hERG case. We can compare these to the prior 
distributions shown in Figure 8, and we see that in most cases we  
have much narrower marginal posterior distributions than prior  
distributions. This tells us that the data contains enough infor-
mation about those parameters to constrain them to narrower  
intervals.

We can also superimpose the normalised histograms for each  
Hill

i
 and pIC50

i
 to give us an idea of how much inter-experiment 

variability is present in these parameters. These superimposed  
histograms are plotted in Figure 11 for the amiodarone and hERG 
case.
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where t indexes the samples in our Markov chain, after having dis-
carded a number of initial samples as a burn-in.

These are not necessarily distributions which can be sampled from 
directly, but we can approximately sample from them using the 
inverse-cumulative distribution function (CDF) method. We sum 
and then normalise the individual log-logistic and logistic CDFs. 
After sampling from these new distributions, we plot similar dose-
response curves as in Section 3.2. A plot of predicted dose-response 
curves for a future experiment, following the hierarchical model 
MCMC, is given in plot A of Figure 12. To make a prediction of 
what %-block will be induced by that compound at a particular 
concentration, we take a vertical cross-section through these dose-
response curves and plot a normalised histogram of these levels of 
block to approximate a probability distribution, as shown in plot B 
of Figure 12.

Note that the hierarchical model allows us to make two sets of pre-
dictions. Firstly, using the posterior predictive distribution given 
by Equation (14) & Equation (15) as shown in Figure 12 (panel 
A). This distribution includes inter-experiment variability, and 
can therefore be considered a distribution that predicts where data 
points from future experiments may lie. Secondly, we can examine 
the variability in the underlying properties of the compound; the 
‘average’ effect, before it is altered by inter-experiment variability 
(panel B). We generated this plot by taking samples of α and μ 
to use as Hill and pIC50 values. We would expect panel B to be 
more directly comparable with the single-level approach (which fits 
‘average’ data points), which is shown in panel C for comparison.

Which of the two distributions (illustrated in panels A or B in  
Figure 12) one may wish to use for predictions is subtle. If we 
consider that the source of variability between experiments is also 
present in the system that we are making predictions for, then the 
first case (panel A) would be the best to use. If however we con-
sider that there is a single underlying effect, and the act of measur-
ing it introduced inter-experiment variability that is not present in 
the real system, then the second distribution (panel B) would be 
more appropriate. Most biological experiments implicitly assume 
the second case is true — that by taking repeated measurements 
and then taking the average, a more accurate assessment of the  
underlying system is made.

5 A comparison of single-level and hierarchical models
There are advantages and disadvantages to choosing either the 
single-level statistical model, or the hierarchical statistical model. 
The main benefit of the single-level model is that we are only fit-
ting three parameters, meaning that the parameter space of inter-
est is relatively easy to explore. This means that we need to run 
our MCMC algorithm for fewer iterations to obtain an accept-
able approximation of the posterior distribution than if we had a 
larger number of parameters, reducing overall computation time. 
However, a model with an analytic solution such as the one we have 
here (Equation (3)) can be solved very quickly, and so computation 
time is generally not a problem for even the hierarchical version of 
the model, for this application. There is also little sensitivity to the 
prior distributions, as there is a lot of information about all three 
parameters in even one experiment.

Figure 11. Inferred parameters for individual experiments. Top: 
dose-response curves plotted using the ‘mid-level’ pIC50i and Hilli 
samples from our MCMC algorithm output from the amiodarone 
and hERG dataset. Middle & bottom: superimposed normalised 
histograms for pIC50i and Hilli, after fitting our hierarchical model to 
the amiodarone and hERG dataset using the MCMC algorithm. We 
find that the Hill coefficient does not vary much between experiments, 
however there is variability within the pIC50 value.

To make predictions about how a particular compound and chan-
nel will interact if we perform another experiment, we consider 
the posterior predictive distributions for Hill

i
 and pIC50

i
. That is, 

what are p(Hill
Ne+1

|data) and p(pIC50
Ne+1

|data)? Since the Hill
i
 and  

pIC50
i
 are modelled as being drawn from log-logistic and logis-

tic distributions, respectively, we sum the log-logistic and logistic  
distributions generated from the ‘top-level’ parameters at every 
iteration of our MCMC algorithm output, then normalise them to 
obtain two new probability distributions.

	     ( ) ( )1 1

1
| data log-logistic ; , ,

e

T
N t t t tp Hill Hill

T
α β+ =≈ Σ 	     (14)

                    ( ) ( )1 1

1
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e

T
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T
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In Figure 12 we can compare the results of the two types of  
inference for real data on amiodarone block of the hERG current. 
There is a small difference in the predicted curves.

In the single-level case, by fitting to all data points at once, the 
inference can misinterpret inter-experiment variability and assign it 
to the ‘wrong’ parameter(s). To demonstrate this, we generated two 
sets of synthetic data corresponding to these fictitious compounds, 
with fictitious inter-experiment variability properties: 

1.   �For shamiodarone, Hill was fixed as 1 across all  
experiments, and the pIC50

i
 were drawn from a logistic  

distribution, with μ = 6 and s = 0.2.

2.   �For shamitriptyline, pIC50 was fixed as 6 across all  
experiments, and the Hill

i
 were drawn from a log-logistic 

distribution with α = 1 and β = 2.5.

In both cases, we simulated 5 experiments where each experiment 
consists of measuring % channel block at 4 different compound 
concentrations. We added normal observation noise with standard 
deviation σ = 0.5 to each point.

Case 1: fixed Hill and varying pIC50
A sample of the inferred curves for this case are given in  
Figure 13. The plots in panels A & D represent pIC50 and Hill 
parameter values being drawn from their respective posterior  

predictive distributions; this gives predictions of how we believe 
the observations from a future experiment would behave. The plots 
in B & E are based on α and μ samples — what we believe to 
be the underlying ‘average’ behaviour of the compound interacting 
with an ion channel, when experimentally-introduced variability is  
discounted. The hierarchical model was able to identify consist-
ency within the Hill

i
, and the MCMC algorithm generally only 

infers that pIC50
i
 varied between experiments.

The histograms in Figure 13 (panels D–F) are a cross-section of 
the dose-response curves at different concentrations, and represent 
the probability density of % block at that compound concentra-
tion. Note that each curve in panel B has approximately the same  
slope, corresponding to a consistent Hill coefficient, whereas in 
panel C we see that there is a greater range of slopes, correspond-
ing to (slightly more) variability in the Hill coefficient. Compar-
ing plot E with plot F, we see that at 0.05 μM concentration, the 
non-hierarchical model is less certain about the % channel block 
than the hierarchical model, because the former has incorrectly  
inferred there is more variation in the Hill coefficient. So the sin-
gle-level model tends to compensate for the varying parameter val-
ues by fitting curves that fit through an ‘average’ of the points. The 
algorithm does this by varying both Hill and pIC50 to obtain curves 
that could fit the data reasonably well, even when the synthetic data 
were generated by holding one parameter fixed and varying the 
other.

Figure 12. Predicted dose-response curves and associated probability distributions for levels of block at example concentrations 
when fitting to the amiodarone and hERG dataset. A: Hierarchical model — predictions for how a future experiment will behave, with 
samples taken from the posterior predictive distributions. B: Hierarchical model — inferred distribution for the underlying behaviour of the 
system, plotted by using μ and α samples from the MCMC algorithm output directly as values for pIC50 and Hill, respectively. C: Single-level 
— inferred distribution, plotted by taking samples from the MCMC algorithm output. D,E,F: Histograms of the intersections between the 
vertical lines and dose-response curves in A,B,C, respectively, at two different concentrations of amiodarone.
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Figure 13.  Inference on synthetic data generated by fixing Hill = 1 and varying pIC50. A: Predicted dose-response curves, with pIC50 
and Hill sampled from their respective posterior predictive distributions, taking inter-experiment variability into account. B: Inferred underlying 
behaviour of the compound-ion channel interaction, with inter-experiment variability discounted. C: Inferred dose-response curves from 
single-level inference. D–F: Normalised histograms of the cross sections plotted with vertical lines in plots A–C. These histograms represent 
probability density functions of % block at a particular concentration, given the (synthetic) experimental data.

Case 2: fixed pIC50 and varying Hill
A sample of the inferred curves for this case are given in  
Figure 14. The single-level model in panel C does show small  
variability in the Hill coefficient, as well as small variability in 
the IC50 (and hence pIC50). This leads to a reasonably spread  
prediction of ion channel block at both a concentration near pIC50 
and at a higher concentration (panel F). But we know that the 
underlying data had the same pIC50, and so variability near the 
IC50 should be minimal, and indeed the spread of predictions at 
a higher concentration should be larger. The hierarchical model  
captures the desired underlying variability better (compare  
panels E and F). The Hill coefficient varies (panel B) while also 
capturing the low variability in the pIC50 value (there is still some 
variability in the inferred pIC50 distribution due to observational 
noise and a low number of repeat experiments). As a result, the 
predicted percentage blocks in panels E and F are different. As for 
Case 1, either too-much or too-little variability is predicted by the 
single-level inference, depending on the concentration.

6 Propagating dose-response uncertainty
The proposed Comprehensive in-vitro Pro-arrhythmia Assay  
(CiPA) recommends the use of computational action potential  
models in the drug safety process. Ion channel screening will be 
performed, and the IC50 values and Hill coefficients obtained from 
these experiments are to be used in action potential models to pre-
dict whether or not a compound is likely to be pro-arrhythmic. One 
simple proposed measure of pro-arrhythmia is action potential 

duration prolongation (Mirams et al., 2011), directly related to 
prolongation of the QT-interval, which can be a precursor to  
potentially fatal arrhythmias such as Torsade de Pointes.

Using best-fit IC50 values and Hill coefficients obtained from ion 
channel screening data, we can compute a predicted level of block 
of each of the ion currents in an action potential model, at a particu-
lar compound concentration. We then simulate an action potential 
and measure the action potential duration prolongation relative to 
the control case (see Beattie et al. (2013) for an example of this 
approach). However, when using best-fit IC50 values and Hill  
coefficients, we obtain a single predicted action potential after  
simulating a particular compound concentration.

If instead, we use our tool to infer probability distributions for  
each experiment’s IC50 value and Hill coefficient, we can take 
samples from these distributions and compute an action potential 
duration for each sample. This allows us to construct a probability 
distribution for predicted action potential durations based on the 
original ion channel screening data (uncertainty propagation).

To illustrate the proposed uncertainty propagation we use our tool to 
fit hierarchical dose-response parameters to thirty drug compounds 
for seven ion currents each using the Crumb et al. (2016) dataset 
supplied with the code associated with this article. We then take 
samples, based on the ‘underlying effects’ curves from hierarchi-
cal fits (see Figure 12, Figure 13 & Figure 14), and simulate action 
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Figure 15. Histograms of predicted action potential duration 
(APD90, time taken for the cell to return to 90% repolarised after 
depolarisation) using samples from the iterations of our MCMC 
algorithm under the hierarchical statistical model. Simulations 
were run using the O’Hara et al. (2011) human ventricular 
cardiomyocyte action potential model, and APD90s were computed. 
We used ‘AP-predict’ (Williams & Mirams, 2015), a bolt-on project 
for the Chaste open-source computational biology C++ library 
(Mirams et al., 2013). Histograms are plotted for the 30 compounds 
discussed by Crumb et al. In one case, two samples led to very long 
action potential durations and so are omitted for clarity.

Figure 14. Inference on synthetic data generated by fixing pIC50 and varying Hill. A: Predicted dose-response curves, with pIC50 and 
Hill sampled from their respective posterior predictive distributions, taking inter-experiment variability into account. B: Inferred underlying 
behaviour of the compound-ion channel interaction, with inter-experiment variability discounted. C: Inferred dose-response curves from 
single-level inference. D–F: Normalised histograms of the cross sections plotted with vertical lines in plots A–C. These histograms represent 
probability density functions of % block at a particular concentration, given the (synthetic) experimental data.

potential durations after applying seven ion channel block using the 
approach outlined in Mirams et al. (2011). We plot the resulting 
predicted distributions of action potential durations in Figure 15 for 
all thirty compounds.

We see that the vast majority of the compounds have overlap-
ping probability distributions for predicted APD at maximum free  
therapeutic plasma concentration, suggesting that at least this 
previously-proposed measure will be insufficient to distinguish  
compounds in terms of risk based on data such as these.

This suggests that either: action potential prolongation is not a 
good enough marker of pro-arrhythmia; or, there was too much 
uncertainty associated with the experimental data to constrain these 
distributions to narrow distinct ranges. To counter the latter point, 
we suggest that more experimental repeats be performed. In either 
case, it is imperative to realise that the data being used have a level 
of uncertainty which means it is not possible to rank the majority of 
these drugs in terms of their predicted APD.

7 Discussion
A Bayesian framework is a useful tool to address uncertainty  
characterisation in ion channel screening data. When no uncer-
tainty characterisation is performed, one can obtain best-fit 
parameter values for the data presented, but there is no associated  
probability in terms of the behaviour that generated the data, or in 
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predictions informed by the data. The single-level Bayesian infer-
ence model can provide ranges of possible dose-response curves 
(and underlying parameters) that fit ion channel screening data. 
But parameter-specific inter-experiment variability can be missed 
when using a ‘single-level’ statistical model, as the algorithm treats 
all points equally and so varies the parameters without consider-
ing the inter-experiment correlations. This leads to an ‘averaging’ 
effect, where the dose-response model is fitting to an average of the 
experimental data points, but may not reflect the behaviour of any 
individual experiment. However, this single-level inference is quick 
to run as it only requires fitting 3 parameters, and provides a better 
approximation of probability distributions than a single best-fit.

A hierarchical statistical model can capture inter-experiment vari-
ability within certain dose-response parameters, as demonstrated in 
the synthetic cases discussed in Section 5 . The hierarchical model 
can therefore be used to infer inter-experiment behaviour, and hence 
predict how a future experiment might behave. By taking samples 
for the ‘top-level’ parameters from our MCMC output, we can build 
distributions of how we believe the compound is interacting with 
the ion channel. At a given compound concentration, we then have 
a probability distribution for possible levels of ion channel block.  
The hierarchical model is able to determine what variability is 
being introduced at the experimental level, and allows us to make 
probabilistic statements about the underlying behaviour.

Our hierarchical model is similar to nonlinear mixed effects 
(NLME) modelling, but we operate in a Bayesian framework. 
NLME assumes a similar structure to that shown in Figure 7, but 
infers best-fit values for the ‘top-level’ parameters, and a distribu-
tion from which the ‘mid-level’ parameters are sampled. While it 
does capture inter-experiment variability and would allow us to 
make predictions about how a future experiment might behave, it 
only provides a point-estimate for underlying behaviour, rather than 
different possibilities with relative probabilities.

A possible limitation of the hierarchical model is that computa-
tion time increases with the number of experimental datasets being 
fit to at once. This is not a problem for up to 4 or 5 experiments, 
but the number of parameters quickly becomes intractable for the 
adaptive-Metropolis MCMC algorithm that we have been using. In 
general, with MCMC methods, we want to run our algorithm for 
as long as possible, to best approximate samples from the posterior  
distribution. There is therefore no upper limit for how long this 
method takes, although for these examples we have run our algo-
rithm for 500,000 iterations, which takes approximately 12 minutes 
for the amiodarone-hERG case which has 3 experimental datasets 
of 4 concentrations each.

Another possible limitation of the hierarchical model is the depend-
ence on the prior distributions for the ‘top-level’ parameters. As 
shown in Figure 9, when there is not much data, the posterior is 
heavily influenced by the prior. However, we chose our priors based 
on data published by Elkins et al. which was based on 12,000 ion 
channel screening experiments, and we therefore have some confi-
dence in their shapes (Figure 8). In a Bayesian framework, should 
new data become available, we can compute new posterior distri-
butions for the parameters according to Equation (5), by using a  
previous posterior distribution as the new prior distribution.

A benefit of both inference techniques is that we introduce the 
observation noise as a parameter to be fitted, along with the pIC50 
values and Hill coefficients. Instead of estimating the observa-
tion noise and then fitting dose-response curves based on our esti-
mate, we allow the MCMC algorithm to find likely levels of noise, 
while also quantifying the uncertainty in those estimates. Since all 
of these parameters are being fit at the same time by the MCMC  
algorithm, we can extract how much noise on dose-response  
parameters is introduced by inter-experiment variability, and how 
much noise is due to observation error.

7.1 Conclusions
Single best-fit parameter estimates from ion channel screening  
data can give a most likely set of dose-response curve parame-
ters. However, this approach does not provide us with a measure 
of uncertainty around these parameters. The software tool we 
present can quantify some of the uncertainty associated with  
dose-response curves, with its default priors set for ion channel 
screening data, for the purposes of propagating this uncertainty  
into further quantitative studies.

Data and software availability
Latest source code and datasets used in the publication: https://
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License: BSD 3-Clause

The code contains the experimental input data required to reproduce 
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the main folder at the above links.
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This is an interesting and stimulating manuscript. The structure of the manuscript in title, abstract, problem
statement (captured in the introduction and motivation), methodology, results and conclusions is
appropriately clear and all sections are well written. The conclusions are well founded. The motivation in
particular for the software tool is clear as is the potential impact of the tool. 
 
The intended reader who might benefit most from the manuscript and tool - the experimental
electrophysiologist generating ion channel screening data to predict potential safety issues - may find the
methodology and underlying math daunting. Nonetheless there are principles described which need to be
appreciated by those generating those data, especially when that data is further propagated in in silico
models of cardiac tissues. The authors have written and formatted the article very effectively to make the
manuscript understandable and approachable. Given the availability of computational tools such as
Python it is now also much more practical to perform these analyses and appropriately quantify the
uncertainty. The practice of reporting 'best-fit' parameter values may have been the best which could
practically be achieved previously. It may also have been a model sufficient for many questions but the
developing need to use these data in computational models of tissues for safety purposes requires a
more robust treatment of uncertainty. Simply carrying forward best-fit values and generating point
estimates of effects on tissues and point estimates of margins between therapeutic drug concentrations
and concentrations impacting cardiac tissues may not adequately serve drug development and regulatory
assessment.
 
In the practice of electrophysiology screening experiments some compromises are made in order to make
the experiments both quick enough and inexpensive enough to meet the drug discovery process. This will
often mean that a limited range of concentrations are tested and a minimum number of individual
experimental repeats are made. When calculating 'best-fit' parameters some values are 'fixed' to make
calculating the key parameter IC50 possible e.g. fixing minimum current inhibition to 0%, maximum
inhibition to 100% and the Hill Slope to 1. The manuscript describes some of the potential issues which
may result from such compromises. There are also hidden impacts of experimental design. As an
example the experiment may call for following compound effect for as long as necessary to reach a
steady state effect. As the kinetics of channel block are concentration dependent this means that steady
state will occur more slowly at low concentrations. In addition to drug effect there is also often current
'run-down' or 'run-up' evident in these experiments. The 'run-down' effect is the more common. This
means that at low concentrations of compound the observed effect may have a larger contribution of
'run-down' than at larger concentrations. This serves to somewhat flatten the Hill Slope and left shift the
IC50 from 'truth'. Alternatively, fixed durations of observation may be applied at each concentration. As
the norm is to try and minimize the overall duration of the recording this may mean that compound effect
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IC50 from 'truth'. Alternatively, fixed durations of observation may be applied at each concentration. As
the norm is to try and minimize the overall duration of the recording this may mean that compound effect
is under estimated at low concentrations leading to the Hill slope becoming steeper and the IC50 being
slightly right shifted. Some electrophysiologists may choose to have uniform long compound application
periods or use run-down correction techniques to minimize these experimental impacts on parameter
estimates. The significant value of the current manuscript is that it allows the data from the experiments to
be used in their most raw form without the compromises described. It leverages priors based on previous
experimental information.  It gives the key information as a probability distribution rather than a single
value. It also serves to illustrate the uncertainty and give the opportunity to generate more data for those
compounds which show promise and where more certainty is desirable.
 
There is one key outstanding element which the current manuscript cannot address. In this experimental
context it is the assessment of the kinetics of block. When relating the effect of a compound to how it may
impact a tissue when the underlying kinetics of the ion channel experiment and that of the ionic current in
a tissue under the normal heart rates differ cannot be captured in an IC50 value or Hill slope even taking
into account the uncertainty. This will likely require different experimental voltage-clamp paradigms and
the estimation of at least one further parameter. That said that parameter estimate then becomes
accessible to the types of calculation described here. 
 
Overall this is a very well thought out piece of work, well written and with a potentially useful piece of
software described.
 
This review is based on my personal professional opinion.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

 28 November 2016Referee Report

doi:10.21956/wellcomeopenres.10720.r17622

,   Jonathan Stott Stanley Lazic
Quantitative Biology, IMED Discovery Sciences, AstraZeneca, Cambridge, UK

Summary of the Paper

In this manuscript Johnstone propose a new tool (PyHillFit) for fitting dose response curves from et al 
cardiac ion channels. This tool uses Bayesian inference methods to determine the distributions of the
parameters. They investigate two alternative models, one that ignores inter-experimental variability and a
second hierarchical model that characterises variability. Using a recently published dataset of inhibition of
multiple ion channels they demonstrate the use of the tool and how experimental variability propagates
through to the fitted dose response curves. They then extend these to simulations using a cardiac action
potential model to show the distribution of model outputs.

The benefits of a hierarchical Bayesian approach are clearly demonstrated. The paper describes the tool
and its underlying model and assumptions well, but could benefit from further development of the
arguments around the cardiac action potential distribution.

Main Comments
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1.  

2.  

3.  

Main Comments

The most interesting part of the paper was propagating the uncertainty though the action potential
simulations. The authors conclude that this measure is insufficient to distinguish compounds in terms of
risk (Fig 15), but if the distributions were plotted so that they are not on top of each other it may indeed be
possible to distinguish the compounds. For example, "caterpillar plots", boxplots, or violin plots (e.g. Fig 2
in  ) would better show the result.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096431

The authors also do not attempt to classify the compounds on the basis of their distribution (e.g. >50% of
the distribution over a 10% prolongation of APD(90) to indicate risk of TdP) and so demonstrate how poor
(or good) the distributions are as a predictive tool. The manuscript would be strengthened with this
additional information.

Minor Comments

It is unclear why the PyHillFit package was developed as these models can be easily fit with existing
MCMC software such as JAGS or Stan. Furthermore, using existing MCMC software allows other models
to be fit (e.g. 4 parameter logistic models -- when the upper and lower asymptote are not rescaled to
100% and 0%), and the sampling may be more efficient (especially with Stan, which handles hierarchical
models well). The benefits of PyHillFit over these other tools should be highlighted.

The data are analysed with two models but the verbal description of the models is ambiguous. There are
three models that could be run:

Parameters (IC50 and Hill) are common for all experiments (complete pooling, corresponding to
the first model)
 
Parameters are different for all experiments; each experiment has its own parameter estimated
independently from the other experiments (no pooling; not used in this paper)
 
Parameters are different for all experiments, but shared across experiments and thus mutually
informative (partial pooling; the second model)

It is clear from the equations that their second model is number 3 above, but the verbal description is that
of number 2. Please clarify the verbal description.

Other minor suggestions and corrections
Figures 2 and 7 should have a shaded "x" node pointing into "y", as y depends not just on
parameters but on other observed data.
 
Figure 2, and Eq 7. Is this across all compounds and channels or separately for each compound
and channel combination?
 
Figure 10 might benefit from a line showing the prior distributions to allow easy comparison of prior
and posterior.
 
Figures 12 (A-C), 13 (A-C), 14 (A-C) would be clearer if the data points were plotted above the
distribution curves
 

Not clear how many cardiac action potential simulations are used to generate the distributions for
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Not clear how many cardiac action potential simulations are used to generate the distributions for
Figure 15. Surely not the 375,000 samples from the posterior?
 
Author contributions: RJH should be RHJ?

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Author Response 27 Feb 2017
, Gary Mirams

We would like to thank the reviewers for their thoughtful, insightful and careful review, we have
uploaded a second version of the manuscript which we hope is improved in light of their
comments.

> The most interesting part of the paper was propagating the uncertainty though the action
potential simulations. The authors conclude that this measure is insufficient to distinguish
compounds in terms of risk (Fig 15), but if the distributions were plotted so that they are not on top
of each other it may indeed be possible to distinguish the compounds. For example, "caterpillar
plots", boxplots, or violin plots (e.g. Fig 2 in
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096431) would better show the
result.

Thank you for the suggestion, we have updated Figure 15 to use a violin plot. This does
allow a better inspection of the distributions and their overlap, as we can now see more
clearly, there is still substantial overlap.

> The authors also do not attempt to classify the compounds on the basis of their distribution (e.g.
>50% of the distribution over a 10% prolongation of APD(90) to indicate risk of TdP) and so
demonstrate how poor (or good) the distributions are as a predictive tool. The manuscript would be
strengthened with this additional information.

This is something we specifically tried to avoid, partly because it becomes a large exercise
that detracts from the main software tool, and also not least because the risk of TdP is not
well-defined or agreed upon for some of these compounds. Our point isn't that the
distributions will help/hinder predictions per-se, rather you could easily be anywhere 'within'
a distribution, so wherever they overlap there will necessarily be no way to reliably
distinguish between compounds. If the 50% value happened to be a good classifier for
these data, we would still not expect this to hold for new compounds, as the ordering could
easily reverse when new data become available wherever the distributions overlap to this
extent. Nevertheless, we annotated Figure 15 with risk classifications from the
CredibleMeds database (a more credible data source than its name suggests!). As one
might expect, only the clear shorteners and prolongers correspond well to ‘no known risk’ or
‘known TdP risk’; the majority of compounds have overlapping distributions of moderate
APD prolongation, that cannot really be ranked reliably.

> It is unclear why the PyHillFit package was developed as these models can be easily fit with
existing MCMC software such as JAGS or Stan. Furthermore, using existing MCMC software
allows other models to be fit (e.g. 4 parameter logistic models -- when the upper and lower

asymptote are not rescaled to 100% and 0%), and the sampling may be more efficient (especially
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asymptote are not rescaled to 100% and 0%), and the sampling may be more efficient (especially
with Stan, which handles hierarchical models well). The benefits of PyHillFit over these other tools
should be highlighted.

PyHillFit is intended for the specific case of ion channel screening data. We do appreciate
that this could have been coded in Stan, but we wanted to have more ‘control’ over what
was happening below the surface, and in how the results were outputted and analysed, so
we wrote the algorithms ourselves in Python. Perhaps as much of our ‘work’ here was in
deriving the statistical model and appropriate prior distributions, as it was in writing the
software itself. If a 4 parameter agonist compound was identified then an extension in Stan
to cover this might be appropriate.

> The data are analysed with two models but the verbal description of the models is ambiguous...it
is clear from the equations that their second model is number 3 above, but the verbal description is
that of number 2. Please clarify the verbal description.

Text amended in section 4.1.
> Other minor suggestions and corrections

We appreciate these being pointed out and have made the suggested amendments:
>    Figures 2 and 7 should have a shaded "x" node pointing into "y", as y depends not just on
parameters but on other observed data.

Updated, thanks for the suggestion.
>    Figure 2, and Eq 7. Is this across all compounds and channels or separately for each
compound and channel combination?

Separately, text updated.
>    Figure 10 might benefit from a line showing the prior distributions to allow easy comparison of
prior and posterior.

Updated, thanks for the suggestion.
>    Figures 12 (A-C), 13 (A-C), 14 (A-C) would be clearer if the data points were plotted above the
distribution curves

Updated, thanks for the suggestion.
>    Not clear how many cardiac action potential simulations are used to generate the distributions
for Figure 15. Surely not the 375,000 samples from the posterior?

Now mentioned in the caption.
>    Author contributions: RJH should be RHJ?

Updated(!), well spotted!

 No competing interests were disclosed.Competing Interests:
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