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We investigate the influence of a general non-local advection term of the form K * u to propagation in the one-dimensional Fisher-KPP equation. This model is a generalization of the Keller-Segel-Fisher system. When K ∈ L 1 (R), we obtain explicit upper and lower bounds on the propagation speed which are asymptotically sharp and more precise than previous works. When K ∈ L p (R) with p > 1 and is non-increasing in (-∞, 0) and in (0, +∞), we show that the position of the "front" is of order O(t 1/p ) if p < ∞ and O(e λt ) for some λ > 0 if p = ∞ and K(+∞) > 0. We use a wide range of techniques in our proofs.

Introduction and main results

The model we consider is

u t + [(K * u)u] x = u xx + u(1 -u), in (0, +∞) × R, u(0, x) = u 0 (x) ≥ 0, in R, (1.1) 
where u 0 is compactly supported and non-negative and satisfies 0 < u 0 L ∞ (R) ≤ 1.

(1.

2)

The unknown, u, typically represents the population density of a species. Throughout the paper, K is a bounded odd function which is monotonic except at x = 0, in the sense that it is monotonic in (-∞, 0) and in (0, +∞). The notation K * u stands for the convolution K * u(t, •) of K with u(t, •). We also assume that K does not change sign in (-∞, 0) and in (0, +∞). We define the "jump" of K as J := lim x→0 -2K(x).

(1.3)

We provide a cartoon picture of examples of K and the value of J in Figure 1. We mainly focus on three cases, leading to completely different behaviours: (i) when K ∈ L 1 (R), (ii) when K ∈ L p (R) with p ∈ (1, +∞) and (iii) when lim x→+∞ K(x) > 0.

Our motivation for considering models of this type is two-fold. Firstly, reaction-advectiondiffusion models where the advection is a non-linear term have garnered interest recently, see e.g. [2, 4, 8-11, 17, 21, 22, 24, 32, 34, 35] for a sampling of such works. However, in many cases, precise bounds on propagation are intractable. As such, (1.1) serves as a toy model which may provide insight into other models. Secondly, when K(x) = -χ sign(x)e -|x|/ √ d /(2d) for some positive constants χ and d (as in the left part of Figure 1), the above is the Keller-Segel-Fisher model dating back at least to [START_REF] Tello | Mathematical analysis and stability of a chemotaxis model with logistic term[END_REF][START_REF] Tello | A chemotaxis system with logistic source[END_REF]. This model, which can be written as

u t + χ (uv x ) x -u xx = u(1 -u), -d v xx + v = u, (1.4) 
x K J x K -J Figure 1: A cartoon of K when (left) K ∈ L 1 (R) and is increasing everywhere except at x = 0 and (right) when K ∈ L ∞ (R) and is decreasing everywhere except at x = 0.

has been the subject of considerable interest recently. Since there have been numerous works regarding questions of regularity and stability for different choices of domains and dimensions, we point the interested to [START_REF] Tello | Mathematical analysis and stability of a chemotaxis model with logistic term[END_REF][START_REF] Tello | A chemotaxis system with logistic source[END_REF][START_REF] Winkler | Chemotaxis with logistic source: very weak global solutions and their boundedness properties[END_REF] and the many works which cite these. Closer to our interest, there have been a few works studying the propagation speeds for Keller-Segel-Fisher systems [START_REF] Nadin | Traveling waves for the Keller-Segel system with Fisher birth terms[END_REF][START_REF] Salako | Global existence and asymptotic behavior of classical solutions to a parabolicelliptic chemotaxis system with logistic source on R n[END_REF][START_REF]Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on R n[END_REF]. The case where χ < 0 in (1.4) corresponds to negative chemotaxis, where a species secretes a chemorepellent causing the species to spread. This behavior has been observed in, for example, slime molds [START_REF] Keating | Negative chemotaxis in cellular slime molds[END_REF] and entamoeba histolytica, the bacteria that causes dysentery [START_REF] Zaki | Entamoeba histolytica cell movement: a central role for selfgenerated chemokines and chemorepellents[END_REF]. Mathematically this behavior has attracted less interest due, perhaps, to the ease with which well-posedness may be established. However, we mention the more applied works of [START_REF] Amar | Collective chemotaxis and segregation of active bacterial colonies[END_REF][START_REF] Grima | Strong-coupling dynamics of a multicellular chemotactic system[END_REF][START_REF] Sengupta | Dynamics of a microorganism moving by chemotaxis in its own secretion[END_REF], showing pattern formation and the effect on diffusion.

Our goal is to obtain explicit propagation bounds for solutions to (1.1). When K ∈ L 1 (R), we obtain a lower bound on the propagation of 2t. While we believe that this is sharp, obtaining a matching bound is still an open question. We obtain an upper bound of the form c * t where c * is given explicitly by the expression (1.18) in Corollary 1.5 below. After Theorem 1.2 we discuss heuristically why we believe that the front is at 2t asympotically, and after Corollary 1.5, we discuss the relationship of our bounds on c * with known results. When K(x) ∼ x -α as x → +∞ for some α ∈ (0, 1), we show that the front is at O(t 1/α ), and when lim x→+∞ K(x) > 0, the front moves exponentially.

Throughout the paper, the solutions u are understood as classical C 1;2 t;x ((0, +∞) × R) solutions, with u(t, •) → u 0 as t → 0 + in L 1 (R). As a matter of fact, if u is a continuous, non-negative, bounded solution in (0, T ) × R for some T > 0 and if K belongs to L 1 (R), then the general assumptions on K imply that K * u and (K * u) x belong to L ∞ ((0, T ) × R) with K * u L ∞ ((0,T )×R) ≤ K L 1 (R) u L ∞ ((0,T )×R) and (K * u) x L ∞ ((0,T )×R) ≤ 2|J| u L ∞ ((0,T )×R) .

(1.5)

Therefore, standard parabolic estimates imply that, for every ε ∈ (0, T ), u and u x are Hölder continuous in (ε, T ) × R and then that u is a classical solution in (0, T ) × R, with u, u t , u x and u xx bounded and Hölder continuous in (ε, T ) × R (see also Section 3.1 below in the case when K is only in L ∞ (R)). The strong maximum principle then yields u > 0 in (0, T ) × R (see also Lemma 2.1 below). The same conclusions hold in (0, +∞) × R if u is assumed to be continuous and bounded in (0, +∞) × R. We note that, with the positivity of u established, we may optimize the estimates in (1.5)

K * u L ∞ ((0,T )×R) ≤ 1 2 K L 1 (R) u L ∞ ((0,T )×R) and
(K * u) x L ∞ ((0,T )×R) ≤ |J| u L ∞ ((0,T )×R) .

(1.6)

To obtain (1.6) we use explicitly the cancellations due to the monotonicity and positivity properties of K and u in order to pick up an extra factor of 1/2 in both terms. Lastly, for a function g : E → R k defined on a subset E of R m and for p ∈ [1, ∞], we denote g p the L p (E) norm of the Euclidean norm |g| of g. For instance, if u is a bounded solution of (1.1), then u ∞ stands for u L ∞ ((0,+∞)×R) while u 0 ∞ stands for u 0 L ∞ (R) . When there is ambiguity, we write the domain explicitly.

The effect of L 1 kernels

Our first main result discusses the case when K ∈ L 1 (R) as well as the particular case when K = K for some kernel K ∈ W 1,1 (R), meaning that K converges to 0 fast enough at ±∞ (we recall that K is always assumed to be odd and monotonic except at 0). In this case, we have the following result.

Theorem 1.1. Suppose that K ∈ L 1 (R) is odd and monotonic except at 0 and that u is a bounded classical solution of (1.1) with non-negative and non-zero compactly supported initial data u 0 satisfying (1.2). Then u > 0 in (0, +∞) × R and the following holds:

(i) for every c ∈ (0, 2), there exists δ > 0 depending only on c, K and u ∞ such that lim inf t→+∞ inf |x|<ct u(t, x) ≥ δ;

(1.7) in addition, if K is compactly supported, then

lim inf t→+∞ inf |x|<2t-(3/2) log(t)
u(t, x) > 0;

(1.8)

(ii) if K = K with K ∈ W 1,1 ( 
R), then there exists c * > 0, given explicitly in (1.18) below, such that ∀ c > c * , lim sup We make a few observations about Theorem 1.1. Firstly, we point out that the wellposedness of similar models have been handled extensively, see e.g. [26-28, 30, 31]. When J < 1 in Theorem 1.1, a maximum principle argument gives immediately that u ∞ ≤ max{1, (1 -J) -1 }, see Lemma 2.1 below. While this relies on the fact that u 0 ∞ ≤ 1, we note that the condition u 0 ∞ ≤ 1 is not restrictive; indeed, if u 0 ∞ > 1, it is straightforward to replace the above with lim sup s→+∞ u L ∞ ((s,+∞)×R) ≤ max{1, (1 -J) -1 }.

Uniform bounds in L ∞ have been obtained in various other settings. In particular, solutions to the Keller-Segel-Fisher model in R are always uniformly bounded in L ∞ . We also expect a similar result to hold for the general kernels considered in this paper, but as this is not the focus of our study, we do not address it here. Secondly, we mention that the lower bound (i) in Theorem 1.1 does not require the monotonicity of K. Indeed, it requires only that K ∈ L 1 (R) and that u is bounded in (0, +∞) × R.

Thirdly, we mention that the upper bound (1.9) in Theorem 1.1-(ii) does not require the assumption that K = K for some K ∈ W 1,1 (R). If K were merely L 1 our proof still provides an upper bound; however, the expression characterizing c * (see (1.18) below) is the minimum of three terms, two of which depend on K 1 . Hence, in many cases, we obtain better bounds on c * by considering this more specific setting. We note that the choice of K in the Keller-Segel-Fisher model satisfies this condition; indeed,

K(x) = -χ sign(x)e -|x|/ √ d /(2d) = (d/dx)(χe -|x|/ √ d /(2 √ d).
Finally, when J < 1/2, we may apply arguments from [START_REF] Salako | Global existence and asymptotic behavior of classical solutions to a parabolicelliptic chemotaxis system with logistic source on R n[END_REF][START_REF]Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on R n[END_REF] to bootstrap our lower bound to give uniform convergence to 1 (that is, (1.7) may be replaced by lim t→∞ sup |x|<ct |u(t, x) -1| = 0 and a similar, though more difficult to state, result may replace (1.8)). This is handled in Corollary 2.3 below.

A general result for the lower bounds in Theorem 1.1

In order to prove Theorem 1.1, we prove some general results, the first of which is a lower bound in R n that shows that a "localized" non-local advection term cannot slow down propagation. In the sequel, for any x ∈ R n and r > 0, we denote B r (x) the open Euclidean ball with center x and radius r.

Theorem 1.2. Let F : C(R n ) ∩ L ∞ (R n ) → (C 1 (R n ) ∩ W 1,∞ (R n ))
n have the property that, for any R > 0 sufficiently large, there exist two constants C R > 0 and ε R > 0, such that lim R→+∞ ε R = 0 and

F (v) L ∞ (B R (x 0 )) + ∇ • F (v) L ∞ (B R (x 0 )) ≤ C R v L ∞ (B 2R (x 0 )) + ε R v L ∞ (R n ) (1.10) for all v ∈ C(R n )∩L ∞ (R n ) and x 0 ∈ R n .
We also assume that F is locally Hölder continuous, in the sense that, for every M > 0, there exist α ∈ (0, 1) and

C > 0 such that F (v) - F (w) (W 1,∞ (R n )) n ≤ C v -w α L ∞ (R n ) for all v, w ∈ C(R n ) ∩ L ∞ (R n ) with v L ∞ (R n ) ≤ M and w L ∞ (R n ) ≤ M . Let u : (0, +∞) × R n → R be a non-negative, non-zero, bounded classical solution of u t + ∇ • (F (u(t, •)) u) = ∆u + u(1 -u), in (0, +∞) × R n . (1.11)
Then, for every c ∈ (0, 2), there exists δ > 0 depending only on c, F , and u ∞ such that

lim inf t→+∞ inf |x|<ct u(t, x) ≥ δ. (1.12)
Furthermore, if the assumption (1.10) holds with ε R = 0, then

lim inf t→+∞ inf |x|<2t-(n+1/2) log(t) u(t, x) > 0. (1.13)
We expect Theorem 1.2 and its technique to be useful in attacking other problems where the advection is non-local. We believe that, in the positive chemotaxis setting, i.e. when K is increasing except at x = 0, 2 is the sharp propagation speed. The reason being that, for x > 0, at the front and beyond u is, on average, decreasing, in which case K * u is, on average, negative and so should slow down the front compared to the same model without advection. Since the Fisher-KPP equation moves at speed 2 without advection, we expect propagation in our model to be no faster than 2. In view of Theorem 1.2, we expect 2 to be the sharp rate.

Our proof of Theorem 1.2 hinges on two novel observations. First, when ε R > 0, we build a small function u satisfying a similar equation to u but where the advection F (u(t, •))(x) is normalized whenever |F (u(t, •))(x)| is not small. We may then apply the results of [START_REF] Berestycki | Asymptotic spreading in heterogeneous diffusive excitable media[END_REF] to characterize the propagation of u. On the other hand, when u(t, x) is small enough that u and u could possibly "touch", we use a local-in-time Harnack inequality (see [START_REF] Bouin | The Bramson logarithmic delay in the cane toads equations[END_REF]Theorem 1.2] and see also Lemma 2.2 below) along with the inequality that F satisfies to show that F (u(t, •))(x) must be small enough to be below the normalization cut-off. Hence, at this point u and u satisfy the same equation and so the maximum principle rules out this "touching," thus preserving the ordering of u and u. As a result, the front of u, which travels at speed 2 -ε, must sit behind the front of u, providing the lower bound (1.12).

The second observation is that, when ε R = 0, we may generalize the local-in-time Harnack inequality [START_REF] Bouin | The Bramson logarithmic delay in the cane toads equations[END_REF]Theorem 1.2] to obtain a bound on |∇u(t, x)| by a term involving u(t, x) 1/p for any p > 1. This allows us to absorb the term ∇ • (F (u(t, •))u) into the reaction term so that u is the super-solution to an equation of the form u t = ∆u + f (u). The propagation of u is well-understood and it leads to the desired lower bound (1.13) for u. The improved local-in-time Harnack inequality is stated precisely in Lemma 2.2.

Before discussing the second general result used in the proof of Theorem 1.1, which gives the upper bound on the propagation speed, we mention other known lower bounds on the propagation speed. First, in [START_REF] Nadin | Traveling waves for the Keller-Segel system with Fisher birth terms[END_REF], Nadin, Perthame, and Ryzhik construct a travelling wave solution of (1.4) (that is, (1.1) with the choice

K(x) = -χ sign(x)e -|x|/ √ d /(2d)) with a speed c such that c ∈ [2, 2 + χ √ d/(d -χ)] when 0 < χ < min{1, d}.
Their lower bound matches ours; however, their strategy, which amounts to understanding the tail of the traveling wave, does not apply to the Cauchy problem. Indeed, when they investigate the Cauchy problem, they just show that

K 1 ≤ lim inf t→+∞ 1 t ˆR u(t, x)dx ≤ lim sup t→+∞ 1 t ˆR u(t, x)dx ≤ K 2
for some 0 < K 1 , K 2 , which are not obtained explicitly. This shows linear-in-time propagation in a weak sense, but it does not provide an explicit bound of the propagation. Later, Salako and Shen [START_REF] Salako | Global existence and asymptotic behavior of classical solutions to a parabolicelliptic chemotaxis system with logistic source on R n[END_REF][START_REF]Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on R n[END_REF] are able to obtain a lower bound on the propagation of the Cauchy problem when d = 1 and 0

< χ < 2/(3 + √ 2) of 2 1 -χ(1 -χ) -1 -χ(1 -χ) -1 .
In both cases, our bound for the propagation of the Cauchy problem is an improvement.

Some heat kernel estimates for the upper bounds in Theorem 1.1

The second general result, used in the proof of Theorem 1.1-(ii), is an upper bound on the heat kernel when the operator takes a similar form to that of (1.1).

Proposition 1.3. Suppose that v : (0, +∞) × R → R is of class C 1;2 t;x ((0, +∞) × R) and satisfies the bounds v ∞ ≤ A 0 , v x ∞ ≤ A 1 , and 
v xx ∞ ≤ A 2 , (1.14) 
for some A 0 , A 1 , A 2 ∈ [0, +∞). Consider the fundamental solution Γ(t, s, x, y) to the equation

Γ t + (v x Γ) x = Γ xx , in (s, +∞) × R, Γ(t = s, s, x, y) = δ y (x), (1.15) 
for any s ≥ 0 and y ∈ R. Then, for every δ > 0, there is a constant C δ > 0 depending on δ, such that Γ satisfies the upper bound

Γ(t, s, x, y) ≤ C δ √ t-s exp δ(t-s)+min A 2 (t -s) 2 - (x-y) 2 4(1 + δ + A 2 0 )(t-s) , inf ε∈(0,1) A 2 1 (t-s) 4ε - (x-y) 2 4 1+δ+ A 2 0 1-ε (t-s) (1.16)
for every t > s ≥ 0 and (x, y) ∈ R × R.

The proof of the upper bound (1.16) in Proposition 1.3 follows the general outline of Fabes and Stroock's [START_REF] Fabes | A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash[END_REF] proof for heat kernel estimates in R n for second order parabolic equations without first and zeroth order terms. Their proof involves looking at exponentially weighted solutions to the equation and obtaining a general L 2 k+1 estimate in terms of the L 2 k norm for all k ∈ N. Taking k to infinity yields an L ∞ bound dependent on the growth of the L 2 norm, which comes from the estimate when k = 1. Here, we observe that the rate of exponential decay of the eventual estimate comes only from the L 2 estimate. As such, we optimize this estimate in a way which we may not necessarily do for the general L 2 k estimate. This allows us to obtain estimates which take advantage of the three norms of v and obtain spatial decay which is better than the naïve bound. We note that, while the above estimate is, in general, not sharp, it is quite general.

The last general result gives a bound on the tails of solutions. As we observe below, it translates to the naïve bound on the propagation of the sum of the speeds of propagation for homogeneous Fisher-KPP and of advection, that is c * ≤ 2 + K * u ∞ . Beyond this, it is useful in many places throughout this manuscript, especially in the setting where K / ∈ L 1 (R).

Proposition 1.4. Suppose that T > 0, u ∈ C 1;2 t;x ((0, T ] × R), v ∈ C 0;1 t;x ((0, T ] × R), and

u t + (vu) x = u xx in (0, T ] × R, u(0, x) = u 0 (x) ≥ 0 in R, (1.17) 
where u 0 ∈ L ∞ (R) is non-negative, non-zero, and satisfies supp u 0 ⊂ [-a, a] for some a > 0. Suppose, further, that v satisfies

sup t∈(0,T ] v(t, •) L ∞ (R) ≤ A,
for some A ∈ (0, +∞). Then, for all |x| ≥ A T + a + 1,

u(T, x) ≤ a √ π 1 √ T + A √ T |x| -A T -a e -(|x|-A T -a) 2 4T
.

One could prove Proposition 1.4 in a rather straight-forward manner by utilizing the probabilistic interpretation of the equation. However, the proof of the local-in-time Harnack inequality requires upper and lower heat kernel estimates that match asymptotically as |x| → ∞. Since we obtain these estimates from a result of Hill [START_REF] Hill | Estimates on the heat kernel of parabolic equations with advection[END_REF], we utilize this result to prove Proposition 1.4 instead of proving Proposition 1.4 directly.

The bound on c * follows directly from Propositions 1.3 and 1.4, along with (1.6).

Corollary 1.5. Under the assumptions of Theorem 1.1, the speed c * in (1.9) can be given by the following explicit formula:

c * = min 2 + K 1 u ∞ 2 , 2 1 + |J| u ∞ 2 1 + K 2 1 u 2 ∞ ,

inf

ε∈(0,1)

1 + K 2 1 u 2 ∞ 16ε 1 + K 2 1 u 2 ∞ 1 -ε . (1.18) 
We make a few observations about Corollary 1.5. Firstly, when K = 0 (and then, J = 0 and K = 0), (1.18) reduces to the well-known formula c * = 2 for the local Fisher-KPP equation [START_REF] Fisher | The wave of advance of advantageous genes[END_REF][START_REF] Kolmogorov | Étude de l'équation de la chaleur de matière et son application à un problème biologique[END_REF].

Secondly, it is possible to derive an explicit formula for the term involving an infimum over ε. The resulting formula is complicated and since we are interested in estimates that are asymptotically correct, we leave the formula as above.

Thirdly, when 0 ≤ J < 1, we may make some estimates more explicit. Since u ∞ ≤ (1 -J) -1 in this case, as we show later in Lemma 2.1, it follows that

c * ≤ min 2 + K 1 2(1 -J) , 2 2 -J 2(1 -J) 1 + K 2 1 (1 -J) 2 ,

inf

ε∈(0,1)

1 + K 2 1 16ε(1 -J) 2 1 + K 2 1 (1 -ε)(1 -J) 2 . (1.19)
Lastly, we point out that, for each term in the minimization characterizing c * in (1.18), one may easily find choices of K for which that term is the minimum.

Since, with the unwieldy characterization of c * in (1. [START_REF] Keating | Negative chemotaxis in cellular slime molds[END_REF]), it is difficult to see if this is an improvement over known results, we now compare these bounds on c * with the known results. First, in [START_REF] Nadin | Traveling waves for the Keller-Segel system with Fisher birth terms[END_REF], as mentioned above, a traveling wave moving with speed c ∈ [2, 2+χ √ d/(d-χ)] was constructed for K(x) = -χ sign(x)e -|x|/ √ d /(2d) and 0 < χ < min{1, d}. Given that choice of K, one can observe that 0 < J = χ/d < 1, K 1 = χ/ √ d, and K 1 = χ. We see improvement in a few regimes. The first term in the right-hand side of the upper bound for c * (1. [START_REF] Keating | Negative chemotaxis in cellular slime molds[END_REF]) is essentially the same as the upper estimate 2 + χ √ d/(d -χ) in [START_REF] Nadin | Traveling waves for the Keller-Segel system with Fisher birth terms[END_REF]. 1 However, the second term is asymptotically better, for example, if χ = 1/d and χ → 0: the upper bound in [START_REF] Nadin | Traveling waves for the Keller-Segel system with Fisher birth terms[END_REF] is asymptotic to 2 + χ 3/2 while ours is, using the middle term in (1.19), at most asymptotic to 2 + 3χ 2 /2 (the third term in (2.5) would also lead to a similar asymptotics). The third term is also asymptotically better in the case where, for example, χ = d 2 and d → 0. In this case, the upper bound in [START_REF] Nadin | Traveling waves for the Keller-Segel system with Fisher birth terms[END_REF] is asymptotic to 2 + d 3/2 while ours is at most asymptotic to 2 + d 3 /16, after choosing ε = 1 -√ d. We recall again that no explicit bounds are given for the speed of propagation in the Cauchy problem in [START_REF] Nadin | Traveling waves for the Keller-Segel system with Fisher birth terms[END_REF]. On the other hand, it is difficult to compare with the results of Salako and Shen [START_REF] Salako | Global existence and asymptotic behavior of classical solutions to a parabolicelliptic chemotaxis system with logistic source on R n[END_REF][START_REF]Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on R n[END_REF] as they provide two upper bounds: the first is equivalent to the bound of Nadin, Perthame, and Ryzhik [START_REF] Nadin | Traveling waves for the Keller-Segel system with Fisher birth terms[END_REF] discussed above, and the second is characterized in terms of the solution to an algebraic equation which is not explicitly solvable. However, in the case when d is fixed such that d > 1, which in the notation of [START_REF] Salako | Global existence and asymptotic behavior of classical solutions to a parabolicelliptic chemotaxis system with logistic source on R n[END_REF][START_REF]Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on R n[END_REF] corresponds to a > 1, this second upper bound converges to 1 + d > 2 as χ → 0, while ours converges to 2. Hence, it follows that our bound is an improvement of the one of [START_REF] Salako | Global existence and asymptotic behavior of classical solutions to a parabolicelliptic chemotaxis system with logistic source on R n[END_REF][START_REF]Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on R n[END_REF] in some regimes.

Before proceeding to the discussion of the effect of large kernels, we note that we do not address the problem of the existence of travelling waves. We believe that the procedure of Nadin, Perthame, and Ryzhik [START_REF] Nadin | Traveling waves for the Keller-Segel system with Fisher birth terms[END_REF] is sufficiently robust to handle our case as well without the addition of new ideas.

The effect of large "negative chemotaxis" kernels

One may ask what happens when K is not in L 1 (R). In the case where K is increasing except at x = 0 and is merely L ∞ (R), this question was investigated by Mimura and Ohara [START_REF] Mimura | Standing wave solutions for a Fisher type equation with a nonlocal convection[END_REF] who found kernels which admitted standing waves. That is, certain kernels K can stop propagation. On the other hand, we ask what happens in the case of decreasing kernels which are not in L 1 (R).

First, we address the well-posedness of the problem.

Proposition 1.6. If K is an odd kernel in L ∞ (R) which is non-increasing except at 0 and is non-positive in (-∞, 0) and non-negative in (0, +∞), then there exists a unique bounded classical solution u that solves (1.1)-(1.2) and that satisfies 0 < u(t, x) ≤ 1 for all (t, x) ∈ (0, +∞) × R.

Next, we define

P (t) = ˆR u(t, x) dx (1.20)
to be the total population at time t ≥ 0. In the Fisher-KPP equation

u t = u xx + u(1 -u),
if the initial condition u 0 is non-negative, non-zero, bounded and compactly supported, it is

x -ct ct u(t, •)
Figure 2: A cartoon of u. Notice that P (t) is the area under the blue line that represents u.

From this image it is clear that P (t) ∼ 2ct.

known that P (t)/(ct) → 2 as t → +∞, where c is the minimal traveling wave speed, which is known to be c = 2. We use the notation with c to emphasize what role the speed plays in the asymptotics of P . See Figure 2 for a visual depiction of this. This is a key point in our analysis. In the theorem below and in the sequel, R * := R \ {0}.

Theorem 1.7. Suppose that u is a bounded classical solution of (1.1)-(1.2) with supp(u 0 ) ⊂ [-a, a] for some a > 0 and with an odd kernel K ∈ L ∞ (R) that is non-increasing except at 0 and is non-negative on (0, +∞) (and then non-positive on (-∞, 0)). Then:

(i) if lim x→+∞ K(x) > 0, there exists r ∈ (0, 1), depending only on K, and a constant C ≥ 1, depending only on P (0) and K, such that C -1 e rt ≤ P (t) ≤ Ce t for all t ≥ 0; ), then there exists a constant C > 0, depending only on u 0 , p, and K, such that

(ii) if K ∈ L p (R) with p ∈ [1, ∞
P (t) ≤ C (t p + 1) for all t ≥ 0; (iii) if K ∈ C 1 (R *
) is convex on (0, +∞) (and then concave on (-∞, 0)) and is such that K(x) ≥ A (1 + x) -α on (0, +∞) for some α ∈ (0, 1) and A > 0, then there exists C > 0, depending only on u 0 and K, such that

P (t) ≥ C(1 + t) 1/α for all t ≥ 0.
We point out that the cases (ii) and (iii) complement each other. They match in the sense that if, in addition to the other assumptions on the kernel K, it satisfies K(x) ≈ x -α as x → +∞ with α ∈ (0, 1), then K ∈ L (1/α)+ε (R) for all ε > 0 so we obtain that t 1/α P (t) t (1/α)+ε as t → +∞, for all ε > 0.

We note that these estimates are obtained by deriving differential inequalities on the quantities P (t) and V (t) := ´R u(t, x) (1 -u(t, x)) dx, related by the equation P = V , and an estimate on the derivative (K * u) x . Obtaining propagation speed estimates via integral quantities goes back at least to [START_REF] Constantin | Bulk burning rate in passive-reactive diffusion[END_REF] and seems to be quite well suited to understanding acceleration phenomena in situations where there is no comparison principle as in this work. It is interesting to note that the superlinear acceleration in Theorem 1.7 is due entirely to advection. To our knowledge, this has not been observed in other reaction-diffusion-advection models previously.

These estimates may be bootstrapped to obtain pointwise bounds. We obtain the following corollary.

Corollary 1.8. Suppose that u is a bounded classical solution of (1.1)-(1.2) with supp(u 0 ) ⊂ [-a, a] for some a > 0 and with an odd kernel K ∈ L ∞ (R) ∩ C 1 (R * ) that is non-negative and convex on (0, +∞).

(i) If lim x→+∞ K(x) > 0 and if u 0 is even, radially non-increasing and of class C 2+β (R)
for some β ∈ (0, 1), then there exists λ > 0 such that

lim t→+∞ inf |x|<e λt u(t, x) > 0. (ii) If there exist A ≥ 1 and α ∈ (0, 1) such that A -1 (1 + x) -α ≤ K(x) ≤ A(1 + x) -α
for all x ∈ R, then there exists a constant C 0 > 0, depending on u 0 and K, such that, for any µ ∈ (0, 1),

lim inf t→+∞ t -1/α 1 t ˆt 0 {x ∈ R : u(s, x) ≥ µ} ds ≥ C 0 .
This is proved in two parts: Corollary 3.2 and Corollary 3.5. We note that, in Corollary 1.8, if K(x) ≈ x -α as x → +∞ and u 0 is even, radially non-increasing and of class C 2+β (R) for some β ∈ (0, 1), we may easily bootstrap the results of Corollary 1.8 to obtain that lim

t→+∞ sup |x|<C 1 t 1/α |u(t, x) -1| = 0
for some C 1 > 0, by using the fact that u(t, x) is even in x and non-increasing in |x| for all t > 0.

Organization of the paper

In Section 2, we prove Theorem 1.1 through the results Theorem 1.2 and Proposition 1.3 up to technical lemmas that we outsource to Section 4. We also show that the lower bound in Section 2 may be upgraded to convergence to 1 when J < 1/2 in Section 2. In Section 3, we prove Theorem 1.7 and Corollary 1.8, including in Section 3.1 a discussion of a priori bounds for the negative chemotaxis model when K is in L ∞ (R) but may not be in L 1 (R).

Bounds on the speed of propagation for the Cauchy problem

In this section, we prove the bounds in Theorem 1.1. We prove the upper bound and the lower bound in Section 2.2 and Section 2.3, respectively. To begin, we show in Section 2.1 some explicit uniform bounds of u when J < 1.

Explicit pointwise bounds

Lemma 2.1. Let K and u be as in Theorem 1.1. Then u(t, x) > 0 for all t > 0 and x ∈ R.

Furthermore, if J < 1, u(t, x) ≤ max 1, (1 -J) -1 for all t > 0 and x ∈ R. (2.1)
Proof. First of all, the assumptions on K and u imply that the functions a := K * u and b

:= (K * u) x belong to L ∞ ((0, +∞) × R) with a ∞ ≤ K 1 u ∞ /2 and b ∞ ≤ |J| u ∞ as noted in (1.6
). The function u can then be written as a bounded classical solution of

u t = u xx -a(t, x) u x -b(t, x) u(t, x) + u(1 -u) in (0, +∞) × R.
As already emphasized in Section 1, since u 0 is non-negative and non-zero, it follows from the maximum principle that u(t, x) > 0 for all t > 0 and x ∈ R. Remember also that, from standard parabolic estimates, the functions u, u t , u x and u xx are then Hölder continuous in (ε, +∞) for every ε > 0. Fix any T > 0. Since u t ≤ u xx -a(t, x) u x + Cu in (0, +∞) × R for some constant C ≥ 0, there holds u(t, x) ≤ u 0 ∞ e Ct for all t > 0 and x ∈ R.

(2.2)

Assume by way of contradiction that

u L ∞ ([0,T ]×R) > max{1, (1 -J) -1 }. Using the in- equality u L ∞ ([0,T ]×R) > 1 ≥ u 0 ∞ and equation (2.2), one gets the existence of a se- quence (t n , x n ) n∈N in (0, T ] × R such that u(t n , x n ) → u ∞ = sup (0,T ]×R u as n → +∞ and lim inf n→+∞ t n > 0. Up to extraction of a subsequence, the functions u n (t, x) := u(t, x + x n ) converge in C 1;2 t;x;loc ((0, T ] × R), to a classical solution u ∞ of (u ∞ ) t = (u ∞ ) xx -a ∞ (t, x) (u ∞ ) x -b ∞ (t, x) u ∞ + u ∞ (1 -u ∞ ) in (0, T ] × R, with a ∞ = K * u ∞ and b ∞ = (K * u ∞ ) x . Furthermore, for all (t, x) ∈ (0, T ] × R, one has 0 ≤ u ∞ (t, x) ≤ u ∞ = u ∞ (t ∞ , 0) for some t ∞ ∈ (0, T ]. At the point (t ∞ , 0), 0 ≤ (u ∞ ) t (t ∞ , 0) -(u ∞ ) xx (t ∞ , 0) + a ∞ (t ∞ , 0) (u ∞ ) x (t ∞ , 0) = u ∞ (t ∞ , 0) (1 -u ∞ (t ∞ , 0)) -(K * u ∞ ) x (t ∞ , 0) u ∞ (t ∞ , 0). (2.3) If J ≥ 0 and K ∈ L 1 (R) is monotonic except at 0, K is then non-decreasing in (-∞, 0) and in (0, +∞). The function u ∞ being itself non-negative, it follows that -(K * u ∞ ) x (t ∞ , 0) u ∞ (t ∞ , 0) ≤ J (u ∞ (t ∞ , 0)) 2 , hence 0 ≤ u ∞ (t ∞ , 0) (1-u ∞ (t ∞ , 0))+J (u ∞ (t ∞ , 0)) 2 .
Since u ∞ (t ∞ , 0) = u ∞ was assumed to be larger than (1 -J) -1 (> 0), one reaches a contradiction.

If J < 0, then similar reasoning shows that

-(K * u ∞ ) x (t ∞ , 0)u ∞ (t ∞ , 0) ≤ 0. Hence (2.3) implies 0 ≤ u ∞ (t ∞ , 0)(1 -u ∞ (t ∞ , 0)). Since u ∞ (t ∞ , 0) = u ∞
was assumed to be larger than 1, one reaches a contradiction.

Thus, (2.1) is proved.

2.2

The upper bound: proofs of Theorem 1.1-(ii) and Corollary 1.5

Proof of part (ii) in Theorem 1.1 and Corollary 1.5, from Propositions 1.3 and 1.4. We first consider the case when

c > 2 + K 1 u ∞ 2 .
We obtain our bound by applying Proposition 1.4 to a suitable super-solution of u. Indeed, let u satisfy

u t + [(K * u)u] x = u xx + u (2.4) in (0, +∞) × R with u(0, •) = u 0 .
Hence, together with the non-negativity of u, we have that 0 ≤ u(t, x) ≤ u(t, x) for all t > 0 and all x ∈ R. Let a > 0 be such that supp

u 0 ⊂ [-a, a].
For any t > 0, recalling (1.6) and choosing v = K * u and A = K 1 u ∞ /2, we apply Proposition 1.4 to e -t u(t, x) to obtain a constant C K depending only on K, u ∞ , and a such that, for all t > 1 and

|x| ≥ K 1 u ∞ t/2 + a + 1, 0 ≤ e -t u(t, x) ≤ e -t u(t, x) ≤ C K √ t e -(|x|-K 1 u ∞t/2-a) 2 /4t . Let 2δ c = c -2 -K 1 u ∞ /2 > 0. Fix T > 1 large enough such that, for all t ≥ T , ct > (2 + δ c + K 1 u ∞ /2)t + a + 1. Then, for t ≥ T and |x| ≥ ct, we have 0 ≤ u(t, x) ≤ C K √ t exp t - (2 + δ c ) 2 t 2 4t = C K √ t exp - (4δ c + δ 2 c )t 4 .
Recalling that δ c > 0, we see that sup |x|≥ct u(t, x) → 0 as

t → +∞ for c > 2 + K 1 u ∞ /2.
Let us now consider the case when

c > min 2 1 + |J| u ∞ 2 1 + K 2 1 u 2 ∞ , 2 inf ε∈(0,1) 1 + K 2 1 u 2 ∞ 16ε 1 + K 2 1 u 2 ∞ 1 -ε . (2.5)
The key estimate here is the heat kernel estimate in Proposition 1.3 that follows from a modification of the strategy of Fabes and Stroock [START_REF] Fabes | A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash[END_REF]. As in the previous paragraph, the function u solving (2.4) with u(0, •) = u 0 satisfies 0 ≤ u(t, x) ≤ u(t, x) for all t > 0 and all x ∈ R. Let Γ be the fundamental solution given in (1.15) with the choice v(t, x) = (K * u(t, •))(x). Thus, using also that u 0 has compact support included in [-a, a] and ranges in [0, 1], 0 ≤ u(t, x) ≤ u(t, x) = e t ˆR Γ(t, 0, x, y) u 0 (y) dy ≤ 2 a e t max y∈[-a,a] Γ(t, 0, x, y).

As already emphasized in Section 1 and (1.6), the function v is of class

C 1;2 t;x ((0, +∞) × R), with v ∞ ≤ A 0 := K 1 u ∞ , v x ∞ ≤ A 1 := K 1 u ∞ 2 and v xx ∞ ≤ A 2 := |J| u ∞ . (2.6)
It follows from formula (1.16) in Proposition 1.3 that, for any δ > 0, there exists a constant C δ > 0 depending on δ, such that, for every t > 0 and x ∈ R,

0 ≤ u(t, x) ≤ 2 a C δ √ t max y∈[-a,a] exp (1 + δ)t + min A 2 2 t - (x -y) 2 4(1 + δ + A 2 0 )t , inf ε∈(0,1) A 2 1 t 4ε - (x -y) 2 4 1 + δ + A 2 0 1-ε t .
In the above formula, each term in the max-min is of the form

2 a C δ √ t exp (1 + δ + a 1 )t - (x -y) 2 4(1 + δ + a 2 )t
for some a 1 , a 2 ≥ 0. More precisely, the pairs (a 1 , a 2 ) are of the type

(a 1 , a 2 ) = A 2 2 , A 2 0 , or (a 1 , a 2 ) = A 2 1 4ε , A 2 0 1 -ε with 0 < ε < 1. (2.7)
Hence, our upper bound gives us, for every δ > 0 and c > 0, and for both choices (a 1 , a 2 ) above,

0 ≤ sup |x|>ct u(t, x) ≤ 2 a C δ √ t sup |x|>ct max y∈[-a,a] exp (1 + δ + a 1 )t - (x -y) 2 4(1 + δ + a 2 )t .
The term on the right tends to zero if

c > 2 (1 + δ + a 1 )(1 + δ + a 2 ). (2.8)
Substituting the values of (a 1 , a 2 ) into the right hand side above with (A 0 , A 1 , A 2 ) given in (2.6), minimizing over these values (a 1 , a 2 ) and setting δ = 0, yields exactly the terms in the right-hand side of (2.5). If we now choose c as in (2.5), then we may choose δ > 0 small enough so that (2.8) holds for at least one of the choices (a 1 , a 2 ) listed in (2.7). Hence, sup |x|>ct u(t, x) → 0 as t → +∞ for every c satisfying (2.5). The two cases above yield that sup |x|>ct u(t, x) → 0 as t → +∞ for all c > c * , where c * is given by (1.18). This finishes the proof.

The lower bounds

In this section, we prove the lower bounds in Theorem 1.1. Afterwards, we show that when K is small, these lower bounds may be bootstrapped to show that u converges to 1. 

Proofs of Theorem

F : C(R) ∩ L ∞ (R) → C 1 (R) ∩ W 1,∞ (R) v → K * v.
Indeed, it is straightforward to check that F is locally Hölder continuous (it is even Lipschitz continuous since

F (v) -F (w) W 1,∞ (R) ≤ ( K 1 + 2|J|) v -w L ∞ (R) for all v, w ∈ C(R) ∩ L ∞ (R)
) and that it satisfies (1.10) with C R = K 1 + 2 |J| and lim R→+∞ ε R = 0, and even ε R = 0 for R large enough if K is compactly supported.

Therefore, we just have to prove Theorem 1.2. There are two key estimates that we use to prove this. The first is a local-in-time Harnack inequality, allowing us to compare u at any two points at the same time, and the second is an extension of this to the gradient of u. The first result in Lemma 2.2 below is a slight generalization of the original version which appears in [6, Theorem 1.2], while the second result is new and relies on the first. Lemma 2.2. Suppose that the assumptions of Theorem 1.2 hold. For any t 0 > 0, s 0 ≥ 0, R > 0 and p ∈ (1, +∞), there exists a constant C > 0, depending only on t 0 , s 0 , R, p, F , and n, such that if t ≥ t 0 , s ∈ [0, s 0 ], and |x -y| ≤ R, then

u(t, x) ≤ C u(t + s, y) 1/p max{ u 1-1/p ∞ , u ∞ }, (2.9 
)

and |∇u(t, x)| ≤ C u(t, y) 1/p max{ u 1-1/p ∞ , u ∞ } (1 + u ∞ ).
We now show how to conclude Theorem 1.2 from Lemma 2.2. The proof of Lemma 2.2 is in Section 4.4.

Proof of Theorem 1.2 from Lemma 2.2. First of all, the general assumptions on F and the boundedness of u imply that sup t>0 F (u(t, •)) (W 1,∞ (R n )) n < +∞. From standard parabolic estimates, it follows that all functions u, u t , u x i and u x i x j belong to L q loc ((0, +∞) × R n ) for every q ∈ [1, +∞) and 1 ≤ i, j ≤ n, and furthermore that u and ∇u are Hölder

continuous in [ε, +∞) × R n for every ε > 0. Since F (u(t, •)) -F (u(t , •)) (W 1,∞ (R n )) n ≤ C u(t, •) -u(t , •) α L ∞ (R n )
for some C > 0, α ∈ (0, 1) and for all t, t ∈ (0, +∞), and since

sup t>0 F (u(t, •)) (W 1,∞ (R n )) n < +∞, one gets that the functions (t, x) → F (u(t, •))(x) and (t, x) → ∇ • F (u(t, •))(x) are Hölder continuous in [ε, +∞) × R n for every ε > 0.
Finally, Schauder parabolic estimates imply that all functions u, u t , u x i and u x i x j are Hölder continuous in [ε, +∞) × R n for every ε > 0. From the strong parabolic maximum principle, one also has u > 0 in (0, +∞) × R n .

Fix any c ∈ (0, 2). Using the bounds (1.10) for ∇ • F (u(t, •)) along with the results of Lemma 2.2 applied with u, t 0 = 1/2, s 0 = 0, and p = 3/2, we see that, for any R > 0 large enough, u satisfies

u t -∆u + F (u(t, •))(x) • ∇u ≥ u(1 -ε R -u -C R u 2/3 ) (2.10) in [1, +∞) × R n
, where C R is a positive constant depending only on R, F , and u ∞ (and therefore C R depends only on F and u ∞ ), and ε R = ε R u ∞ → 0 as R → +∞. In the rest of the proof, we fix R > 0 large enough so that (2.10) holds and 2 √ 1 -ε R > c, and we also choose η > 0 such that

(c + η) 2 < 4(1 -ε R ).
In order to build a sub-solution to (2.10), we define, for (t,

x) ∈ [1, +∞) × R n , A(t, x) = F (u(t, •))(x) max{1, |F (u(t, •))(x)| η -1 } . Notice that A : [1, +∞) × R n → R n is Hölder continuous and |A(t, x)| ≤ η for all (t, x) ∈ [1, +∞) × R n .
This advection cut-off is, to our knowledge, novel. Let then R > 0 be such that ε R u ∞ < η/2. The assumptions (1.10) on F and Lemma 2.2 (applied now with power p = 2) yield the existence of a constant C > 0 (depending on R , F and u ∞ , and therefore on c, F and u ∞ ) such that

|F (u(t, •))(x)| ≤ C u(t, x) + η 2 for all (t, x) ∈ [1, +∞) × R n . (2.11) 
Then, fix M > 1 such that

C u(1, •) ∞ + 1 M < η 2 (2.12)
and define u to solve

u t -∆u + A(t, x) • ∇u = u(1 -ε R -M u -C R u 2/3 ), in [1, +∞) × R n , u(1, •) = u(1, •)/M.
Notice that, from standard parabolic estimates, u is a classical solution in [1, +∞) × R n and that all functions u, u t , u x i and

u x i x j are Hölder continuous in [1, +∞) × R n , while 0 ≤ u(t, x) < max u(1, •) ∞ M , 1 M < u(1, •) ∞ + 1 M for all (t, x) ∈ [1, +∞) × R n (2.13)
from the maximum principle. Now we show that we may compare u and u. To do so, observe that, for every (t, (2.11) and (2.12); hence, A(t, x) = F (u(t, •))(x). Together with (2.13) and the definition of u, it follows that u and u satisfy the same equation locally around any point where they could "touch." Thus, one concludes from the maximum principle that

x) ∈ [1, +∞)×R n such that u(t, x) < ( u(1, •) ∞ +1)/M , one has |F (u(t, •))(x)| < η due to
0 ≤ u(t, x) ≤ u(t, x) for all (t, x) ∈ [1, +∞) × R n .
Since the positive real numbers ε R , c, and η are such that (c + η) 2 < 4(1 -ε R ) and since |A| ≤ η in [1, +∞) × R n , we may now apply the results of [5, Theorem 1.2], which imply that lim inf

t→+∞ inf |x|<ct u(t, x) ≥ lim inf t→+∞ inf |x|<ct u(t, x) ≥ δ,
where δ > 0 is the unique positive real number solving 1

-ε R = M δ + C R δ 2/3
. The above arguments imply that δ depends on c, F , and u ∞ .

To conclude, we need to consider the case when ε R = 0 in (1.10) for all R > 0 large enough. Hence, in the above calculations, ε R = ε R u ∞ = 0 and

u t -∆u + F (u(t, •))(x) • ∇u ≥ u(1 -u -C R u 2/3 ) in [1, +∞) × R n .
Using again the bounds (1.10) for F (u(t, •)) along with the results of Lemma 2.2 applied (twice) with u, t 0 = 1/2, s 0 = 0, and p = 3/2, one gets the existence of a positive constant C R depending only on F and u ∞ such that

|F (u(t, •))(x) • ∇u(t, x)| ≤ C R u(t, x) 4/3 for all (t, x) ∈ [1, +∞) × R n . Hence, u t -∆u ≥ u(1 -u -C R u 2/3 -C R u 1/3 ) in [1, +∞) × R n . It then follows from the maximum principle that u(t, x) ≥ v(t, x) for all (t, x) ∈ [1, +∞) × R n , where v is the classical solution of v t -∆v = v(1 -v -C R v 2/3 -C R v 1/3 ), in [1, +∞) × R n , v(1, •) = u(1, •).
This, along with the results of [START_REF] Gärtner | Location of wave fronts for the multidimensional KPP equation and Brownian first exit densities[END_REF], implies that lim inf

t→+∞ inf |x|<2t-(n+1/2) log(t) u(t, x) ≥ lim inf t→+∞ inf |x|<2t-(n+1/2) log(t) v(t, x) > 0.
The proof of Theorem 1.2 is thereby complete.

Convergence to 1 when K is small

In many cases, a weak bound on the infimum may be bootstrapped to convergence to 1. This occurs, in particular, when there are non-local terms in the reaction term and when the non-local terms are small enough. This argument is an adaptation from the work of Salako and Shen [START_REF] Salako | Global existence and asymptotic behavior of classical solutions to a parabolicelliptic chemotaxis system with logistic source on R n[END_REF][START_REF]Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on R n[END_REF].

Corollary 2.3. Suppose that the assumptions of Theorem 1.1 hold and J < 1/2. Then, for any c ∈ (0, 2), we have that lim If K is compactly supported, then

lim (t,L)→(+∞,+∞), L<2t-(3/2) log(t) sup |x|<2t-(3/2) log(t)-L |u(t, x) -1| = 0.
Proof. Let X(t, L) = 2t -(3/2) log(t) -L or ct with c ∈ (0, 2) depending on whether K is compactly supported or not. Take any sequences (t n ) n∈N in (0, +∞), (L n ) n∈N in (0, +∞), and (x n ) n∈N in R such that t n and L n converge to +∞, X(t n , L n ) > 0, and

|x n | < X(t n , L n ). Define u n (t, x) = u(t + t n , x + x n ).
We are finished if we show that lim n→+∞ u n (0, 0) = 1.

As already emphasized in Section 1, since u is bounded uniformly in L ∞ , parabolic regularity theory implies that u is bounded in C 1+α/2;2+α t;x ([ε, +∞) × R n ) for any α ∈ (0, 1) and ε > 0. Hence, up to extracting a sub-sequence, u n converges to some limit u ∞ in C 1;2 t;x;loc (R × R). We observe that, due to Theorem 1.1, 0 < inf

(t,x)∈R×R u ∞ (t, x) ≤ sup (t,x)∈R×R u ∞ (t, x) < +∞.
In addition, we have that

(u ∞ ) t + [(K * u ∞ )u ∞ ] x = (u ∞ ) xx + u ∞ (1 -u ∞ ), in R × R. (2.14) 
In order to finish, we show that u := inf u > 0 and u := sup u > 0 satisfy u = u = 1. The inequality u > 0 is due to Theorem 1.1. To that end, up to re-centering the equation and taking another limit, we may assume without loss of generality that there exists (t i , x i ) such that u = u ∞ (t i , x i ) and that there exists (t s , x s ) in R × R such that u = u ∞ (t s , x s ). From here, we handle the cases J < 0 and

J ∈ [0, 1/2) separately. First, assume that J ∈ [0, 1/2). At (t i , x i ), we claim that 0 ≥ (u ∞ ) t -(u ∞ ) xx + (K * u ∞ )(u ∞ ) x = u ∞ (1 -u ∞ ) -(K * u ∞ ) x u ∞ ≥ u(1 -u) + uJ(u -u). (2.15) 
Indeed, since J ≥ 0 and K is thus non-decreasing in (-∞, 0) and (0, +∞), the last inequality is a consequence of the following one:

-(K * u ∞ ) x (t i , x i ) = J u ∞ (t i , x i ) - ˆ0 -∞ [u ∞ (t i , x + y) + u ∞ (t i , x -y)] dK(y) ≥ Ju -Ju,
where by µ := dK(y) we mean the Radon measure such that µ((a, b)

) = lim x→b -K(x) - lim x→a + K(x) and µ({c}) = lim x→c + K(x) -lim x→c -K(x) for every -∞ ≤ a < b ≤ +∞ and c ∈ R. Since u > 0, ( 2 
.15) yields the inequality 1 ≤ Ju + (1 -J)u, which we use later.

Similarly, we may argue that at (t s , x s ) we have

0 ≤ (u ∞ ) t -(u ∞ ) xx + (K * u ∞ )(u ∞ ) x = u ∞ (1 -u ∞ ) -(K * u ∞ ) x u ∞ ≤ u(1 -u) + uJ(u -u).
The above inequality and (2.15) give us u -

u 2 + uJ(u -u) ≤ 0 ≤ u -u 2 + uJ(u -u), hence (1 -J)(u + u)(u -u) = (1 -J) u 2 -u 2 ≤ u -u.
We claim that u = u. If this is not true, then dividing by u -u > 0 above leads to (1 -J) (u + u) ≤ 1, and using the inequality 1

≤ Ju + (1 -J)u implies that (1 -2J) u ≤ 0.
Since u > 0 and J < 1/2, by assumption, this is a contradiction. Hence u = u. Therefore, u ∞ is uniformly equal to a positive constant. Since

K ∈ L 1 (R) is odd, then K * u ∞ ≡ 0. Hence, from (2.14), the constant u ∞ satisfies u ∞ (1 -u ∞ ) = 0, with u ∞ > 0.
We conclude that u ∞ ≡ 1, finishing the proof of the case when J ∈ [0, 1/2). When J < 0, the argument is similar, but less complicated. At (t i , x i ), we claim that

0 ≥ (u ∞ ) t -(u ∞ ) xx + (K * u ∞ )(u ∞ ) x = u ∞ (1 -u ∞ ) -(K * u ∞ ) x u ∞ ≥ u(1 -u). (2.16)
Indeed, since J < 0 and K is thus non-increasing in (-∞, 0) and (0, +∞),

-(K * u ∞ ) x (t i , x i ) = J u ∞ (t i , x i ) - ˆ0 -∞ [u ∞ (t i , x + y) + u ∞ (t i , x -y)] dK(y) ≥ J u + 2u ˆ0 -∞ -dK(y) = 0.
Hence, from (2.16) along with the positivity of u, it follows that u ≥ 1. Hence, using also Lemma 2.1,

1 ≤ u ≤ u ≤ 1,
finishing the proof.

Negative chemotaxis with large tails

In this section we prove Proposition 1.6 in Subsection 3.1 and then Theorem 1.7 in the following three subsections. We handle the three cases separately. We recall that, throughout this section, J ≤ 0 and K is non-increasing expect at 0, non-positive on (-∞, 0), and nonnegative on (0, +∞).

3.1 Well-posedness of the model in Theorem 1.7: proof of Proposition 1.6

In this section, our goal is to show that a priori bounds on u may be established in the case when K ∈ L ∞ (R) and is non-increasing except at x = 0, non-positive on (-∞, 0), and non-negative on (0, +∞). We aim to give enough of a treatment that the reader is re-assured that the problem is well-posed, without belaboring the point. We first claim that the Cauchy problem (1.1)-(1.2) is locally well-posed in spaces with suitable decay at |x| = +∞. This may easily be justified by rigorously constructing a unique strong solution u in (0, T ] × R, via the Banach fixed point in sets of the type

E T = u ∈ C([0, T ]; L 1 (R)) : u(0, •) = u 0 and 0 ≤ u(t, x) ≤ C e γt-|x| in (0, T ] × R endowed with the norm u E T = max t∈[0,T ] u(t, •) L 1 (R) + u(t, x) e -γt+|x|
L ∞ ((0,T )×R) , with a constant C > 0 depending on u 0 , and some constants γ > 0 large and T > 0 small. It then follows that the functions K * u and (K * u) x are bounded in (0, T ) × R. Local parabolic regularity in Sobolev spaces (see e.g. [START_REF] Lieberman | Second order parabolic differential equations[END_REF]Theorem 7.22]), along with Sobolev embedding theorems (see e.g. [12, Lemma A3]), implies that u ∈ C (1+α)/2;1+α t;x ([ε, T ] × R) for all α ∈ (0, 1) and ε ∈ (0, T ). Examining the form of (K * u) x , it is clear that it is C (1+α)/2;1+α t;x ([ε, T ] × R) since u is and K has bounded variation. In particular, the function K * u is Hölder continuous with respect to x in [ε, T ] × R.

We now prove Hölder regularity in time. Due to the heat kernel bounds of Aronson, [1, Theorem 10], which crucially do not require more regularity than L ∞ estimates on the coefficients of the equation, and the compact support of u 0 , there is a constant

C T > 0 so that u(t, x) ≤ C T √ t e -x 2 
C T t (3.1)
for all (t, x) ∈ (0, T ] × R. Fix α ∈ (0, 1), ε ∈ (0, T ] and consider t 1 , t 2 ∈ [ε, T ]. We may assume without loss of generality that 0

< |t 1 -t 2 | < 1 since a bound on |K * u(t 1 , x) - K * u(t 2 , x)|/|t 1 -t 2 | α follows from the L ∞ ((0, T ) × R) bound on K * u if |t 1 -t 2 | ≥ 1. Fix α ∈ (α, 1) and R = -α T C T log |t 1 -t 2 | > 0. Then we have that |K * u(t 1 , x) -K * u(t 2 , x)| ≤ ˆR |K(y)||u(t 1 , x -y) -u(t 2 , x -y)|dy ≤ K ∞ ˆ|y-x|>R |u(t 1 , x -y) -u(t 2 , x -y)|dy + ˆ|y-x|≤R |u(t 1 , x -y) -u(t 2 , x -y)|dy ≤ K ∞ ˆ|y|≥R C T √ t 1 e -y 2 /C T t 1 + C T √ t 2 e -y 2 /C T t 2 dy + 2 u C α ;2α t;x ([ε,T ]×R) |t 1 -t 2 | α R ≤ 2C 2 T K ∞ √ t 1 e -R 2 /C T t 1 R + √ t 2 e -R 2 /C T t 2 R + u C α ;2α t;x ([ε,T ]×R) |t 1 -t 2 | α R .
Using that t 1 , t 2 ≤ T as well as the explicit expression for R, and absorbing all factors into the constant C T , including K ∞ and u C α ;2α t;x ([ε,T ]×R) , we obtain

|K * u(t 1 , x) -K * u(t 2 , x)| ≤ C T |t 1 -t 2 | α -α log |t 1 -t 2 | + |t 1 -t 2 | α -α log |t 1 -t 2 |
Using that α > α, this simplifies to the desired inequality:

|K * u(t 1 , x) -K * u(t 2 , x)| ≤ C T |t 1 -t 2 | α .
Since we have shown that all the coefficients in the equation for u are Hölder continuous in [ε, T ] × R for every ε ∈ (0, T ) and with every exponent α ∈ (0, 1), it follows from the classical Schauder estimates for parabolic equations that u ∈ C 1+α/2;2+α t;x ([ε, T ] × R) for every ε ∈ (0, T ) and α ∈ (0, 1), see e.g. [START_REF] Lieberman | Second order parabolic differential equations[END_REF]Theorem 4.9]. Notice also that the Schauder estimates imply that, for every ε ∈ (0, T ), there is a constant C ε,T > 0 such that

|u t (t, x)| + |u x (t, x)| + |u xx (t, x)| ≤ C ε,T e -|x| for all (t, x) ∈ [ε, T ] × R.
In addition, since the functions K * u and (K * u) x are bounded in (0, T ) × R, since 0 is a sub-solution and since J ≤ 0 here, a maximum principle argument as in Lemma 2.1 implies that 0 < u(t, x) ≤ 1 for all (t, x) ∈ (0, T ] × R.

Furthermore, the function P defined in (1.20), which is by construction continuous in [0, T ], is actually of class C 1 ((0, T ]) and, by integrating the equation over R for any t ∈ (0, T ], one infers that

P (t) = ˆR u(t, x) (1 -u(t, x)) dx ≤ P (t) (3.2)
for all t ∈ (0, T ], hence P (t) ≤ P (0) e t = u 0 1 e t for all t ∈ [0, T ]. Since K ∈ L ∞ (R), then we obtain the bound |K * u(t, x)| ≤ K ∞ u 0 1 e t for all (t, x) ∈ [0, T ] × R. Thus, we also obtain that

|(K * u) x (t, x)| = -Ju(t, x) + ˆ0 -∞ [u(x -y) + u(x + y)] dK(y) ≤ 2 |J| (3.3)
for all (t, x) ∈ (0, T ] × R.

The above upper bounds for u, |K * u| and |(K * u) x | do not depend on T and it then follows from standard arguments that the maximal existence time for the solution u is +∞ (hence, u being locally unique is globally unique) and that all above estimates hold for any T > 0. The proof of Proposition 1.6 is thereby complete.

The case when lim

x→+∞ K(x) = K ∞ > 0: proof of Theorem 1.7-(i)
Proof of Theorem 1.7-(i). The upper bound follows from the proof of Proposition 1.6: the function P defined by (1.20) is continuous in [0, +∞), of class C 1 ((0, +∞), and it satisfies P (t) ≤ P (0) e t for all t ≥ 0 (3.4) (notice that the above inequality holds when K ∞ = 0 as well).

To proceed with the lower bound, we first obtain a refined pointwise upper bound on u. To this end, fix any ε ∈ (0, 2K ∞ ) and let w(t, x) = e εt u(t, x) for (t, x) ∈ [0, +∞) × R. Notice that w is non-negative, since u is, and solves

w t -εw + (K * u)w x + (K * u) x w = w xx + w(1 -e -εt w) in (0, +∞) × R, with w(0, x) = u 0 (x) for all x ∈ R. Let T ε = ε -1 log(1 + 2K ∞ ) > 0 and fix any T ≥ T ε .
There are two cases. The first case is that w L ∞ ((0,T )×R) ≤ u 0 ∞ . Due to Proposition 1.6, u ∈ C 1;2 t;x ((0, T ] × R), which implies that w ∈ C 1;2 t;x ((0, T ] × R). Then we have that u(t, x) = e -εt w(t, x) ≤ e -εt u 0 ∞ ≤ e -εt for all (t, x) ∈ (0, T ] × R. In particular, this is true with t = T , which implies that

u(T, x) ≤ 1 1 + 2K ∞ for all x ∈ R.
The second case is that w L ∞ ((0,T )×R) > u 0 ∞ . Thanks to the upper bounds (3.1) in Proposition 1.6 and the bounds (2.2), which still hold locally in time since the functions K * u and (K * u) x are bounded in L ∞ ((0, T ) × R), there exists (t 0 , x 0 ) ∈ (0, T ] × R such that (t 0 , x 0 ) is the location of a maximum of w in (0, T ] × R. For notational ease, let M = w(t 0 , x 0 ) = w L ∞ ((0,T )×R) > u 0 ∞ > 0. Then, at (t 0 , x 0 ), we claim that

0 ≤ w t -w xx + (K * u)w x = M (1 + ε -e -εt 0 M ) -(K * u) x M ≤ M (1 + ε -e -εt 0 (1 + 2K ∞ )M ). (3.5)
Indeed, the first inequality comes from the fact that (t 0 , x 0 ) is the location of a maximum, while the second inequality is proved as follows. Since J is non-positive and K is nonincreasing on (-∞, 0) and (0, +∞) we have that |J| ≥ 2K ∞ , and, hence,

-(K * u) x (t 0 , x 0 ) = J u(t 0 , x 0 ) - ˆ0 -∞ [u(t 0 , x 0 + y) + u(t 0 , x 0 -y)]dK(y) ≤ -|J| u(t 0 , x 0 ) + (|J| -2K ∞ ) u(t 0 , •) ∞ = -|J| w(t 0 , x 0 )e -εt 0 + (|J| -2K ∞ ) w(t 0 , •) ∞ e -εt 0 = -2K ∞ M e -εt 0 . It follows from (3.5) that M ≤ (1 + ε)e εt 0 /(1 + 2K ∞ ). Hence, for all x ∈ R, u(T, x) = e -εT w(T, x) ≤ e -εT M ≤ e -εT 1 + ε 1 + 2K ∞ e εt 0 ≤ 1 + ε 1 + 2K ∞ .
Combining the results of our two cases, we see that

u(T, •) ∞ ≤ 1 + ε 1 + 2K ∞ for all T ≥ T ε = log(1 + 2K ∞ ) ε > 0. ( 3.6) 
The proof of the lower bound of P is now relatively straightforward. Integrate (1.1) to obtain, for t ≥ T ε ,

P (t) = ˆR u(t, x)(1 -u(t, x))dx ≥ ˆR u(t, x) 2K ∞ -ε 1 + 2K ∞ dx = 2K ∞ -ε 1 + 2K ∞ P (t).
For simplicity, let

r := 2K ∞ -ε 1 + 2K ∞ ∈ 0, 2K ∞ 1 + 2K ∞ . (3.7) 
Integrating the equation above from T ε to t yields the desired result: P (t) ≥ e r(t-Tε) P (T ε ) for all t ≥ T ε .

To control P (T ε ), we again integrate (1.1) to obtain

P (t) = ˆR u(t, x)(1 -u(t, x)) dx ≥ 0 (3.8)
for all t > 0. Here we used that 0 < u ≤ 1 in (0, +∞) × R from Proposition 1.6. Hence, we have in particular that P (t) ≥ P (0) for all t ∈ [0, T ε ]. Combining this with our bound on P (t) by P (T ε ) yields, for all t ∈ [0, +∞), P (t) ≥ e r(t-Tε) P (0).

This concludes the proof.

Remark 3.1. Since ε can be arbitrary in (0, 2K ∞ ) in the above proof, it follows from (3.6) that lim sup

t→+∞ u(t, •) ∞ ≤ 1 1 + 2K ∞ (3.9)
and the real number r in (3.7) can be any real number in the interval (0, 2K ∞ /(1 + 2K ∞ )) and can therefore be all the closer to 1 as K ∞ is large.

To illustrate that the result of Theorem 1.7-(i) is not capturing a situation where the maximum of u is small while its support is wide, we consider a specific case in the following corollary, which amounts to the first claim in Corollary 1.8. Corollary 3.2. Under the assumptions of Theorem 1.7-(i), suppose further that K ∈ C 1 (R * ) is convex on (0, +∞) and that u 0 is even and radially non-increasing and of class C 2+α (R) for some α ∈ (0, 1). Then there exists λ > 0 such that

lim t→+∞ inf |x|<e λt u(t, x) ≥ 1 2 (1 + |J|) .
Proof. Due to the assumptions, we first claim that u(t, •) is even and radially non-increasing for all time t ≥ 0. This follows from the well-posedness of (1.1) shown in Proposition 1.6 along with comparison principle arguments. Indeed, to be more precise, observe first that, since K is odd, the function u(t, x) := u(t, -x) satisfies the same equation (1.1) as u with the same initial condition u 0 . Therefore, Proposition 1.6 implies that u is equal to u, meaning that u(t, •) is even for all t ≥ 0.

Let us now show that u(t, •) is radially non-increasing for every t ≥ 0. First of all, since u 0 is of class C 2+α (R) with α ∈ (0, 1), similar arguments as in the proof of Proposition 1.6 lead to the local and then global existence and uniqueness of a solution of (1.1)-(1.2) of class C 1+α/2;2+α t;x ([0, +∞) × R) and satisfying the same estimates as in Proposition 1.6. In other words, the solution u constructed in Proposition 1.6 is then of class C 1+α/2;2+α t;x ([0, +∞) × R). Furthermore, parabolic regularity also implies that the function v := u x is a bounded classical

C 1;2 t;x ((0, +∞) × R) ∩ C([0, +∞) × R) solution of v t + (K * u) v x + 2 (K * u) x v + (K * v) x u = v xx + v (1 -2u) in (0, +∞) × R (3.10)
and that v(t, x) → 0 as |x| → +∞ locally uniformly in t ∈ [0, +∞) since u satisfies the same property and the coefficient K * u is bounded locally with respect to t ∈ [0, +∞) and the other coefficients (K * u) x and (K * v) x are globally bounded. Our goal is to show that .11) meaning that u(t, •) is non-increasing in [0, +∞) for all t ≥ 0. If J = 0 then K ≡ 0 in R from our assumptions on K; in this case, the boundedness of u and v and the non-positivity of v(0, •) on [0, +∞) (from our assumption on u 0 ) and of v(•, 0) on [0, +∞) (v(t, 0) = 0 for all t ≥ 0 since u(t, •) is even) directly yield (3.11) from the local maximum principle. Assume then in the rest of this paragraph that J = 0, that is, J < 0 with our hypotheses on K. Assume by way of contradiction that there exists T > 0 such that sup [0,T ]×[0,+∞) v > 0. Denote w(t, x) = e -6|J|t v(t, x).

u x = v ≤ 0 in [0, +∞) × [0, +∞), ( 3 
Then sup [0,T ]×[0,+∞) w > 0. From the previous observations and the facts that w(t, 0) = 0 for all t ≥ 0 (by evenness of u(t, •)) and w(0, x) ≤ 0 for all x ≥ 0 by assumption, one infers the existence of (t 0 , x 0 ) ∈ (0, T ] × (0, +∞) such that

η := w(t 0 , x 0 ) = sup [0,T ]×[0,+∞) w > 0.
From (3.10), there holds, at (t 0 , x 0 ),

0 ≤ w t + (K * u) w x -w xx = -6 |J| w -2 (K * u) x w -(K * w) x u + w (1 -2u) = -6 |J| η -2 (K * u) x η + (1 -2u) η -(K * w) x u.
Together with (3.3), the bound 0 < u ≤ 1 in (0, +∞) × R and the positivity of η, one infers that 0

≤ -|J| η -(K * w) x (t 0 , x 0 ) u(t 0 , x 0 ). (3.12) Since w(t 0 , •) is odd (because u(t 0 , •) is even), a straightforward calculation yields -(K * w) x (t 0 , x 0 ) = -|J| w(t 0 , x 0 ) + ˆx0 0 K (x 0 + y) -K (x 0 -y) w(t 0 , y) dy + ˆ+∞ x 0 K (x 0 + y) -K (x 0 -y) w(t 0 , y) dy. Since K ∈ L ∞ (R) ∩ C 1 (R *
) is assumed to be odd in R and convex on (0, +∞), it follows that κ(y) := K (x 0 + y) -K (x 0 -y) ≥ 0 for all y ∈ (0, +∞)\{x 0 }. Using w(t 0 , •) ≤ η in [0, +∞), we obtain

-(K * w) x (t 0 , x 0 ) ≤ -|J| η + η ˆx0 0 κ(y) dy + ˆ+∞ x 0 κ(y) dy = -2 K(x 0 ) η ≤ 0.
With (3.12) and the positivity of u(t 0 , x 0 ), one gets that 0 ≤ -|J| η, which is a contradiction since J < 0 and η > 0. Therefore, (3.11) holds and the even function u(t, •) is non-increasing in [0, +∞) for every t ≥ 0. With this in hand, we now claim that -(K * u)(t, x)u x (t, x) ≥ 0 for all t > 0 and x ∈ R. Indeed, if x ≥ 0, then u x (t, x) ≤ 0 by our observation that u(t, •) is radially non-increasing, while

(K * u)(t, x) = ˆR K(y)u(t, x -y)dy = ˆ+∞ 0 [u(t, x -y) -u(t, x + y)]K(y)dy ≥ 0. (3.13)
The second equality follows from the fact that K is odd. The inequality is due to the fact that, for every y > 0, K(y) ≥ 0, |x -y| ≤ x + y, and u(t, •) is even and radially non-increasing. This establishes the inequality -(K * u)(t, x)u x (t, x) ≥ 0 for all t > 0 and x ≥ 0. Similarly, if t > 0 and x ≤ 0, then u x (t, x) ≥ 0 and (K * u)(t, x) ≤ 0 since this time |x + y| ≤ |x| + y = |x -y| for all y > 0.

In addition, a straightforward computation implies that, for all (t, x) ∈ (0, +∞) × R,

(K * u) x (t, x) = -J u(t, x) + ˆ0 -∞ [u(t, x + y) + u(t, x -y)]dK(y) ≤ |J| u(t, x). (3.14)
The combination of (3.13) and (3.14) yield

u t -u xx ≥ u(1 -(1 + |J|)u) in (0, +∞) × R. (3.15)
We use this inequality to create a sub-solution, and, hence, lower bound of u in the sequel.

In order to create a sub-solution, we first obtain a preliminary lower bound of u. Fix r as in Theorem 1.7 with the choice ε = K ∞ , that is, r = K ∞ /(1 + 2K ∞ ) > 0, and let M = 13 and t 0 > M to be determined below, depending only on P (0) and K. In addition, fix t ≥ t 0 . We claim that there exists x t ∈ R such that

u(t/M, x t ) ≥ e rt/(2M ) (1 + |x t |) 1+r/4 . (3.16)
If not, then using Theorem 1.7-(i), there exists C 0 > 0 depending only on P (0) and K such that

C 0 e rt/M ≤ P (t/M ) = ˆR u(t/M, x)dx < ˆR e rt/(2M ) (1 + |x|) 1+r/4 dx = 8 e rt/(2M ) r ,
which is clearly a contradiction when t 0 > (2M/r) log(8/(rC 0 )). Hence, enlarging t 0 > M if necessary (depending on M , r and C 0 , and therefore on K and P (0)), we have that, for all t ≥ t 0 , there exists x t ∈ R satisfying (3.16). Since u(t, •) is even, one can assume without loss of generality that x t ≥ 0. Recalling that 1 ≥ u(t/M, x t ) yields 1 ≥ e rt/(2M ) /(1 + x t ) 1+r/4 . This, in turn, implies x t ≥ e 2rt/(M (4+r)) -1 for every t ≥ t 0 .

(3.17)

We now obtain a partially matching upper bound on x t , for every fixed t ≥ t 0 , via an upper bound of u. Indeed, let a > 0 be such that supp u 0 ⊂ [-a, a], and notice that, for all s ∈ [0, t/M ],

K * u(s, •) ∞ ≤ K ∞ u(s, •) 1 = |J| 2 P (s) ≤ |J| P (0) e t/M 2 , and (K * u(s, •)) x ∞ ≤ |J| (3.18)
from the bounds in Proposition 1.6 and from the second inequality in (1.6), which still holds here. Define u(s, x) to be the solution of

u s + [(K * u)u] x = u xx + u,
for all (s, x) ∈ (0, t/M ] × R, with initial data u(0, •) = u 0 . Using the non-negativity of u, the comparison principle implies that u(s, x) ≤ u(s, x) for all (s, x) ∈ [0, t/M ] × R. Applying Proposition 1.4 to e -s u(s, x) with T = t/M ≥ t 0 /M > 1 and A = |J| P (0) e t/M /2, there is a constant C 1 depending only on J, a, and P (0), such that, for |x| ≥ t |J| P (0) e t/M /(2M ) + a + 1,

e -t/M u(t/M, x) ≤ e -t/M u(t/M, x) ≤ C 1 e t/M t/M e -(|x|-t |J| P (0) e t/M /(2M )-a) 2 4t/M .
If we had x t ≥ e 2t/M for some t ≥ t 0 large enough so that e 2t/M ≥ t |J| P (0) e t/M /(2M ) + a + 1, then using the above inequality at the non-negative point x t would yield

e rt/2M (1 + x t ) 1+r/4 ≤ u(t/M, x t ) ≤ C 1 e 2t/M t/M e -(x t -t |J| P (0) e t/M /(2M )-a) 2 4t/M .
This leads to a contradiction if t is large enough, depending on r, M , C 1 , P (0), and a, hence on K, P (0), and a. Therefore, increasing t 0 if necessary, depending only on K, P (0), and a, this implies that

x t ≤ e 2t/M (3.19)
for every t ≥ t 0 . Since u is even and non-increasing then u(t, x) ≥ u(t, x t ) for all |x| ≤ x t . Hence, increasing again t 0 if necessary,

u(t/M, x) ≥ e rt/(2M ) (1 + x t ) 1+r/4 ≥ e -2t/M 2 1+r/4 ≥ e -3t/M for all t ≥ t 0 and x ∈ [-x t , x t ]. (3.20) 
For every fixed t ≥ t 0 , we now construct a sub-solution of u on

[t/M, t] × [x -π, x + π] for any x ∈ [-x t + π, x t -π]. Define µ = 3 -t -1 M log(2) M -1 .
Increasing t 0 such that t 0 ≥ M log(2)/3 if necessary, we have that 0

≤ µ ≤ 1/4 because M = 13. Let u(s, x) = e µ(s-t/M )-3t/M 1 + |J| cos x -x 2 , for (s, x) ∈ [t/M, t] × [x -π, x + π]. (3.21) 
Then on [t/M, t] × [x -π, x + π], using the definition of µ, we see that

0 ≤ (1 + |J|) u(s, x) ≤ e (µ(M -1)-3)t/M = 1 2 .
Hence u satisfies

u s -u xx = µu + 1 4 u ≤ 1 2 u ≤ u (1 -(1 + |J|)u) in [t/M, t] × [x -π, x + π].
It follows that u is a sub-solution to (3.15) 

(t/M, •) ≤ u(t/M, •) in [x -π, x + π], while u(s, x ± π) = 0 ≤ u(s, x ± π) for all s ∈ [t/M, t]. Thus, one infers from the maximum principle that u ≤ u in [t/M, t] × [x -π, x + π], hence 1 2(1 + |J|) = u(t, x) ≤ u(t, x).
Thus, we have that, when t is sufficiently large,

inf |x|≤xt-π u(t, x) ≥ 1 2(1 + |J|)
.

Let λ = 2r/(M (5 + r)) > 0. From (3.17), it follows that lim inf

t→+∞ inf |x|<e λt u(t, x) ≥ 1 2(1 + |J|) .
This concludes the proof.

Remark 3.3. In the proof above, for any ε > 0, redefining

µ ε = (3-t -1 M ε log(1+ε))/(M ε - 1), enlarging M ε and redefining u(s, x) = (1 + |J|) -1 e µε(s-t/Mε)-3t/Mε cos((x -x)/(2γ ε )) in [t/M ε , t]×[x-γ ε π, x+γ ε π] with x ∈ [-x t +γ ε π, x t -γ ε π] and γ ε > 0 large, it is straightforward to see that there exists λ ε > 0 such that lim inf t→+∞ inf |x|<e λεt u(t, x) ≥ 1 (1 + ε)(1 + |J|) .
In particular, for every family (y t ) t>0 of positive real numbers such that y t = o(e αt ) as t → +∞ for every α > 0, then

lim inf t→+∞ inf |x|<yt u(t, x) ≥ 1 1 + |J| .
Notice that this lower bound is coherent with the upper bound (3.9), since |J| ≥ 2K ∞ . Furthermore, if K is constant on (-∞, 0) and on (0, +∞), then |J| = 2K ∞ and sup |x|<yt |u(t, x) -(1 + |J|) -1 | → 0 as t → +∞ for every family (y t ) t>0 of positive real numbers such that y t = o(e αt ) as t → +∞ for every α > 0.

The case when

K ∈ L p (R): proof of Theorem 1.7-(ii)
Proof of Theorem 1.7-(ii). First of all, when K = 0 a.e. in R, then the desired conclusion with any p ∈ [1, ∞) follows easily from e.g. [START_REF] Uchiyama | The behavior of solutions of some semilinear diffusion equation for large time[END_REF]. In the sequel, we then assume that K is not trivial. We begin by obtaining a pointwise upper bound on u. First, for every t ≥ 0 and x ∈ R,

|(K * u)(t, x)| = ˆR K(x -y)u(t, y)dy ≤ K p ˆR u(t, y) p p-1 dy 1-1 p ≤ K p P (t) 1-1 p ,
since 0 ≤ u ≤ 1 by Proposition 1.6. Together with (3.2) and (3.8), this also implies that, for every t > 0 and s ∈ (0, t+1], K * u(s, •) ∞ ≤ K p e 1-1/p P (t) 1-1/p ≤ K p e 1-1/p P (t) 1-1/p . Let u be the solution to

u t + ((K * u)u) x = u xx + u in (0, +∞) × R,
with initial data u(0, •) = u 0 . As above, u is a super-solution of (1.1) and u(t, x) ≤ u(t, x) for all (t, x) ∈ [0, +∞) × R.

Let a > 0 be such that supp u 0 ⊂ [-a, a]. Fixing t > 1, using (3.8) and applying Proposition 1.4 to e -s u(s, x) with T = t and A = K p P (t) 1-1/p , there is a constant C K depending only on K, P (0), and p such that, for all |x| ≥ t K p P (t) 1-1/p + a + 1,

e -t u(t, x) ≤ e -t u(t, x) ≤ C K P (t) 1-1/p √ t e -(|x|-t K pP (t) 1-1/p -a) 2 4t . (3.22) 
Let I t = x ∈ R : |x| < 2 t K p P (t) 1-1/p + 2a + 2 .
Since 0 ≤ u ≤ 1, it follows immediately that, for every t > 1,

P (t) ≤ ˆIt dx + ˆIc t C K P (t) 1-1/p √ t e t-(|x|-t K pP (t) 1-1/p -a) 2 4t dx ≤ |I t | + C K P (t) 1-1/p √ t e t 4t e -(t K p P (t) 1-1/p +a+2) 2 4t t K p P (t) 1-1/p + a + 2 ≤ 2(2 t K p P (t) 1-1/p + 2a + 2) + 2 C K P (t) 1-1/p t 3/2 e t(1-K 2 p P (t) 2(1-1/p) /4) ,
where we used the inequality ´+∞ b e -y 2 dy ≤ e -b 2 /(2b) for all b > 0. Assume first that p > 1 and denote q = p/(p -1) the conjugate exponent of p. Applying Young's inequality, we obtain, for every t > 1,

P (t) ≤ 4(a+1)+ 3 p-1 4 p K p p t p p q p-1 + P (t) 3 + 3 p-1 2 p C p K t 3p/2 e pt(1-K 2 p P (t) 2(1-1/p) /4) p q p-1 + P (t) 3 . 
Re-arranging this inequality and using (3.4) and K p > 0 clearly yields a constant C > 0 depending on a, p, K, and P (0) such that P (t) ≤ C(t p + 1) for all t ≥ 0. When p = 1, then K * u(s, •) ∞ ≤ K 1 for all s ≥ 0. Therefore, with A = K 1 and defining this time

I t = x ∈ R : |x| < M (t K 1 + a + 1)} for some M ≥ 1 to be chosen, the previous calculations imply similarly that |x| -t K 1 -a -1 ≥ (1 -1/M )|x| for all x ∈ I c t and P (t) ≤ 2M (t K 1 + a + 1) + C K M (M -1) -2 t 3/2 e t-(M -1) 2 t K 2 1 /4
for every t ≥ 1, where C K depends only on K. Observe that the second term is less than 1 for all t ≥ 1, provided M ≥ 1 is fixed large enough, depending only on K. Therefore, together with (3.4), there is a constant C > 0 depending on a, K, and P (0), such that P (t) ≤ C(t + 1) for all t ≥ 0. The proof is thereby complete.

3.4

The case when K(x) ≥ A(1 + x) -α : proof of Theorem 1.7-(iii)

In order to prove the third case of Theorem 1.7, we require the following lemma, which we state now and prove in the sequel.

Lemma 3.4. Suppose that φ is a non-negative, non-increasing and integrable function on (0, +∞). Let M > 0 and Proof of Theorem 1.7-(iii), from Lemma 3.4. Let the bulk-burning rate be

X = w ∈ L 1 (0, +∞) ∩ L ∞ (0, +∞) : w ∞ ≤ 2, w 1 ≤ M . Then
V (t) = ˆR u(t, x)(1 -u(t, x))dx, for t ≥ 0.
This proves useful for estimating P . First of all, notice that the a priori estimates listed in the proof of Proposition 1.6 imply that the function V is well-defined and continuous on [0, +∞) and of class C 1 on (0, +∞). Furthermore, we obtain a differential inequality with these quantities as follows: at t > 0,

V (t) = ˆR u t (1 -2u)dx = ˆR [u xx + u(1 -u) -((K * u)u) x ] (1 -2u)dx = 2 ˆR u 2 x dx + V (t) -2 ˆR u 2 (1 -u)dx -2 ˆR(K * u)uu x dx ≥ V (t) -2 ˆR u 2 (1 -u)dx + ˆR(K * u) x u 2 dx, (3.23) 
where all quantities in the integrals are evaluated at (t, x). A straightforward computation yields

(K * u(t, •)) x (x) = |J| u(t, x) + ˆ+∞ 0 [u(t, x -y) + u(t, x + y)] K (y) dy.
For any fixed t > 0, applying Lemma 3.4 with φ(y) = -K (y) (remember that K is here assumed to be C 1 , convex and bounded on (0, +∞)), M = P (t), and w(y) = u(t, x -y) + u(t, x + y), we see that, for all x ∈ R,

(K * u(t, •)) x (x) ≥ |J| u(t, x) + 2 ˆP(t)/2 0 K (y) dy = |J| u(t, x) -|J| + 2K(P (t)/2).
Using this inequality in (3.23) along with the identity u 2 = u -u(1 -u), we see that, at every t > 0,

V (t) ≥ V (t) -2 ˆR u 2 (1 -u)dx + ˆR |J|u 3 -|J|u 2 + K(P (t)/2)u 2 dx = V (t) -(|J| + 2) ˆR u 2 (1 -u)dx + K(P (t)/2)(P (t) -V (t)).
We now use the facts that ´R u 2 (1 -u)dx ≤ V (t) and that K ∈ L ∞ (R) to re-write this as

V (t) + C K V (t) ≥ K(P (t)/2)P (t), (3.24) 
where C K depends only on K ∞ and |J|. On the other hand, P (t) ≥ P (0) > 0 for all t ≥ 0 (see (3.8)) and we assume here that K(x) ≥ A(1 + x) -α for all x > 0, with α ∈ (0, 1) and A > 0. So there exists a constant C 0 > 0 depending only on α, A and P (0), and hence only on u 0 and K, such that K(P (t)/2) P (t) ≥ C 0 P (t) 1-α for all t ≥ 0. The combination of this with (3.24) yields the key inequality

V (t) + C K V (t) ≥ C 0 P (t) 1-α for all t > 0. (3.25)
From (3.2), notice that P (t) = V (t) for all t > 0. We claim that (3.25) is enough to conclude. To see this, define

P (t) = ε(t + 1) 1/α
for ε > 0 to be determined. Then,

P (t) + C K P (t) = ε 1 -α α 2 (1 + t) 1/α-2 + ε C K α (1 + t) 1/α-1
for all t > 0, while

C 0 P (t) 1-α = C 0 ε 1-α (1 + t) 1/α-1 .
Hence, taking ε > 0 sufficiently small (depending only on α, C K , and C 0 , and hence depending only on u 0 and K), we have that, for all t ≥ 0,

P (t) + C K P (t) < C 0 P (t) 1-α . (3.26) 
Remember now that P (1) ≥ P (0) > 0. Furthermore, u(1, •) is continuous, ranges in (0, 1] by Proposition 1.6 and u(1, x) → 0 as |x| → +∞ by (3.1). Hence, V (1) > 0. Therefore, decreasing ε > 0 if necessary (depending only on u 0 and K), we may assume that P (1) < P (1) and that P (1) < V (1). We now claim that P (t) ≤ P (t) for all t ≥ 1.

We prove this by contradiction. Hence, let t 1 = sup t ≥ 1 : P (s) ≤ P (s) and P (s) ≤ V (s) for all s ∈ [1, t] > 0, and assume that t 1 < +∞. We first claim that P (t 1 ) = V (t 1 ). If P (t 1 ) < P (t 1 ) then this follows from the definition of t 1 . If P (t 1 ) = P (t 1 ), we argue as follows. The fact that P (s) ≤ P (s) for all s ∈ [1, t 1 ] implies that P -P has a minimum of zero on [1, t 1 ] that occurs at t 1 . It follows that (P -P ) (t 1 ) ≤ 0, which is equivalent to P (t 1 ) ≥ P (t 1 ) = V (t 1 ).

Here we used that P = V . Continuity, along with the definition of t 1 , then yields that P (t 1 ) = V (t 1 ). It follows that, in both cases P (t 1 ) < P (t 1 ) or P (t 1 ) = P (t 1 ), there holds P (t 1 ) ≤ P (t 1 ) and P (t 1 ) = V (t 1 ), (3.27) which finishes the proof of the claim that P (t 1 ) = V (t 1 ). We next claim that P (t 1 ) ≥ V (t 1 ).

(3.28) Indeed, since P (s) ≤ V (s) for all s ∈ [0, t 1 ], then we have that V -P has a minimum of zero on [1, t 1 ] that occurs at t 1 . It follows that (V -P ) (t 1 ) ≤ 0, that is, P (t 1 ) ≥ V (t 1 ), as desired. Combining the bounds on the relationship between P and P at t 1 , (3.27) and (3.28), with the differential inequality for P (3.26) and the differential inequality for P (3.25), we have that

C 0 P (t 1 ) 1-α > P (t 1 ) + C K P (t 1 ) ≥ V (t 1 ) + C K V (t 1 ) ≥ C 0 P (t 1 ) 1-α ≥ C 0 P (t 1 ) 1-α , a contradiction.
We conclude that P (t) ≤ P (t) for all t ≥ 1. This may be re-written as

P (t) ≥ ε (1 + t) 1/α ,
for all t ≥ 1. Together with (3.4) and (3.8), there is a constant C > 0 depending on u 0 and K such that P (t) ≥ C (1 + t) -α all t ≥ 0, which finishes the proof.

We now prove Lemma 3. To show the opposite inequality, fix ε > 0 and find w ε ∈ X so that ˆ+∞ In the first inequality above, we used the sign of v and the fact that φ is non-increasing. In the second inequality, we used that ´+∞ 3.5 Pointwise estimates when K(x) ≈ x -α as x → +∞ As before, we show that Theorem 1.7-(ii) and Theorem 1.7-(iii) imply pointwise propagation. A pointwise upper bound was constructed explicitly in the proof of Theorem 1.7-(ii) so we are concerned only with estimates from below.

First, we point out that we may argue as in Corollary 3.2 to obtain pointwise bounds when u 0 is even and radially non-increasing. In order to see a more general argument, we show the following stronger version of Corollary 1.8. Corollary 3.5. Under the assumptions of Theorem 1.7-(iii), suppose that there exist some constants A ≥ 1 and α ∈ (0, 1) such that

1 A(1 + x) α ≤ K(x) ≤ A (1 + x) α
for all x ∈ R. Then, for any δ ∈ (0, 1/6), there exists a constant C 0 > 0 depending only on u 0 , K and δ, such that

lim inf t→+∞ t -1/α 1 t ˆt 0 {x ∈ R : u(s, x) ≥ 1 -t -δ } ds ≥ C 0 .
Proof. Fix δ ∈ (0, 1/6). Due to Theorem 1.7 and our assumptions on K, we know that there is a constant C 1 ≥ 1 depending on u 0 , K, and δ such that, for all t ≥ 1,

t 1/α C 1 ≤ P (t) ≤ C 1 t 1/α+δ/2 . (3.30) 
Define the time averaged burning rate

V (t) := 1 t ˆt 0 V (s)ds
for t > 0. Using the relationship P = V in (0, +∞), we have that

V (t) = 1 t ˆt 0 P (s)ds = 1 t (P (t) -P (0)) ≤ C 1 t 1/α-1+δ/2 (3.31)
for all t ≥ 1. For any ε ∈ (0, 1/2) and s > 0, define the good set, the bad set, and the tail set

G ε (s) = {x ∈ R : u(s, x) > 1 -ε}, B ε (s) = {x ∈ R : ε < u(s, x) < 1 -ε}, and 
T ε (s) = {x ∈ R : u(s, x) ≤ ε}.
Our goal is to obtain lower bounds on |G ε | in an averaged sense with the choice ε = t -δ and t ≥ 1 large enough so that 0 < t -δ < 1/2. Firstly, we notice that B ε (t) cannot be too big. In particular, we have that, for any t > 0 and ε ∈ (0, 1/2),

ε(1 -ε)|B ε (t)| ≤ ˆBε(t) u(t, x) (1 -u(t, x)) dx ≤ V (t).
Using this with (3.31), we have that, for every t ≥ 1 and ε ∈ (0, 1/2),

2 t ˆt t/2 |B ε (s)|ds ≤ 2 t ˆt 0 |B ε (s)|ds ≤ 2 C 1 t 1/α-1+δ/2 ε(1 -ε) (3.32)
Secondly, using the upper bound for u (3.22) with any p ∈ (1/α, +∞) along with the bounds on P (3.30), it is straightforward to check that lim t→+∞ ˆ{|x|>t 1/α+δ/2 } u(t, x) dx = 0.

(3.33)

With these inequalities in hand, we obtain the desired lower bound for |G t -δ (s)| in an averaged sense. Indeed, using u ∞ ≤ 1, (3.8), (3.30), (3.32), and the choice ε = t -δ , we have, for all t large enough, Using (3.33), it follows that the fourth term tends to zero. Since, by assumption, 3δ/2 < 1, then, if t is sufficiently large, we may absorb the first, third, and fourth terms from the right hand side into the left hand side. We obtain, for all t sufficiently large, that

t 1/α 2 1/α C 1 ≤ 2 t
t 1/α 2 1/α+1 C 1 ≤ 2 t ˆt 0 |G t -δ (s)|ds.
This concludes the proof.

4 Proofs of Propositions 1.3 and 1.4 and Lemma 2. In this section, we prove Proposition 1.3. We investigate the heat kernel for the equation

w t + (v x w) x = w xx in (s, +∞) × R (4.1)
with s ≥ 0, where v satisfies (1.14). We follow the Fabes-Stroock [START_REF] Fabes | A new proof of Moser's parabolic Harnack inequality using the old ideas of Nash[END_REF] approach. First, we look at weighted functions φ α (t, x) = e -αx w α (t, x) (4.2) for (t, x) ∈ [s, +∞) × R, where α ∈ R and w α solves (4.1) with initial data

w α (s, x) = g(x) e αx , (4.3) 
for a fixed g ∈ C c (R). Then we prove the following bound.

Lemma 4.1. For any δ > 0, there exist a constant C δ > 0, depending on δ, and a constant R > 0, depending only on A 0 , A 1 , and A 2 , so that, for every α ∈ R, g ∈ C c (R) and t > s ≥ 0,

φ α (t, •) ∞ ≤ C δ √ t -s e Rα(t-s)+δ R(α 2 +1)(t-s) g 1 ,
where R α is given by

R α = min inf ε∈(0,1) α 2 1 + A 2 0 1 -ε + A 2 1 4ε , α 2 (1 + A 2 0 ) + A 2 2 .
Before beginning, we note the following abuse of notation. Since our estimates depend only on t -s, we set s = 0 for the remainder of this section and obtain the desired bounds. The general case is straightforward.

Let us now explain how the bound on Γ follows from Lemma 4.1.

Proof of Proposition 1.3, from Lemma 4.1. Let P α t be the solution operator which gives us φ α from g. Notice that then P α t g(x) = e -αx ˆR Γ(t, 0, x, y)g(y)e αy dy = ˆR K α (t, x, y)g(y)dy for every t > 0 and x ∈ R, where K α (t, x, y) := e -α(x-y) Γ(t, 0, x, y) and Γ is the heat kernel for (1.15), that is, (4.1) with Dirac mass at y as initial condition. The inequality in Lemma 4.1 gives us by duality that, for any t > 0 and (x, y) ∈ R × R,

0 ≤ K α (t, x, y) ≤ C δ √ t e Rαt+δ R(α 2 +1)t ,
which in turn gives us that Γ(t, 0, x, y) ≤ C δ √ t e Rαt+δ R(α 2 +1)t+α(x-y) .

This holds for all α ∈ R so we may optimize in the following ways. Notice that we may write each term in the infimum in R α as a 1 α 2 + a 2 . More precisely the pairs (a 1 , a 2 ) of the type

(a 1 , a 2 ) = 1 + A 2 0 1 -ε , A 2 1 4ε with 0 < ε < 1 or (a 1 , a 2 ) = 1 + A 2 0 , A 2 2 . (4.4)
Hence, in each case, choosing α = -(x -y)/(2t(δ R + a 1 )), yields

Γ(t, 0, x, y) ≤ C δ √ t exp (a 2 + δ R)t - (x -y) 2 4t(δ R + a 1 ) . 
Substituting the values (a 1 , a 2 ) from (4.4) into the right hand side above, and changing δ R into δ (remember that R does not depend on δ) yields (1.16), finishing the proof.

Proof of Lemma 4.1

Proof of Lemma 4.1. We repeat that we can assume s = 0 without loss of generality. The proof of Lemma 4.1 proceeds as follows. First, we obtain an estimate on the growth of φ α (t, •) 2 in time t. Then, using the Nash inequality, we obtain a sequence of inequalities on the L 2 k+1 norm in terms of the L 2 k norm. Iterating this procedure and using the growth in L 2 as a boundary condition, we obtain an L 2 → L ∞ estimate. Using duality, this gives us an L 1 → L 2 and then an L 1 → L ∞ estimate.

In order to apply duality, we obtain bounds for a slightly more general equation. For any v (1) , v (2) satisfying the same conditions (1.14) as v, we investigate bounds for the equation

w t + v (1) x w x + v (2) xx w = w xx in (0, +∞) × R. (4.5) 
Let φ α (t, x) = e -αx w α (t, x) for t ≥ 0 and x ∈ R, where α ∈ R is fixed and w α solves (4.5) with initial condition w α (0, x) = g(x) e αx (4.6)

and a fixed non-zero function g ∈ C c (R)

L 2 growth of φ α Define M p (t) := φ α (t, •) L 2p (R)
for p ≥ 1 and t ≥ 0. All quantites M p (t) are positive real numbers. As mentioned above, the first step is in obtaining the inequality

M 1 (t) ≤ e R α,v (1) ,v (2) t M 1 (0) (4.7)
for all t ≥ 0, with R α,v (1) ,v [START_REF] Belk | Existence of reaction-diffusion-convection waves in unbounded strips[END_REF] given in (4.13) below.

To this end, using (4.1) we have that φ α satisfies e αx (φ α ) t + v (1) x (e αx φ α ) x + v (2) xx e αx φ α = (e αx φ α ) xx in (0, +∞) × R.

Multiplying this by e -αx φ α (t, x) and integrating by parts gives us, for all t > 0, 1 2

dM 2 1 dt (t) = -ˆR((φ α ) x -αφ α )((φ α ) x +αφ α )dx-ˆRv (2) xx φ 2 α dx-ˆR((φ α ) x +αφ α )φ α v (1) x dx = α 2 M 2 1 (t)-ˆR|(φ α ) x | 2 dx+2 ˆR(φ α ) x φ α v (2) x - v (1) x 2 dx-α ˆRφ 2 α v (1) x dx, (4.9) 
where all functions in the integrals are evaluated at (t, x). Notice that all integrals converge since w α (t, x) and then φ α (t, x) satisfy Gaussian estimates as |x| → +∞ locally uniformly in t ∈ (0, +∞), see [START_REF] Aronson | Non-negative solutions of linear parabolic equations[END_REF]. Notice also that the function M 1 is continuous on [0, +∞) and of class C 1 on (0, +∞), as are the functions M p for all 1 ≤ p < +∞.

We now estimate the last two terms in (4.9). Depending on A 0 , A 1 , and A 2 , there are different ways to estimate the third term. It may be estimated, for any ε 1 ∈ (0, 1), as 2 ˆR(φ α ) x φ α v (2) x -

v (1) x 2 dx ≤ ε 1 ˆR |(φ α ) x | 2 dx + v (2) x -v (1) x 2 2 ∞ ε 1 ˆR |φ α | 2 dx, (4.10) 
or it may be estimated as

2 ˆR(φ α ) x φ α v (2)
x -

1 2 v (1) x dx = -ˆRφ 2 α v (2) xx - v (1) xx 2 dx ≤ v (2) xx - v (1) xx 2 ∞ ˆRφ 2 α dx. (4.11)
We bound the last term in (4.9), for any ε 2 ∈ (0, 1], as follows:

-α ˆR φ 2 α v (1) x dx = 2α ˆR φ α (φ α ) x v (1) dx ≤ ε 2 ˆR |(φ α ) x | 2 dx + α 2 A 2 0 ε 2 ˆR φ 2 α dx. (4.12)
Combining the estimates above gives us (4.7). Indeed, we obtain the two different choices of R α as follows: on the one hand, using (4.10) and (4.12), with

ε 1 + ε 2 = 1, we obtain 1 2 dM 2 1 dt (t) ≤    α 2 + v (2) x -v (1) x 2 2 ∞ ε 1 + α 2 A 2 0 1 -ε 1    M 2 1 (t);
on the other hand, using (4.11) and (4.12), with ε 2 = 1, we obtain 1 2

dM 2 1 dt (t) ≤ α 2 + α 2 A 2 0 + v (2) xx - v (1) xx 2 ∞ M 2 1 (t). Defining R α,v (1) ,v (2)= min      inf ε 1 ∈(0,1)    α 2 1+ A 2 0 1-ε 1 + v (2) x -v (1) x 2 2 ∞ ε 1    , α 2 (1+A 2 0 )+ v (2) xx - v (1) xx 2 ∞      , (4.13) 
we obtain (M

1 ) (t) ≤ 2R α,v (1) ,v 2 
M 2 1 (t) for any t > 0. This differential inequality yields exactly (4.7).

An L p/2 → L p inequality
We now obtain the inequality 1 2p

dM 2p p dt (t) ≤ p R (α 2 + 1) M 2p p (t) - C p M 6p p (t) M 4p p/2 (t) (4.14)
for every t > 0 and p = 2 k with k ∈ N (k ≥ 1), where R > 0 is a constant depending only on A 0 , A 1 and A 2 , and C > 0 is a universal constant. Recall the estimates (4.7) for M 1 (t); here, our arguments above give us a "boundary condition". With this, we may close the system of inequalities by considering p = 2 k for any k ∈ N (k ≥ 1) and obtain the estimate using an ODE argument.

To obtain (4.14), we begin by multiplying the equation for φ α (4.8) by e -αx φ 2p-1 α (t, x) (for p = 2 k , k ∈ N, k ≥ 1) and integrating by parts, which yields:

1 2p d dt ˆR φ 2p α dx = - ˆR (2p -1)φ 2p-2 α (φ α ) x -αφ 2p-1 α (αφ α + (φ α ) x ) x dx :=I 1 - ˆR (2p -1)φ 2p-2 α (φ α ) x + αφ 2p-1 α φ α v (1) x dx -ˆR v (2) xx φ 2p α dx :=I 2
for every t > 0. First, we re-write and then estimate I 1 using Young's inequality to obtain

I 1 = α 2 ˆR φ 2p α dx -(2p -1) ˆR φ 2p-2 α ((φ α ) x ) 2 dx -2(p -1)α ˆR φ 2p-1 α (φ α ) x dx ≤ α 2 p ˆR φ 2p α dx - 1 p ˆR((φ p α ) x ) 2 dx
Now we estimate the second term I 2 . To that end, we use our bounds on v (1) and v (2) , together with Young's inequality, to obtain

I 2 ≤ v (1) x ∞ ˆR |φ α | 2p-1 |(φ α ) x |dx + (α v (1) x ∞ + v (2) xx ∞ ) ˆR φ 2p α dx ≤ R 2 (α 2 + 1) ˆR φ 2p α dx + 1 2p 2 ˆR((φ p α ) x ) 2 dx,
where R ≥ 2 is a constant depending only on A 0 , A 1 , and A 2 . For notational ease, let R α := R (α 2 + 1). (4.17)

Fixing t > 0, considering the above inequality at any s ∈ (0, t], multiplying by s (p-1)/4p and taking the supremum over (0, t], we obtain M p (t) ≤ C 1/4p δ p 1/(2p) e δ Rαt/p M p/2 (t) (4.18) for every t > 0 and p = 2 k with k ∈ N, k ≥ 1. Plugging (4.18) into (4.17) k times with p = 2 k , 2 k-1 , . . . , 2 1 , we obtain, for every t > 0,

φ α (t, •) ∞ ≤ lim sup k→+∞ M 2 k (t) ≤ lim sup k→+∞ t -(2 k -1)/(4•2 k ) M 2 k (t) ≤ t -1/4 lim sup k→+∞ C k =1 2 -2- δ k =1 2 2 +1 e δ Rαt k =1 2 -M 1 (t) .
Using the summability of 2 -, the definition of M 1 (t) and (4.7), we get that, for every t > 0, 1) ,v (2) +δ Rα)t φ α (0, •) 2 = C δ t 1/4 e (R α,v (1) ,v (2) (16π(t -s)) n/2 ≤ Γ(t, s, x, y).

φ α (t, •) ∞ ≤ C δ t 1/4 e (R α,v ( 
(4.23)

We briefly mention how to obtain these bounds from [START_REF] Hill | Estimates on the heat kernel of parabolic equations with advection[END_REF]Theorem 2.1]. We first show how to obtain the lower bound (4.23). Notice that this bound is invariant under rotation of x -y and under translation in (t, s) and (x, y), and that the bound on |v| is also invariant by translation and rotation of the frame. We may then assume s = 0 < t, y = 0 and |x i | = |x|/ √ n > A t for all i = 1, . . . , n since we may otherwise rotate and translate the entire system. Hill [START_REF] Hill | Estimates on the heat kernel of parabolic equations with advection[END_REF]Theorem 2.1] proves that Γ(t, 0, x, 0)

≥ n i=1 1 √ 4πt e -(|x i |+A i t) 2 4t - A i 4 erfc |x i | 2 √ t + A i √ t 2 ,
where erfc(z) := 2π -1/2 ´∞ z e -s 2 ds for any z ∈ R and where A i := v i L ∞ ((0,+∞)×R n ≤ A denotes the L ∞ norm of the i-th component v i of v. Using standard estimates, for z > 0, we have erfc(z) ≤ π -1/2 e -z (16πt) n/2 , where in the second-to-last inequality we used that |x i | > At ≥ A i t (implying in particular that all factors in the product are positive) and that

(|x 1 | + A 1 t) 2 + • • • + (|x n | + A n t) 2 ≤ |x| 2 + 2 |x| A √ n t + n A 2 t 2 = (|x| + A √ n t) 2 .
This is exactly the bound claimed above.

To get the upper bounds, we may assume without loss of generality that s = 0 < t, y = 0 and |x 1 | = |x| (hence, x 2 = • • • = x n = 0). Hill [START_REF] Hill | Estimates on the heat kernel of parabolic equations with advection[END_REF]Theorem 2.1] shows that Γ(t, 0, x, 0) ≤ n i=1 .

Using this, along with the fundamental solution representation of u yields, for all |x| ≥ A T + a + 1, u(T, x) = ˆR Γ(T, 0, x, y) u 0 (y) dy

≤ ˆR 1 √ 4πT + A √ T √ 4π (|x -y| -A T ) e -(|x-y|-A T ) 2 4T
1 [-a,a] (y) dy

≤ a √ π 1 √ T + A √ T |x| -A T -a e -(|x|-A T -a) 2 4T
, which concludes the proof.

The local-in-time Harnack inequality: proof of Lemma 2.2

The final technical lemma to prove is Lemma 2.2. We do that here. Our proof proceeds as follows: first, we notice that the heat kernel bound due to Hill [START_REF] Hill | Estimates on the heat kernel of parabolic equations with advection[END_REF] on operators of the form ∂ t + v • ∇ -∆ is sharp in the spatial decay of the tails even if the bound is quite weak when |x| is small. The decay in the tails is crucial in the first step of Lemma 2.2 where we show that u(t, x) and u(t + s, y) 1/p may be compared at any two points x, y. Finally, we use this to bootstrap to the gradient Harnack estimate, finishing the proof of Lemma 2.2. In this last step we use crucially that our new Harnack inequality has the shift forward in time for any s ∈ [0, s 0 ].

Proof of Lemma 2.2. As mentioned above, we first prove the inequality involving only u. To this end, fix t 0 > 0, s 0 ≥ 0, R > 0, p ∈ (1, +∞) and t ≥ t 0 > 0, and let q be the conjugate exponent to p, δ = min{t 0 /2, 1}, α = (1 + p)/(2p) > 0, and

A = sup t>0 |F (u(t, •))| L ∞ (R n ) + ∇ • F (u(t, •) L ∞ (R n ) .
Notice that α p > 1, that α < 1, that α depends only on p while δ depends only on t 0 , and that A is a real number from the assumptions on F and u. Define u : (s , x) → u(s , x) that solves u s + F (u(s , •)) • ∇u = ∆u, in (t -δ, +∞) × R n u(t -δ, •) = u(t -δ, •) in R n .

  in [t/M, t] × [x -π, x + π]. On the other hand, by the definition of u (3.21) along with (3.20), one has u

4 .

 4 Proof of Lemma 3.4. First, taking w = 2χ [0,M/2] , we see that sup

0φ

  (y)w ε (y)dy ≥ sup w∈X ˆ+∞ 0 φ(y)w(y)dy -ε. (3.29)We assume, without loss of generality that w ε is non-negative since, otherwise, we may replace it with |w ε |, which also satisfies(3.29). Let v = 2χ [0,M/2] -w ε ∈ X and observe that v(y) ≥ 0 if 0 < y ≤ M/2 and v(y) ≤ 0 if y ≥ M/2. In addition, notice that ´+∞ 0 v(y) dy ≥ 0. Hence, ˆ+∞ 0 φ(y)2χ [0,M/2] (y)dy = w(y)dy -ε.

0v 2 ˆM/ 2 0

 22 (y)dy ≥ 0 and (3.29). Since the above is true for all ε > 0, then we obtain φ(y)dy ≥ sup w∈X ˆ+∞ 0 φ(y)w(y)dy, finishing the proof.

2

 2 

4. 1

 1 Heat kernel estimates: proof of Proposition 1.3

p 2 t

 2 p-1 e -(1-δ/p 2 )4p 2 Rαt M 4p p/2 (t), for every t > 0 and p = 2 k with k ∈ N, k ≥ 1, where we have absorbed the universal constant C given by (4.15) into C δ . Re-writing this in terms of M p yields M p (t) ≤ C e δ Rαt/p M p/2 (t).

  1.1-(i) and Theorem 1.2 Proof of part (i) in Theorem 1.1, from Theorem 1.2. It is immediate, by setting

  ∈ H 1 (R) ∩ L 1 (R). Applying this inequality to ψ = φ p α (t, •) yields (4.14).From (4.14) to an L ∞ boundLetting now G p (t) = M p (t)e -Rαpt , we have that, for every t > 0 and p = 2 k with k ∈ N (p-1)/4p M p (s) with the intention of leveraging the fact that M p is non-decreasing in t (notice that the supremum could be taken over [0, t] without any change). Fix any δ ∈ (0, 1). Then the above equation (4.16) becomes, after substituting, integrating, and estimating the integral, (t) ˆt (1-δ/p 2 )t s p-2 e 4p 2 Rαs ds

	Then, since p ≥ 1, one infers that 1 2p dM 2p p dt (t) ≤ p R α M 2p p (t) -for all t > 0. From the Nash inequality, there is a universal constant C > 0 such that 1 2p ˆR((φ p α ) x ) 2 dx 2 C ψ 6 L 2 (R) ≤ ψ 2 L 2 (R) ψ 4 L 1 (R) 1 4p dG -4p p dt (t) ≥ C p e 4p 2 Rαt M 4p p/2 (t) . Now, we define M p (t) = sup s∈(0,t] for all ψ (k ≥ 1), 1 G 4p p (t) ≥ 4 C ˆt 0 s p-2 e 4p 2 Rαs s p-2 M 4p p/2 (s) 4 C ds ≥ 4p M p/2 ≥ 4 C t p-1 p e (1-δ/p 2 )4p 2 Rαt 1 -1 -δ p 2 p-1 M -4p p/2 (t),	(4.15) (4.16)

s for every t > 0 and p = 2 k with k ∈ N, k ≥ 1. There exists a constant C δ > 0, depending only on δ, such that 1

-(1 -δ/p 2 ) p-1 ≥ 1/(C δ p) for all p = 2 k with k ∈ N, k ≥ 1. Hence we have that G 4p p (t) ≤ C δ

  +δ Rα)t g 2 , (4.[START_REF] Keating | Negative chemotaxis in cellular slime molds[END_REF] where C δ > 0 is a constant depending only on δ. for all t > s ≥ 0 and (x, y) ∈ R n × R n , and

	Γ(t, s, x, y) ≤	1 4π(t-s)	+	A 2	n-1 ×	1 4π(t-s)	+	√	A 4π(|x-y|-A(t-s)) √ t-s	e -(|x-y|-A(t-s)) 2 4(t-s)
	if |x -y| > A (t -s). Further, if |x -y| > A	√ n (t -s) then
				n (t-s)) 2 4(t-s) e -(|x-y|+A √			

  Furthermore, if |x| = |x 1 | > A t, then |x 1 | -A 1 t ≥ |x| -A t > 0 andProof of Proposition 1.4. The proof of Proposition 1.4 is a straightforward application of Lemma 4.2. Indeed, letting Γ be the fundamental solution of (1.17). Then, we notice that Γ(t, s, x, y) := Γ(t, s, y, x) is the fundamental solution of the adjoint operator of (1.17), ∂ t -v∂ x -∂ xx ; see, for example,[START_REF] Aronson | Non-negative solutions of linear parabolic equations[END_REF] Theorem 10]. Hence, by extending the field v with, say, v = 0 in (T, +∞) × R (the extended field v still satisfies v L ∞ ((0,+∞)×R ≤ A), we apply Lemma 4.2 to Γ to obtain, for all T ≥ t > s ≥ 0 and |x -y| ≥ A(t -s) + 1,

	Γ(t, s, x, y) = Γ(t, s, y, x) ≤	1 4π(t -s)	+	√	A √ 4π(|x -y| -A(t -s)) t -s	e -(|x-y|-A(t-s)) 2 4(t-s)
		√	1 4πt	e -(|x i |-A i t) 2 4t	+	A i 4	erfc	|x i | 2 √ t	-	A i 2 √	t	≤	√	1 4πt	+	A 2
	Γ(t, 0, x, 0) ≤ ≤	1 4πt √ 1 √ 4πt	e -(|x 1 |-A 1 t) 2 4t + A √ + t √ 4π (|x| -At) A 1 4 erfc × e -(|x|-A t) 2 |x 1 | 2 √ t -A 1 2 √ 4t ×	t	√	× 1 4πt	1 4πt 2 √ + A n-1 +	A 2	n-1

n . . These bounds are the upper bounds claimed in Lemma 4.2.

They are the same up to the 1/2 factor which is a mere oversight in[START_REF] Nadin | Traveling waves for the Keller-Segel system with Fisher birth terms[END_REF].

We now show how to obtain a gradient bound on u from (2.9). Let R = |x -y|. The local L q parabolic estimates, see e.g. [23, Theorem 7.22] along with the anisotropic Sobolev embedding for q = n + 3 (see e.g. [12, Lemma A3]), implies that there exists a constant C A,δ,n,R > 0 that depends only on A, δ, n and R such that, for any (t, x) ∈ (t 0 , +∞) × R n ,

* The project leading to this publication was performed within the framework of Excellence Initiatives of Aix-Marseille University A*MIDEX and Université de Lyon (ANR-11-IDEX-0007), and Excellence Laboratories Archimedes LabEx (ANR-11-LABX-0033) and LABEX MILYON (ANR-10-LABX-0070), French "Investissements d'Avenir" programmes operated by the French National Research Agency (ANR). It has received funding from the ANR NONLOCAL project (ANR-14-CE25-0013) and from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) ERC Grant Agreement n. 321186 -ReaDi -Reaction-Diffusion Equations, Propagation and Modelling, and under the European Union Horizon 2020 Research and Innovation Programme (Grant Agreement n. 639638). CH was partially supported by the National Science Foundation Research Training Group grant DMS-1246999.
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From an L 2 → L ∞ bound to an L 1 → L ∞ bound To conclude we use a standard technique. Let S α,v [START_REF] Aronson | Non-negative solutions of linear parabolic equations[END_REF] ,v (2) (t; s) be the solution operator sending the initial data g at time s ≥ 0 to φ α at time t > s where φ α is defined by (4.2), (4.5) and (4.6). Then (4.19) with the choice v (1) = v (2) = v implies that

C δ e (Rα,v,v+δ Rα)(t-s) (t -s) 1/4 (4.20) for all t > s ≥ 0. On the other hand, (4. [START_REF] Keating | Negative chemotaxis in cellular slime molds[END_REF]) with the choice v (1) = -v and v (2) = 0 and with replacing α by -α yields that

for all t > s ≥ 0, where S -α,-v,0 (t; s) * is the adjoint operator of S -α,-v,0 (t; s), or the solution operator to the adjoint equation. Since, by a straightforward computation S -α,-v,0 (t; s) * = S α,v,v (t; s), and since R -α,-v,0 = R α,-v,0 and R -α = R α , we have that, for problem (4.1)-(4.3),

for all t > 0. To conclude, we simply note that

We note that, in the last step, we could have replaced R α with a sharper, more complicated bound on (R α,v,v +R α,-v,0 )/2. Since this does not provide any benefits when considering the asymptotic limit A i → 0 for all i ∈ {0, 1, 2}, we omit it.

Upper bounds on the tails: proof of Proposition 1.4

In order to prove Proposition 1.4, we begin by stating a bound due to Hill. We use this bound in the sequel, as well, to derive our local-in-time Harnack inequality. s,x,y) be the fundamental solution to

for any t > s ≥ 0 and y ∈ R n . Then

are, respectively, a sub-and super-solution of (1.11) for (s , x) ∈ (t -δ, +∞) × R n , in the sense that

Let Γ(t, s, x, y) be the fundamental solution of (4.22) with v(t, x) = F (u(t, •))(x). Then, using (4.24) and Hölder's inequality, we write

Note that Lemma 4.2 along with the fact that α < 1 implies that Γ(t, t -δ, x, •) 1-α q is bounded by a constant depending only on n, A, δ, α and q, and then only on t 0 , p, A and n. Hence, we are finished with the proof of (2.9) if we show that there exists a constant C 0 > 0 depending only on t 0 , s 0 , R, p, A and n such that

for all s ∈ [0, s 0 ], |x -y| ≤ R and z ∈ R n . Indeed, were this the case, then the above, along with (4.24), implies that We now prove (4.25). We assume that z = 0, though the general case follows similarly. We fix any s ∈ [0, s 0 ] and any x, y in R n such that |x -y| ≤ R. There are two cases to consider. If |x|, |y| ≤ √ n A δ + R + 1, then we use well-known heat kernel bounds from, e.g., [START_REF] Aronson | Non-negative solutions of linear parabolic equations[END_REF]Theorem 10], which state that there exists C 1 ≥ 1, depending only on δ, s 0 , A, and n such that, for any x , y ∈ R n and any 0 ≤ s < t , such that t -s ≤ s 0 + δ, then

From (4.27), it is clear that there exists a constant C 2 > 0 depending only on δ, s 0 , A, α, p, n, and R, and hence only on t 0 , s 0 , R, p, A, and n, such that

We note that the bounds in [1, Theorem 10] are not sharp enough as |x| → ∞ to be useful in the regime |x| >

Then, applying the bounds in Lemma 4.2 yields:

.

(4.29)

Let ε > 0 be a constant to be determined and

Notice that A 1 is bounded by a constant depending only on A, n, s 0 , t 0 , and R (remember that |x -y| ≤ R) and that |y| + A √ n (s + δ) ≤ |x| + A 1 . Using (4.29) and Young's inequality, there exists a constant C 3 > 0 depending only on t 0 , s 0 , p, A, and n, such that Γ(t, t -δ, x, 0) αp Γ(t + s, t -δ, y, 0)

4(s + δ) .

Since αp > 1 and δ ≤ δ + s, it follows that we may choose ε > 0 small enough, depending only on p, such that αp(1 -ε) ≥ 1 + ε and hence

Using this inequality, we see that there exists C 4 depending only on t 0 , s 0 , p, A, n, and R, such that Γ(t, t -δ, x, 0) αp Γ(t + s, t -δ, y, 0) ≤ C 4 for all s ∈ [0, s 0 ], |x-y| ≤ R and max{|x|, |y|} > √ n A δ+R+1, as desired. The combination of this with (4.28) implies (4.25). This yields (4.26) and (2.9).