
1 
 
 

Bare Soil HYdrological Balance Model “MHYSAN”: Calibration and 1 

Validation Using SAR Moisture Products and Continuous Thetaprobe 2 

Network Measurements over bare agricultural soils (Tunisia) 3 

Azza Gorrab 1,2,*, Vincent Simonneaux 2, Mehrez Zribi 2, Sameh Saadi 1,2, Nicolas Baghdadi 3, 4 
Zohra Lili-Chabaane 1 and Pascal Fanise 2 5 

1 Institut National Agronomique de Tunisie/Université de Carthage, 6 
43 Avenue Charles Nicolle, 1082 Tunis Mahrajène, Tunisie; 7 
E-Mails: saadi_sameh@hotmail.fr ; zohra.lili.chabaane@gmail.com  8 

2 Centre d’Etudes Spatiales de la Biosphère, 18 Av. Edouard Belin, BP 2801,  9 
31401 Toulouse Cedex 9, France;  10 
E-Mails: vincent.simonneaux@ird.fr ; mehrez.zribi@ird.fr ; pascal.fanise@ird.fr  11 

3       IRTEA-UMR TETIS Maison de la télédétection, Montpellier, 34093, France ;  12 
E-Mails : nicolas.baghdadi@teledetection.fr  13 

* Author to whom correspondence should be addressed; E-Mail: azzagorrab@gmail.com ;  14 

Tel.: +216-71-286-825; Fax: +216-71-750-254. 15 

Abstract. The present study highlights the potential of multi-temporal X-band Synthetic Aperture 16 

Radar (SAR) moisture products to be used for the calibration of a model reproducing soil moisture 17 

(SM) variations. We propose the MHYSAN model (Modèle de bilan HYdrique des Sols Agricoles Nus) 18 

for simulating soil water balance of bare soils. This model was used to simulate surface evaporation 19 

fluxes and SM content at daily time scale over a semi-arid, bare agricultural site in Tunisia (North 20 

Africa). Two main approaches are considered in this study. Firstly, the MHYSAN model was 21 

successfully calibrated for seven sites using continuous thetaprobe measurements at two depths. Then 22 

the possibility to extrapolate local SM simulations at distant sites, based on soil texture similarity only, 23 

was tested. This extrapolation was assessed using SAR estimates and manual thetaprobe measurements 24 

of SM recorded at these distant sites. The results reveal a bias of approximately 0.63% and 3.04%, and 25 

an RMSE equal to 6.11% and 4.5%, for the SAR volumetric SM and manual thetaprobe measurements, 26 

respectively. In a second approach, the MHYSAN model was calibrated using seven very high-27 

resolution SAR (TerraSAR-X) SM outputs ranging over only two months. The simulated SM were 28 

validated using continuous thetaprobe measurements during 15 months. Although the SM was measured 29 
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on only seven different dates for the purposes of calibration, satisfactory results were obtained as a 30 

result of the wide range of SM values recorded in these seven images. This led to good overall 31 

calibration of the soil parameters, thus demonstrating the considerable potential of Sentinel-1 images for 32 

daily soil moisture monitoring using simple models. 33 

Keywords: Bare soil hydrological model, satellite soil moisture products, semi-arid area, continuous 34 

soil moisture measurements. 35 

1 Introduction  36 

The conservation of water and soil resources is one of the main missions for sustainable agricultural 37 

management. These natural resources are threatened by various types of degradation, such as water and 38 

wind erosion, floods, drought and deforestation, all of which impede agricultural development. In recent 39 

decades, the long periods of drought, especially in semi-arid regions, had a negative impact on available 40 

water resources. In addition, most of the intercepted water is lost through evaporation, or by drainage, 41 

deep percolation and subsurface runoff. Therefore, knowledge of water fluxes within the soil-42 

atmosphere system is a major issue for the improvement of water use efficiency. Many studies have 43 

been carried out to quantify these fluxes, and various tools have been developed to estimate the soil-44 

water regime. These efforts can thus be expected to contribute to the sustainable management of natural 45 

resources (Er-Raki et al., 2007; Gowda et al., 2008; Simonneaux et al., 2008; Zhang et al., 2010; Li et 46 

al., 2009; Sutanto et al., 2012 and Saadi et al., 2015). 47 

The amount of water stored in the soil is a crucial parameter, in situations where energy and mass fluxes 48 

at the land surface-atmosphere boundary need to be determined, and is of fundamental importance to 49 

many agricultural, hydrological, and meteorological processes (Koster et al., 2004; Seneviratne et al., 50 

2010). Many soil water balance models have been developed, highlighting in particular the influence of 51 

surface soil moisture conditions on the hydrological response of a watershed (Famiglietti and Wood, 52 

1994; Entekhabi and Rodriguez-lturbe, 1994 ; Zehe and Bloschl, 2004; Brocca et al., 2005 and 2008; 53 

Manfreda et al., 2005; Tramblay et al., 2012). Spatio-temporal soil moisture (SM) information is also of 54 
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primary importance for the simulation of surface evaporation fluxes and vertical water circulation such 55 

as surface water displacement via capillarity, and underground percolation. It is important for the 56 

management of water resources, irrigation scheduling decisions, as well as the estimation of runoff and 57 

soil erosion potential (Chen and Hu, 2004; Koster et al., 2004; Pandey et al., 2010; Bezerra et al., 2013; 58 

Zhang et al., 2015). The spatial distribution of the soil's water content varies both vertically and 59 

horizontally, as a consequence of variations in precipitation and evaporation, and the influences of 60 

topography, soil texture, and vegetation. 61 

As SM plays an important role in the hydrologic response, as well as land surface inputs to the 62 

atmosphere, large spatio-temporal databases of moisture observation data need to be maintained, and 63 

methodologies for the estimation of this key hydraulic property must be developed. This can be 64 

achieved through the use of SM monitoring networks, providing frequent temporal observations at a 65 

high spatial density. In situ station networks can be efficiently used as tools for the calibration of 66 

hydrological models, and their interest has been demonstrated in various studies using different remote 67 

sensing satellites and techniques (Wagner et al., 2008; Albergel et al., 2011; Gorrab et al., 2015b). 68 

Considerable progress has been made in recent decades with the development of SM retrieval 69 

techniques, based on the analysis of remotely sensed radar data. The high spatial resolution and regular 70 

coverage provided by Imaging Synthetic Aperture Radar (SAR) sensors make these instruments a 71 

promising additional source of data for the measurement of seasonal and long-term variations in surface 72 

SM content, and could potentially improve hydrologic modeling applications (Baghdadi et al., 2008; 73 

Barrett et al., 2009). Several algorithms have been developed to retrieve soil moisture from radar data 74 

(Baghdadi et al., 2008; Zribi et al., 2011). In particular, the use of multi-temporal SAR acquisitions 75 

allows SM to be effectively estimated, using a small number of assumptions, by analyzing changes in 76 

radar backscattering over time (Zribi et al., 2005; Pathe et al., 2009; Gorrab et al., 2015b). 77 

Subsequently, the integration of SM SAR products into hydrological balance models would be of 78 

considerable interest, since it could provide scientists with the opportunity to improve hydrological 79 

forecasting. Many recent studies have shown that the SM retrieved from SAR data generally agrees 80 
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very well with that predicted by hydrological models (Baghdadi et al., 2007; Doubková et al., 2012; 81 

Iacobellis et al., 2013; Santi et al., 2013; Pierdicca et al., 2014). Baghdadi et al., 2007, showed that the 82 

monitoring of SM from SAR images was possible in operational phase. In fact, they compared 83 

moistures simulated by the operational Météo-France ISBA soil-vegetation-atmosphere transfer model 84 

with radar SM estimates to validate its pertinence. This comparison has shown an acceptable difference 85 

between ISBA simulations and radar estimates. Pierdicca et al., 2014 compared SM values generated by 86 

a soil water balance model with multi-temporal retrievals from ERS-1 images acquired over central 87 

Italy. Very good results were obtained at the scale of the watershed, showing that the short three-day 88 

revisit periodicity of ERS/SAR data can be used to compute relatively accurate estimations of the 89 

temporal variations in SM.  90 

SM remote sensing outputs can also be used for data assimilation and calibration in hydrological 91 

transfer models, in order to evaluate their reliability (Weisse et al., 2003; Aubert et al., 2003; Qui et al., 92 

2009; Brocca et al., 2010 and 2012; Draper  et al., 2011; Renzullo  et al., 2014; Massari et al., 2015; 93 

Lievens et al., 2015; López López et al., 2016). For example, Aubert et al., 2003, integrated remotely 94 

sensed SM data into their hydrological model, to improve the accuracy of their hydrological forecasts. 95 

Their methodology involved the implementation of a sequential assimilation procedure, allowing step-96 

by-step control of the model's successive outputs, thereby avoiding any divergence with respect to the 97 

remotely sensed SM data. In a study published by (Brocca et al., 2010), a SM product derived from the 98 

Advanced SCATterometer (ASCAT) sensor was introduced into a rainfall-runoff model (MISDc) and 99 

applied to many sub-catchments of the Upper Tiber River in central Italy. The results reveal that even 100 

with a coarse spatial resolution, remote sensing data can considerably improve the accuracy of runoff 101 

predictions.  102 

The growing availability of remote sensing SAR SM products, combined with the relatively large 103 

number of parameters involved in soil water processes, means that moisture satellite data can now be 104 

used for the calibration of distributed SM models. However, relatively few published studies have dealt 105 

with the calibration of hydrological models using SAR SM products (François et al., 2003, Pauwels et 106 
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al., 2002; Matgen et al., 2006; Montanari et al., 2009). In this context, the present study focuses mainly 107 

on the effectiveness of high-resolution TerraSAR-X SM products to be used as calibration data in a 108 

hydrological model. We propose a new, simple soil hydrological model called MHYSAN 109 

(“Modelisation de Bilan HYdrique des Sols Agricoles Nus” in French, or "Water balance model for 110 

bare agricultural soils") which was used to compute surface evaporation and water balance in central 111 

Tunisia, thereby simulating soil moisture time series. Modeling bare soil behavior should be considered 112 

as a first step toward agricultural soil moisture monitoring, but is all the more as bare soils represent the 113 

majority of surface in our study area, like in most semi-arid areas. Our paper is organized in five 114 

sections. The following section presents the database and ground station measurements used in this 115 

study. Then, section 3 explains the functioning of the MHYSAN model and the calibration and 116 

validation method. The results of the calibration and validation processes are presented and discussed in 117 

Section 4, and then our conclusions and perspectives are provided in section 5.  118 

2 Database description  119 

2.1 Study Area Description  120 

The experimental site is situated on the Kairouan plain (9°30′E to 10°15′E, 35°N to 35°45′N), a semi-121 

arid region in central Tunisia (see Fig. 1) with  an area of more than 3000 km2. In this region, the annual 122 

rainfall records are of approximately 300 mm/year, with the two rainiest months being October and 123 

March and the mean daily temperature is about 19.2 °C. The mean annual reference evapotranspiration 124 

estimated using the Penman-Monteith method is equal to 1600 mm (Zribi et al., 2011). Water 125 

management in the Merguellil basin is characteristic of semi-arid regions, with an upstream sub-basin 126 

collecting surface and subsurface flows to the El Haouareb dam, and a downstream plain supporting 127 

irrigated agriculture. Agriculture consumes more than 80% of the water extracted from the Kairouan 128 

aquifer. 129 
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 130 

Figure 1: Localization of the study site. 131 

2.2 Ground and remote sensing database 132 

2.2.1 Continuous in situ SM and meteorological data  133 

Ground-based SM measurements were obtained from a Continuous Soil Moisture Network (CSMN) 134 

which has been operated over the studied area since 2009. The CSMN network includes the following 135 

seven stations: Bouhajla, Hmidate, Sidi Heni, Chebika, Barrouta, Barrage and P12, as shown in Fig. 2. 136 

SM measurements were made with permanently installed Theta-Probe ML2X instruments, aligned 137 

horizontally at depths of 5 and 40 cm. For each continuous probe, SM values were recorded at 4h 138 

intervals and expressed in volumetric units (m3/m3). Thetaprobe calibrations were performed during the 139 

commissioning phase through the use of several different gravimetric measurements (Amri et al., 2012).  140 

Table 1 provides the geographic coordinates and soil characteristics of each station, in terms of their 141 

bulk density and soil texture classes.  142 

Table 1. Geographic coordinates and physical soil properties of the seven continuous thetaprobe stations 143 

(da: bulk density) 144 

   Name Lat(DD) Long(DD) da5cm da40cm % Sand % Clay % Silt Texture  
Bouhajl a N35.3888 E10.0477 1.69 1.63 71.9 16.5 11.6 sandy loam 
Sidi Heni N35.6630 E10.3404 1.35 1.6 48.5 28.1 23.4 sandy clay loam 
Barr age N35.5702 E9.7635 1.60 1.69 58.1  

303
11.9 sandy clay loam 

Barrou ta N35.5778 E10.0480 1.56 1.59 65.4 27.7    6.9 sandy clay loam 
Chebika N35.5504 E9.9216 1.32      32 36.2 31.8 clay loam 
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P12 N35.5563 E9.8716 1.47  69 18.5 13.5 sandy loam 
Hmidate N35.4757 E9.8449 1.67  81.1 12.7    6.2 sandy loam 

 145 

Half-hourly measurements of solar radiation, air temperature and humidity, wind speed and rainfall 146 

were recorded using two automated weather stations installed in the study area: Ben Salem and 147 

Nasrallah (Fig. 2).  148 

 149 

Figure 2: Locations of the continuous thetaprobe (green pins) and meteorological (yellow pins) stations 150 

(courtesy of Google Earth). 151 

Fig. 3 shows the daily precipitation and reference evapotranspiration (ETo) time series obtained using 152 

this meteorological data between January 2013 and August 2014 at the Ben Salem and Nasrallah 153 

stations, respectively. In this study, we used the SM and meteorological measurements recorded during 154 

the hydrological year of 2013-2014.  155 
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(a)  156 

(b)  157 

Figure 3: Mean daily rainfall (red bars at the top) and reference evapotranspiration “ETo” (blue points) 158 
recorded at two meteorological stations: (a) Nassrallah and (b) Ben Salem, for the hydrological year of 159 

(2013-2014). 160 

2.2.2 Analysis of SM and rainfall time series  161 

The daily rainfall and SM variations for the 2013-2014 season were analyzed in order to check the 162 

correlation between rainfall and soil moisture. Fig. 4 shows the example of the Chebika and Hmidate 163 

probes. The rainfall gauges selected for each SM site were the closest to each of the continuous probe 164 
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stations. The rainfall time series should be consistent with the temporal variations in SM recorded at the 165 

depths of 5 cm and 40 cm.  166 

From Fig. 4, it can be seen that SM variations in the shallow layer (5 cm) are very different to those 167 

observed in the deep layer (40 cm). The soil moisture content in both of these layers can be attributed 168 

mainly to the influence of the soil's texture and pore size distribution (Bezerra et al., 2013; Zhang et al., 169 

2015; Shabou et al., 2015). We also note that the deeper the probes are, the smoother the recorded 170 

response. According to (Famiglietti et al., 1998; Amri et al., 2012), the amount of water stored in the 171 

first centimeter of top soil increases rapidly in the presence rainfall, and can decrease significantly 172 

within a few hours, due to atmospheric influences (evaporation …). This is the reason for which, as 173 

shown in Fig. 4, the SM estimated at 40 cm is affected by considerably small variations than those 174 

measured at the surface (5 cm). A large water content in the deep soil layers maintains an upward 175 

vertical SM gradient, thereby contributing to the SM and evaporation observed in the shallow surface 176 

layers (Chen and Hu, 2004).  177 

Overall, the precipitation inputs are quite well correlated with the observed SM variations, in particular 178 

the surface SM (θ5cm). For the 2013-2014 period, small discrepancies are occasionally observed between 179 

SM and precipitation, since rainfall events are not always accompanied by an increase in SM, and some 180 

SM variations are not correlated with any rainfall event.  181 
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b)  183 

Figure 4: Correlation between daily precipitation data (blue bars)  and SM time series recorded during 184 
the 2013-2014 season, using: a) the Chebika thetaprobe station b) the Hmidate thetaprobe station, at 185 

depths of 5 cm and 40 cm. 186 

2.2.3 Soil moisture control plots  187 

SM measurements were collected from a set of 15 control plots on bare soil fields distributed over the 188 

study area, having different types of roughness ranging from smooth to ploughed surfaces (Fig.6). 189 

Ground campaigns were carried out from November 2013 to January 2014, simultaneously with SAR 190 

image acquisitions. The surface areas of these study fields ranged between 1.6 and 17 ha. Handheld 191 

thetaprobe measurements were made at a depth of 5 cm, at approximately 20 points distributed over the 192 

entire surface area of each control plot, within a two-hour time frame between 3:40 p.m. and 5:40 p.m., 193 

coinciding with the time of each overhead satellite acquisition.  194 

The manual thetaprobe measurements were calibrated using gravimetric measurements recorded during 195 

previous campaigns (Zribi et al., 2011). The ground-measured volumetric moisture “mv” values ranged 196 

between 4.7% to 31.6 %, for all manual thetaprobe measurements. For each control plot, three soil 197 

samples were collected, and the soil's texture was determined by measuring the percentages of sand, silt 198 

and clay particles in the laboratory (Gorrab et al., 2015a). These fractions were then classified according 199 

to the USDA textural triangle (Fig. 5). In our control plots, the observed variability of the soil's 200 
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composition, which is dominated by a high proportion of fine particles, could have a significant 201 

influence on its water retention capacity.  202 

 203 

Figure 5: Textural triangle (USDA classification) of the soil in the control plots: each red circle 204 

corresponds to a single field. 205 

2.2.4 SAR data and SM products 206 

Seven TerraSAR-X images (X-Band ~9.65 GHz, 36° incidence angle and HH polarization) were 207 

acquired over the Kairouan plain between November 2013 and January 2014. All of the TSX images 208 

correspond to a “Single-look Slant Range Complex: SSC” TSX product, with a Single-look complex 209 

format, having a ground pixel spacing of approximately 2 m. The SAR images were initially multi-looked 210 

using the NEST software (https://earth.esa.int/web/nest/home/) to reduce speckle effects. For all images, 211 

five looks were used in the azimuth and range directions (resulting pixel size ~ 9 × 9 m2). The images 212 

were then radiometrically calibrated to derive their backscattering coefficients σ°, and then geo-213 

referenced using the SRTM 3Sec DEM (Auto download with the NEST software). The mean radar 214 

signals were computed for each control plot.  215 
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The SM maps were produced using the multi-temporal TerraSAR-X data acquired at high spatial 216 

resolution scale. For the estimation of bare surface SM, we propose an algorithm based on an empirical 217 

change detection approach combining TerraSAR-X images with ground CSMN measurements. It is 218 

important to note that we used only three continuous Thetaprobe stations from the CSMN, to calibrate 219 

the SAR moisture products. In the following, we note these stations as (CSMN3), as shown in Fig.6. 220 

 221 

Figure 6. Location of the control plots (yellow pins) and the CSMN3 (green pins). 222 

 The methodology adopted in this study to estimate the spatial variability of SM is described in (Gorrab 223 

et al., 2015b). Our analysis is based on the seven radar images acquired over the study site.  224 

The proposed approach takes advantage of the approximately linear dependence (in decibels) of radar 225 

backscattering signals on soil moisture. This linear relationship is modeled as: 226 

                               ( )0
0dB S mv f Rσ = +

                                              (1) 227 
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where S0 is the radar signal’s sensitivity to soil moisture (mv), and f(R) is a function of the roughness R. 228 

The change in soil moisture ∆mv between two successive TerraSAR-X image acquisitions (11 day 229 

period in the case of the present study), can be expressed as: 230 

                                    ∆�� = ∆�°�∆�(
)
�                                                     (2) 231 

where ∆σ° is the radar signal difference, obtained by subtracting consecutive radar backscatter images 232 

acquired over a given area (i.e. the change in signal strength between two acquisition dates), and ∆f(R) is 233 

the difference in radar signal resulting from roughness contributions, between two successive radar 234 

images. 235 

The proposed algorithms are validated by comparing the radar estimations with ground-truth 236 

measurements made in control plots, characterized by soil moistures ranging between dry and wet 237 

conditions. Since a small improvement in the soil moisture estimation accuracy is observed when the 238 

roughness variations are taken into account, the resulting soil moisture maps are computed for each date 239 

dt and each pixel (i, j), as:                                  240 

                ( ) ( ) ( )11 ,,,,,,, −− +∆= tvttvtv djimddjimdjim                   (3) 241 

where ��(�, �, ��)  is the SM at pixel (i,j) and date dt , ��(�, �, ����) is the SM at pixel (i,j) and date dt-1, 242 

and  ∆��(�, �, ��, ����)  is the change in SM at pixel (i,j), between the dates ��, ����. 243 

Fig. 7 shows three bare soil moisture maps computed using the above algorithm on three different dates:  244 

*12/12/2013: was a dry date, and the spatial variations in soil moisture can be seen to be low. 245 

*23/12/2013: was the wettest day (the recorded precipitation was approximately 38.6 mm), and the 246 

spatial variations in soil moisture are relatively homogenous (dark blue) 247 

*14/01/2014: was characterized by medium values of soil moisture and highly heterogeneous levels of 248 

soil moisture (dark blue to light).   249 

The TerraSAR-X SM maps provided data representing the volumetric soil moisture content expressed 250 

in volumetric percentage units (vol. %).  251 
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 252 

Figure 7: Three surface SM TerraSAR-X products. 253 

3 Bare soil hydrological balance estimation 254 

3.1 MHYSAN model description 255 

The “MHYSAN” model simulates the soil water balance at 24-hour intervals, using daily precipitation 256 

and meteorological data as inputs for the estimation of evaporation. The model considers a dual soil 257 

layer structure: a surface layer from which moisture can evaporate, and a deep layer where water is 258 

stored (fig.8). During rainfall events, the gravity makes water successively fill the soils’ compartments 259 

from top to bottom. In this model, lateral circulation of water (overland and subsurface runoff) is 260 

assumed to be negligible. When all compartments are full, any excess water flows out of the system by 261 

means of deep drainage (Simonneaux et al., 2009, Saadi et al., 2015). 262 
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 263 

Figure 8: Schematic representation of the conceptual bare soil hydrological model “MHYSAN”. 264 

Ze [mm] is the height of the evaporative layer. Below this surface layer, a deep layer of height Zd [mm] 265 

is modeled. TEW is the water column [mm] representing the difference between the moisture content at 266 

field capacity and the residual water content that cannot be evaporated from the soil, and is described by 267 

the following expression Eq. (1): 268 

��� = �θ��	– ���� ∗ "�,  (1) 269 

The evaporative capacity of the deep compartment (TDW) is computed in a similar manner to the TEW, 270 

using the following expression Eq. (2): 271 

�#� = (θ��	 − 	θ���) ∗ "�   (2) 272 

Capillary processes are also modeled in MHYSAN, either upwards or downwards, between the 273 

evaporative layer and the deep compartment, on the basis of their relative water contents. In particular, 274 

this allows evaporation to continue long after a rainfall event, since the deeper layers can sustain low 275 

evaporation fluxes at the surface. The daily amount of water diffusing between the two layers, Dif ed, is 276 

computed following Eq. (3): 277 
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#��%& = ���� ∗ '
(()*+	),,-)., �((/*+	)0,-).0

θ12 3,  (3) 278 

where De,i and Dd,i  represent the depletion of water in the evaporation and deep layers for day i (i.e. the 279 

volume of voids as compared to soil at field capacity), and cdif is the diffusion coefficient [mm·day−1]. 280 

The MHYSAN model balances the soil's daily water budget by ensuring that water inputs and outputs 281 

are conserved, in accordance with the following expression Eq. (4): 282 

�4 	+ 	#64 	+ 	78�	4 =	64           (4) 283 

with: 284 

Ei          Evaporation 285 

DPi       Deep Percolation (drainage) 286 

∆SWi   Variation of the soil's water content 287 

Pi        Precipitation 288 

The evaporation (Ei) from a bare soil surface is defined as the volume of water vapor removed from the 289 

soil's surface and transferred to the atmosphere and is estimated using the FAO-56 formalism (Allen et 290 

al., 1998) using equation 5: 291 

    �4 	= 		9%,4 ∗ ��:,                                    (5) 292 

Where 293 

ETo is the grass reference evapotranspiration (mm/day). This term was computed using the expressions 294 

proposed by Allen et al. (1998), where Ke,i is the evaporation coefficient, related to the volume of 295 

water in the surface layer, obtained with equation 6: 296 

9%,4 = (;<=�>0,-)
(;<=�?/) ≤ 1	,            (6) 297 

and RE is the coefficient of resistance to evaporation. 298 

The depletion (De,i) is updated every day from the soil water balance as follows:  299 
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	B#%,4 = #%,4�� − 64 + �4 − #��%&0 ≤ #%,4 ≤ ��� D	,               (7) 300 

If De,i <0 then: 301 

DP = -De,i 302 

De,i =0 303 

Depletion in the deep layer (Dd,i) is computed as follows:  304 

	B#&,4 = #&,4�� − #6&,4 +#��%&0 ≤ #&,4 ≤ �#� D	, (8) 305 

If Dd <0, then: 306 

 DPd,i= -Dd,i 307 

 Dd,i = 0 308 

where DPd,i is the assumed value of deep percolation on day i [mm]. 309 

The volumetric soil moisture contents θ [m3m-3] at depths of 5 and 40 cm are determined by the 310 

MHYSAN model from the following relationships: 311 

�EFG = �H%I + (��F − �H%I) ∗ (��� − #%,4)/���,   (9) 312 

and 313 

�K:FG = �H%I + (��F − �H%I) ∗ (�#� − #&,4)/�#�,   (10) 314 

3.2 Model calibration and validation 315 

We choose to calibrate some parameters of the MHYSAN as shown in Table 2. These parameters are 316 

related to the soil's hydraulic properties, and are specific to each type of soil, depending on the size 317 

distribution and structure of its pore spaces. Some of the model parameters were fixed from ground 318 

moisture profiles measured at depths of 5 cm and 40 cm (e.g. the initial soil moisture content H_Init and 319 

the residual soil moisture content θres). The other parameters were calibrated using the observed soil 320 

moisture data. We choose to fix θres but not θfc because the water holding capacity is not related to 321 
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absolute values of these parameters but only to their difference. The soil parameters retained after 322 

calibration of the MHYSAN model are summarized in Table 3.  323 

The calibration involves maximizing the Nash–Sutcliffe efficiency computed between observed and 324 

modeled values of soil moisture, at depths of 5 and 40 cm. This is written as: 325 

LM8N = O1 − ∑ (QRSTU�QRURV)WXRYZ∑ (QRSTU�QSTU[[[[[[[)WXRYZ
\ ∗ 100,       (11) 326 

where θi
obs is the observed value of soil moisture on day i, θi

sim is the modeled value of soil moisture on 327 

day i, and �]^I[[[[[[ is the observed mean value of soil moisture over the entire period under consideration. 328 

The Nash efficiency varies between 100 and −∞, with an efficiency of 100 indicating a perfect fit 329 

between the modeled outputs and observations. A negative Nash efficiency indicates that the mean 330 

value of the observed time series would have been a better predictor than the model. In the present 331 

study, the NASH efficiency coefficients were used for the calibration and validation of the MHYSAN 332 

model. The discrepancies observed between the SM observations and MHYSAN simulations are 333 

expressed also in the form of two statistical indices: root mean square error (RMSE) and bias. 334 

Table 2. Model parameters used for the evaporation and moisture simulations 335 

Soil parameters Description Data Sources 

θfc [m
3m-3] 

Volumetric water content at field 
capacity [0-1] 

Derived from the MHYSAN 
calibration  

θres [m
3m-3] Residual moisture content [0-1] 

Derived from ground moisture 
profiles 

RE [mm] 
Coefficient of resistance to 

evaporation 
Derived from the MHYSAN 

calibration  

cdif [mm·day−1]. 
Diffusion coefficient for the 

hydraulic gradients between the 
deep and surface compartments 

Derived from the MHYSAN 
calibration  

H_Init [m3m-3] 
Initial soil moisture content at 

depths of 5 cm and 40 cm 
Derived from ground moisture 

profiles 

Ze [mm] Height of the surface layer Derived from the MHYSAN 
calibration 

Zd[mm] Height of the deep layer Derived from the MHYSAN 
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calibration 

In this work, SM data derived from either CSMN stations or SAR moisture products were used to 336 

calibrate the model and independent SM data were used to validate the model (Fig.9). In fact, two 337 

approaches were considered for calibration of the MHYSAN model. In the first approach, model 338 

calibration was carried out using the CSMN data. The purpose of this step was to assess the intrinsic 339 

ability of MHYSAN to simulate soil moisture. Then, we tested the possibility to spatially extrapolate 340 

the local MHYSAN SM simulations based on the texture similarity of distant sites, assuming 341 

meteorological forcing are the same. This extrapolation was assessed using punctual thetaprobe SM 342 

measurements and SAR SM estimates available for independent control plots. 343 

 344 

Figure 9: Use of soil moisture data (in situ continuous probes or radar images) in the MHYSAN model 345 

In the second approach, the objective was to test the use of remotely sensed data alone (SAR) to 346 

calibrate the model. Calibration was performed using the SM TerraSAR-X products retrieved on seven 347 

different dates ranging between November and January. The validation was achieved by comparing 348 

model predictions with measurements collected for the four CSMN sites (Bouhajla, Sidi Heni, Barrage 349 

and Hmidate) that were not used for SAR SM calculation. Because the knowledge of texture was 350 

necessary to derive SM from SAR data, it was calculated only for the control plots. The selection of the 351 

control plots for which SAR SM estimates will be used for MHYSAN calibration was achieved based 352 

on texture similarities between CSMN stations used for validation and the control plots. The similarity 353 
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was based on the the euclidean distances between texture components, namely percentage of clay, silt 354 

and sand. 355 

4 Results and Discussion  356 

4.1 MHYSAN model calibration using SM measurements  357 

In the present step, the MHYSAN model was implemented for the seven continuous probe stations, in 358 

an attempt to reproduce the SM time series observed by each continuous thetaprobe at depths of 5 and 359 

40 cm. Fig. 10 provides a plot of the estimated values of the main water balance components, in 360 

particular soil moisture and evaporation time series, for three CSMN stations (2013-2014 period).  361 

Table 3 lists the MHYSAN parameters which were established as described in the table 2 (section 3.2) 362 

and retained for each continuous thetaprobe station. The time-dependent agreement between the observed 363 

and simulated SM time series is characterized by the NASH efficiency coefficients at depths of 5 cm and 40 364 

cm. Following calibration, the NASH efficiency coefficients ranged between 81.2 and 52 % for 365 

NASH5cm and between 76.3 and 11% for NASH40 cm. Overall, the results for the surface horizon at a 366 

depth of 5 cm (θ5cm) are better than those corresponding to the layer located at a depth of 40 cm (θ40cm). 367 

Discrepancies are occasionally observed for the period from 2013-2014, when the simulated MHYSAN 368 

SM responses are higher or lower than the SM continuous probes measurements. In addition, we note 369 

that the agreement between simulations and observations is not as good in the case of the Sidi Heni 370 

station. This can be explained by the poor representativity of the rainfall data considered for this station, 371 

which is more remote than the other stations (situated at approximately 39 km from the Ben Salem 372 

meteorological station).  373 

Author-produced version of the article published in : Journal of Arid Environments , vol. 139, 2017.p.11-25



21 
 
 

(a)  374 

(b)  375 

(c)  376 
Figure 10: Evaporation and soil moisture simulations using observed moisture measurements from (a) 377 

Chebika (b) P12 (c) Barrage. “Obs θ5” and “Obs θ40” correspond to the SM time series observed using 378 
continuous probes at depths of 5 cm and 40 cm respectively. “Sim θ5”and “Sim θ40” correspond to the 379 

volumetric water content simulated by the MHYSAN model, at depths of 5 cm and 40 cm respectively. 380 

Table 3. Soil Parameters retained after calibrating MHYSAN with measured values of moisture. 381 
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 Ze 
(mm) 

Zd 
(mm) 

θfc 5cm 
[m3m-3] 

θres5cm 
[m3m-3] 

θfc 40cm  
[m3m-3] 

θres40cm  
[m3m-3] 

RE 
[mm] 

cdif  
[mm.day-1] 

NASH
5cm

 NASH
40cm

 

 Chebika station 

 194.5 500 0.37 0.04 0.27 0.1 -5.57 6.23 81.2 26.2 

 P12 station 

 188 866 0.24     0.03 0.2 0.09 -21.7 3.47 66 63.2 

 Hmidate station 

 225 500 0.1     0.03 0.11 0.06 -25.1 0.31 62.4 50.8 

 Barrage station 

 225 679 0.28    0.05 0.23 0.12 -15.1 5.98 68 49 

 Barrouta station 

 225 680 0.21    0.04 0.11 0.03 -1.13 3.36 63 76.3 

 Bouhajla station 

 225 280 0.16   0.01 0.11 0.01 -10 3.05 58 39.1 

 Sidi Heni station 

 225 318 0.27   0.07 0.14 0.1 -84.8 2.34 52 11 

 382 

Then, we propose a comparison of calibrated MHYSAN SM outputs at plot scale with in situ SM data 383 

and SAR moisture estimations. These comparisons take into account texture similarities, as well as the 384 

location between continuous probe stations and control plots for 2013-2014 season (only stations close 385 

to the control plots were used). In Fig. 11, we compare the MHYSAN surface SM at 5cm depth with 386 

plot scale estimations made using: a) manual thetaprobe, and b) SAR moisture. In the last case, the 387 

CSMN3 used to calibrate the SAR moisture products, were removed from these comparisons. At plot 388 

scale, the results are characterized by a volumetric moisture bias and RMSE equal to 1.06 and 3.38% 389 

respectively, when the MHYSAN SM simulations are compared to the SM manual thetaprobe 390 

measurements. Similarly, the comparison between MHYSAN SM and SM SAR outputs leads to a 391 

volumetric moisture bias and an RMSE equal to 0.63 and 6.11%, respectively. Baghdadi et al., 2007 392 
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compared SM SAR estimates over bare soils with SM ISBA simulations and obtained a mean difference 393 

between 0.4 and 10% (RMSE ≤ 5% for 12 dates among the 18 examined dates and between 5% and 394 

10% for the 6 remaining dates). The results are good indicators of the suitability of local SM datasets 395 

for the determination of soil moisture dynamics at the regional scale, on the basis of soil texture 396 

similarities.  397 

   398 

(a)                                                                       (b) 399 

Figure 11: Comparisons from the 2013-2014 ground campaign, between Modeled volumetric SM 400 
values (5 cm depth) and: (a) SM Manual thetaprobe measurements and (b) SM SAR products, at plot 401 

scale. 402 

4.2 MHYSAN model calibration using satellite SM products  403 

In this section, the MHYSAN model was calibrated using SAR products only (from radar images 404 

acquired on seven different dates). As SAR SM estimates are related to the surface of the soil, the 405 

calibration was achieved only for this surface layer, although we computed performance criteria for 406 

both surface and deep layers. Following this calibration, the model was validated using daily SM 407 

observations derived from long-term data provided by the CSMN stations between 2013 and 2014. In 408 

the latter case, we used only those CSMN (4 stations) that were not used to calibrate the SAR moisture 409 

products. 410 
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As no SAR SM estimations were available for the areas corresponding to the four CSMN stations used 411 

to validate MHYSAN, the SAR SM corresponding to control plots with textures similar to that of each 412 

respective station were used. Four different control-plot groups were thus selected, on the basis of the 413 

Euclidean distance between their texture and that of their respective stations. Only distances of less than 414 

10 were retained. For each texture group, the relevant SAR SM value was computed as the mean of the 415 

SM values determined for the corresponding control plots.  416 

Fig. 12 shows the resulting estimated water balance variables, surface SM and evaporation, computed 417 

by the MHYSAN model using seven SAR SM products for the four different plots corresponding to 418 

each of the validation stations. The discrepancies between the estimated SM SAR products and the 419 

simulated SM MHYSAN outputs are presented in Table 4, showing that globally satisfactory 420 

simulations are achieved. The use of just seven SAR SM estimations leads to good model performance. 421 

Brocca et al., 2008 reported the calibration of a conceptual model for soil water content balance, using a 422 

small number of isolated SM measurements. In this study, variations in RMSE and NASH values were 423 

determined as a function of the number of SM measurements (ranging from 3 to 15) used to calibrate 424 

the model. The results revealed that just seven SM measurements were sufficient to obtain good RMSE 425 

and NASH values, and to correctly calibrate the tested soil hydrological balance model.  426 

We see on fig. 12 that although the seven satellite acquisition were achieved in a short time range as 427 

compared to the simulation length, the SAR moisture values vary considerably over time, due to 428 

important rainfall occurring during this period, which may have influenced positively our results. 429 

Fig. 12 plots the calibrated MHYSAN SM outputs, together with the continuous thetaprobe SM 430 

observations. The Nash efficiency and statistical performance of these outputs are provided in Table 4. 431 

The validated version of the calibrated MHYSAN model is generally found to be in good agreement 432 

with the continuous probe observations and the MHYSAN simulations (Fig. 12 and Table 4). The 433 

performances shown in this table also indicate that there is a poor agreement between the simulations and 434 

observations in the case of the Sidi Heni and Hmidate stations. For the Sidi Heni station, this outcome 435 

can be explained mainly by the poorly representative rainfall data used for this station. Indeed, an 436 
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increase in SM was measured in May without rainfall event recorded. For the Hmidate station, after the 437 

important SM raise in December, a lower SM is observed compared to simulations. This result can be 438 

related to the soil at the Hmidate station which has a very high percentage of sand (81%), and just one 439 

corresponding control plot (selected according to the distance between its texture and that of the 440 

Hmidate station), which could lead to larger errors in the model.  441 

a)  442 

b)  443 
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c)   444 
 445 

d)  446 

Figure 12: Estimation of times series of water balance variables, using calibrated MHYSAN SAR data 447 
and validation results from different texture groups: (a) "Barrage" station; (b) "Hmidate" station; (c) 448 

"Bouhajla" station and (d) "Sidi Heni" station 449 

Table 4. Quality parameters of the MHYSAN "Calibration-Validation" process. The criteria for the 450 
calibration phase are computed only for the seven SAR dates.  Validation criteria are computed for the 451 

full CSMN measurement period. 452 

 NASH (%) RMSE (%) Bias (%) 
CAL VAL CAL VAL CAL VAL 

Barrage station 87.6 57.5 2.84 3.16 -0.43 -0.18 
Hmidate station 89 -88 2.4 3.4 -1.06 2.23 
Bouhajla station 77 44.1 3.7 2.89 2.07 -0.31 
Sidi Heni station 76.7 2.8 4.29 3.81 0.72 0.41 
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Finally, the MHYSAN simulations using SAR SM products for calibration were compared with 453 

MHYSAN outputs obtained using bibliographic FAO parameters only. The Ze and Zsol depth were 454 

fixed respectively at 100 and 700 mm in order to fit with the SM probe depth. The soil resistance to 455 

evaporation RE was determined using the REW values proposed by FAO for various soils textures 456 

(table 19 of the FAO 56 paper), as well as the soil moisture values θres and θfc.  Finally, the diffusion 457 

coefficient was arbitrary fixed to the medium value of 2 as observed for several calibrations achieved in 458 

previous studies (not shown here). The Nash efficiency and statistical performance of these simulations 459 

are listed in Table 5, showing that the MHYSAN model performs better when SAR SM products are 460 

used. These results confirm the effectiveness of TerraSAR-X SM retrieval for the calibration of a bare 461 

soil hydrological model. 462 

Table 5. Quality parameters of the MHYSAN model using FAO parameters only  463 

 NASH (%) RMSE (%) Bias (%) 
Barrage station -151 12.84 9.96 
Hmidate station -259 13.69 11.63 
Bouhajla station 70.2 4.22 1.42 
Sidi Heni station -423 20.36 18.31 

 5 Conclusions  464 

This study was designed to investigate the potential of high-resolution TerraSAR-X soil moisture (SM) 465 

products for the calibration of a soil water balance model. We used MHYSAN, a bare soil hydrological 466 

balance model, which simulates soil evaporation and moisture content over bare soil using as 467 

input meteorological data. The model was first calibrated using time series of daily SM continuously 468 

measured for some sites. The results had good NASH efficiencies ranged between 81.2 and 52 % for 469 

NASH5cm and between 76.3 and 11% for NASH40 cm, thus showing that the MHYSAN model is able to 470 

correctly reproduce the SM. Validation of calibrated output SM was based on comparison over control 471 

plots with manual thetaprobe measurements and SM products obtained by SAR image processing. 472 

These comparisons were made on the basis of texture similarities between continuous probes and 473 

control plots. The results have a bias of approximately 1.06 and 0.63, and an RMSE equal to 3.38% and 474 

Author-produced version of the article published in : Journal of Arid Environments , vol. 139, 2017.p.11-25



28 
 
 

6.11%, for the ground volumetric SM determined using manual thetaprobe and SAR moisture maps, 475 

respectively. 476 

The model was then calibrated using SAR SM maps retrieved on seven different dates ranging over two 477 

months and was then validated using moisture data recorded at continuous probe stations during 15 478 

months. We show that the model performs well with NASH efficiencies ranged between 76.7 and 89%, 479 

thus demonstrating that SAR data can actually be used to calibrate SM models without requiring 480 

ground data. High agreement is observed between calibrated model and continuous thetaprobe 481 

measurements. These results show that a simple SM model combined this SAR images acquired 482 

for contrasted moisture condition may allow estimates of daily SM. An optimal use of this 483 

approach could be achieved by using moisture data collected at different times of the year, during the 484 

rainy season and the dry season, since the model's performance will necessarily vary for different types 485 

of case study. The study presented here should be extended to other areas, in particular those 486 

presenting other soil types (covered soils, degraded soils …). Moreover, progress in the 487 

parameterization of this model could benefit from a more varied range of SAR data. 488 

The main limitation relies in the representatively of the meteorological forcing used. Indeed, if 489 

rainfall data is not reliable, a frequent configuration in semi arid areas, then the model although 490 

locally well calibrated will not be able to work correctly. In this case the solution would be to use 491 

remote sensing not only to calibrate the model, but to monitor rainfall and the SM themselves. 492 

This opportunity is about to be offered in the coming month thanks to the Sentinel-1 mission 493 

which represent a considerable breakthrough providing frequent and free high resolution SAR 494 

data all over the world. In future research, we plan to optimize and apply this approach to the case of 495 

Sentinel1 SAR data, allowing moisture estimations to be made at a higher repeat rate, over longer 496 

periods of time. 497 
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