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Some applications of a two-fluid model

Fabien Crouzet, Frédéric Daude, Pascal Galon, Jean-Marc Hérard, Olivier Hurisse,
Yujie Liu

Abstract We present in this paper some comparisons of numerical results and ex-
perimental data in some two-phase flows involving rather high pressure ratios. A
two-fluid two-phase flow model has been used herein, but we also report a few re-
sults obtained with some simpler single-fluid two-phase flow models.

1 Introduction

The correct modelling of two-phase flows still requires a further investigation of
models and methods, but also demands more details and a thorough comparison
with available experimental data. For most of the water-vapour applications arising
within the framework of nuclear power plants, the vapour phase is dilute ; however,
the mean flow may sometimes contain a much larger amount of vapour (this may
occur in the upper part of steam generators, or more likely in some severe accident
configurations following the boiling crisis, or in water-hammer situations), and thus
relative velocities may become large. This, among other reasons, has motivated the
focus on a class of two-fluid models for which the numerical simulation of highly
unsteady flows is relevant. Actually, when restricting to the statistical averaging for-
malism, we know that standard tools may be used in order to derive meaningful
models, in order to tackle unsteady and inhomogeneous two-phase flow patterns.

The two-fluid two-phase flow model discussed herein belongs to a wider class
that has been investigated in [3, 17, 11, 4, 10, 8, 16] among other references. It re-
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quires the computation of seven unknowns (statistical void fraction of the vapour,
mean densities, mean velocities and mean pressures). As recalled in [7, 15] for in-
stance, partial differential equations may be derived for statistical void fractions,
and partial mass, momentum and total energy within each phase ; equations of state
which provide the mean internal energy within each phase must be prescribed, and
some other closure laws for cross-correlations and interfacial transfer terms are also
necessary.

We recall in section 2 the governing equations and their main properties ; after-
wards we briefly describe the basics of the Finite Volume scheme that is used for
numerical simulations. Then we focus on the main part, which consists in reporting
some numerical results that have been obtained in [18], thus including a comparison
with experimental data [19, 21], but also with other numerical results.

2 Governing equations

Classical notations are used, hence αk(x, t) will denote the statistical void fraction of
phase k = l,v, and will comply with the constraint αl(x, t)+αv(x, t) = 1. Variables
ρk,Uk,Pk respectively denote the mean density, the mean velocity, the mean pressure
within phase k, and we define partial masses mk = αkρk. The total energy Ek within
phase k = l,v is defined by: Ek = ρkek(Pk,ρk)+ρk(U2

k )/2, where ek(Pk,ρk) stands
for the internal energy. The state variable W will be noted:

W t = (αv,ml ,mv,mlUl ,mvUv,αlEl ,αvEv)

Thus, when neglecting the contribution of viscous effects and turbulence, the form
of the governing equations of mean quantities in the two-fluid model is, for k = l,v:

∂t (αv)+Vint(W )∂x (αv) = φv(W )
∂t (mk)+∂x (mkUk) = Γk(W )
∂t (mkUk)+∂x

(
mkU2

k

)
+∂x (αkPk)−Πint(W )∂x (αk) = Dk(W )+Γk(W )U int

∂t (αkEk)+∂x (αkUk(Ek +Pk))+Πint(W )∂t (αk) = ψk(W )+U intDk(W )+Γk(W )H int
(1)

Contributions Γk(W ), Dk(W ) and ψk(W ) take interfacial mass transfer, drag ef-
fects and interfacial heat transfer into account. Besides, the term φk(W ) arising in
the governing equation of the statistical void fraction αk is due to the statistical
averaging ([7, 15]) of the topological equation. The following constraints also hold:

∑
k=l,v

Γk(W ) = 0 ; ∑
k=l,v

ψk(W ) = 0 ; ∑
k=l,v

Dk(W ) = 0 ; ∑
k=l,v

φk(W ) = 0 .

(2)
and we define: U int = (Ul +Uv)/2 and: H int = UlUv/2. Furthermore, we define
Vint(W ) as:

Vint(W ) = ξ (W )Ul +(1−ξ (W ))Uv . (3)
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where ξ (W ) lies in [0,1]. Physically relevant functions ξ (W ) have been proposed
in [8], and will be recalled at the end of this section. We also introduce the specific
entropy Sk(Pk,ρk) in each phase, which complies with:

c2
k∂Pk (Sk)+∂ρk (Sk) = 0 (4)

-noting ck(W ) the speed of acoustic waves within phase k- and temperatures:
1/Tk = ∂Pk (Sk)/∂Pk (ek) ; we also set: µk = ek + Pk/ρk − TkSk . Besides, source
terms Γl(W ),φl(W ),ψl(W ),Dl(W ) are defined as (see property 1):

Γl(W ) = KΓ (W )(µv(W )/Tv−µl(W )/Tl) ; Dl(W ) = KU (W )(Uv−Ul) ;
ψl(W ) = KT (W )(Tv−Tl) ; φl(W ) = KP(W )(Pl−Pv)

The first three closure laws were expected, and the last one is physically relevant: it
simply means that the statistical void fraction of the liquid phase locally increases
when Pl > Pv. The -positive- scalar functions in the drag contribution and in the heat
transfer closure law may be chosen as:

KU (W ) = mlmv/(ml +mv)/τU (W ),

KT (W ) = mlmvCl−v/(ml +mv)/τT (W ),

KP(W ) = αlαv/(Pl +Pv)/τP(W ).

Here, τU,P,T (W ) denote velocity-pressure-temperature relaxation time scales, and
we also set : KΓ (W ) = K′

Γ
(W )/τΓ (W ). Closure laws for τU,P,T,Γ (W ) can be found

in the literature (see [9] for a review concerning τP). Eventually, we assume that
Πint(W ) is a convex combination of both pressures, thus:

Πint(W ) = χ(W )Pl +(1−χ(W ))Pv (5)

with:
χ(W ) = (1−ξ (W ))/Tl((1−ξ (W ))/Tl +ξ (W )/Tv)

−1 (6)

Property 1:
For smooth solutions W of (1) with closure laws (3), (5), (6), the governing equation
of the entropy of the two-fluid model η(W ) = ∑k=l,v mkSk is:

∂t (η(W ))+∂x

(
∑

k=l,v
mkUkSk

)
= Γl(W )(µv(W )/Tv−µl(W )/Tl)

+ Dl(W )(Uv−Ul)(1/(2Tv)+1/(2Tl))

+ ψl(W )(Tv−Tl)/(TvTl)

+ φl(W )(Pl−Pv)((1−χ(W ))/Tv +χ(W )/Tl)
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Obviously, when ξ (W ) = 0 (or ξ (W ) = 1), one retrieves the standard Baer-Nunziato
model [3], where the interface velocity Vint(W ) corresponds to the mean velocity of
the vanishing phase ([3, 17, 4] and [10] also). We finally recall two basic properties:

• Property 2: The set of equations associated with the left-hand side of (1) has
seven real eigenvalues which read:

λ1 =Vint(W ) (7)
λ2 =Uv, λ3 =Uv− cv(W ), λ4 =Uv + cv(W ), (8)

λ5 =Ul , λ6 =Ul− cl(W ), λ7 =Ul + cl(W ) (9)

Associated righteigenvectors span the whole space R7, if: |Uk−Vint(W )|/ck 6= 1.

• Property 3: Fields associated with eigenvalues λ2,5 are linearly degenerate.
Other fields associated with eigenvalues λ3,4,6,7 are non linear. The 1−field is
linearly degenerate if: ξ (W )(1−ξ (W )) = 0, or if: ξ (W ) = ml/(ml +mv).

If the 1-field is linearly degenerate, unique jump conditions can be written within
each single field. Thus, for suitable schemes that provide convergent schemes when
the mesh is refined, we expect that approximations converge towards the unique
shock solution. Other properties can be found in [5].

3 Finite Volume scheme

The basic algorithm that is used to compute approximations of the whole system
relies on an entropy-consistent fractional step method including an evolution step
and a relaxation step. Details on schemes can be found in references [8, 12, 13, 14].

• Evolution step
This step computes approximate solutions of the homogeneous system:

∂t (αv)+Vint(W )∂x (αv) = 0
∂t (mk)+∂x (mkUk) = 0
∂t (mkUk)+∂x

(
mkU2

k

)
+∂x (αkPk)−Πint(W )∂x (αk) = 0

∂t (αkEk)+∂x (αkUk(Ek +Pk))+Πint(W )∂t (αk) = 0

(10)

through the time interval [tn, tn +∆ t], with given initial values W n. The Finite
Volume solver that is used to compute interface fluxes either relies on a non-
conservative version of the Rusanov scheme, on the approximate VFRoe-ncv
Godunov scheme (see [8]), or on the relaxation scheme introduced in [20] (see
[1, 2] too). An explicit CFL condition enforces the time step. This provides a
set of approximations W̃ . An extensive verification of convective schemes can be
found in [6], with focus on solutions on one-dimensional Riemann problems.
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• Relaxation step
Given discrete cell values of W̃ , we compute approximations of the coupled set
of ODEs corresponding to relaxation terms, that is:

∂t (αv) = φv(W )
∂t (mk) = Γk(W )
∂t (mkUk) = Dk(W )+Γk(W )U int
∂t (αkEk)+Πint(W )∂t (αk) = ψk(W )+U intDk(W )+Γk(W )H int

(11)

The most difficult task in the building of the Finite Volume solver is due to the
mass transfer term and to the contribution φk. In particular, difficulties arise when
enforcing the conservative form for the mixture, and meanwhile requesting that
void fractions and pressures should remain in their physical range. Many details
on this part of the algorithm can be found in [12, 13, 14].

4 A comparison of computational results with experimental data

We provide numerical results and a comparison with experimental data for two dis-
tinct cases characterized by high pressure variations.

Simpson experiment This experiment is described in [21]. A big tank is filled
with water that flows in a small pipe, the diameter of which is 19 mm; at the very
beginning of the recording, the velocity of the fluid is equal to 0.4 m/s, the pressure
in the tank is 3.419× 105Pa, the temperature is T = 296 K. The pipe of 36 meters
length is suddenly closed at its right end; thus it results in a violent water-hammer.
A shock wave is created and propagates to the left towards the tank. Three pressure
captors have been inserted along the pipe, and focus is given here on the one that is
close to the right closed exit. The one-dimensional mesh in the pipe contains 12000
regular cells, and the CFL has been set to 1/2. Numerical results obtained with a
finer mesh with 36000 cells differ from the latter of less than one percent. A stiffened
gas equation of state (EOS) has been used in the liquid phase, whereas a perfect gas
EOS is retained for the vapour phase. In figure 1, the time evolution of the mean
pressure P = αvPv +(1−αv)Pl for this captor has been displayed (orange squares),
and a comparison with numerical results obtained with the two-fluid approach on
the fine mesh can be done (light blue line). The red triangles refer to the two-fluid
approach when one accounts for the elasticity of the pipe (see [18]). Obviously, the
prediction of maximum and mimimum values in the transient, as well as occurences
of sudden increases and decreases, highly depends on the elasticity of the pipe,
and whether it has been accounted for or not in the whole model. This pattern is
even emphasized in some other experiments (for instance in Romander experiment,
where a wave propagates in a pipe including a rigid section and an elasto-plastic
section, see [18]).
.



6 Authors Suppressed Due to Excessive Length

Fig. 1 Time evolution of the pressure P = αvPv + (1− αv)Pl in Simpson experiment (orange
squares). Numerical results: Red triangles - two-fluid model with fluid-structure interaction / Green
line - five-equation homogeneous model with fluid-structure interaction / Light blue line - two-fluid
model without fluid-structure interaction / Dark blue line - three-equation homogeneous model
without fluid-structure interaction.

Canon experiment In this second experiment [19], a closed rigid pipe initially
filled with pressurized water is suddenly opened at its right end. This results in a sud-
den vaporisation of the fluid, and a left-going rarefaction wave is propagating in the
liquid region. The initial pressure P = αvPv +(1−αv)Pl in the pipe is 32×105Pa,
the initial uniform temperature is Tv = Tl = 493 K, and the fluid (αv = 10−3) is
at rest: Uv = Ul = 0. The same EOS have been used within the liquid and vapour
phases for this second experiment, and the time step is still chosen in agreement
with the constraint: CFL = 1/2. The mesh for which results are displayed contains
8000 cells along the pipe axis. Several data have been collected, and results pre-
sented in figure 2 (black squares) correspond to the time evolution of the pressure
close to the right end. A sudden decrease can be oberved first, followed by an almost
contant state corresponding to the saturation pressure; afterwards a second smooth
decrease occurs, together with an intense vaporization (see figure 3), until the atmo-
spheric pressure is reached. Vapour statistical fractions have been recorded at the
same place as time goes on, for different experimental runs (orange crosses in figure
3). Numerical results obtained with the two-fluid model on a fine mesh have been
plotted on both figures 2-3, together with approximations provided by two different
homogeneous models (a five-equation model and a three-equation model). Obvi-
ously the vaporization occurs sooner in the simulation than in the experiment.
.
.



Some applications of a two-fluid model 7

Fig. 2 Time evolution of the pressure P = αvPv +(1−αv)Pl in Canon experiment (black squares).
Numerical results: Dark blue: two-fluid model / Green: five-equation homogeneous model / Light
blue: three-equation homogeneous model.

Fig. 3 Time evolution of the vapour statistical fraction in Canon experiment (orange crosses for
different runs). Numerical results: Dark blue triangles - two-fluid model / Green dots - five-equation
homogeneous model / Light blue: three-equation homogeneous model.
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