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A simple Finite Volume approach to compute
flows in variable cross-section ducts

Bruno Audebert and Jean-Marc Hérard and Xavier Martin and Ouardia Touazi

Abstract In order to derive a simple one-dimensional approach that could handle
fluid flows in smooth ducts as well as in ducts of discontinuous cross-section, we
propose herein a Finite Volume approach that relies on an integral formulation of the
multidimensional flow model. While focusing on Euler equations, we compare two-
dimensional results with approximations obtained using the present approach, and
also with the classical formulation for variable cross-sections using a well-balanced
scheme. Numerical simulations confirm the ability of this integral method to provide
approximations that compare well with 2D results. This method also enables to deal
with all -even including vanishing- cross-section ducts. This approach may also be
applied when considering other single-phase or multi-phase fluid flow models.

1 Introduction

Numerical tools devoted to the computation of single-phase or two-phase flows in
ducts with variable cross sections are very useful in industry, because they enable
to obtain a reasonable approximation of the true flow in unsteady situations, using
standard computers. This is of particular interest for hydraulic circuits, as well as
in some medecal applications, however it requires the ability to deal with smooth
or discontinous cross sections. When neglecting viscous effects and external forces,
the classical approach which is overwhelmingly retained consists of constructing
numerical approximations of solutions of systems that take the form:
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where S(x) stands for the area of the cross section, and ρ,u,P,E denote the density,
velocity, pressure and total energy of the fluid. Several investigations of the prob-
lem that arises with discontinuous cross-sections have been published, among which
we may cite [7, 1, 10, 8, 6], wherein authors focus either on the continuous or the
discrete framework. Roughly speaking, most of the schemes that have emerged to
cope with this problem rely on the well-balanced strategy [5]. The use of this strat-
egy would even seem mandatory; otherwise approximate solutions cansometimes
converge towards incorrect solutions (see [8, 3, 6]). Nonetheless, an inconvenience
of this strategy is that it assumes that the Riemann invariants of the standing wave
associated with λ = 0 are preserved, which of course makes sense for mass flux
and total enthalpy flux, but is questionable in the case of the last Riemann invariant.
This has been confirmed by numerical comparisons (see the work reported in [4]
for instance), and it is actually quite a well-known problem, the classic treatment
for which consists of the introduction of head losses using various empirical clo-
sure laws. This problem has motivated the present work, which aims at providing a
somewhat different approach in order to eliminate the limitations and drawbacks of
the classical approach. Another motivation will be discussed in the conclusion.

The current paper presents the main ideas and results of the work and is organ-
ised as follows: firstly, we present the modified one-dimensional approach ; next
we present a few numerical results, with a comparison with the two-dimensional
approach, the classical approach (1) and the modified one-dimensional formulation,
using sufficiently fine enough and reliable meshes.

2 A Finite Volume approach for one-dimensional flows

The one-dimensional formulation is obtained as follows. Starting with the three-
dimensional governing equations, restricted here to the Euler framework, thus:

(S2)
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where the total energy E is E = ρ((u)2 + ε(P,ρ))/2 and ε(P,ρ) is the internal en-
ergy, we integrate over time -from time tn to tn+1- and space using coarse control
volumes as depicted on Figure 1. At time t = tp, we denote:

Ω
ϕ

i Φ
p
i =

∫

Ω
ϕ

i

Φ(x, tp)dv

for: Φ = ρ,Q,E and also Ω
ϕ

i = Si×hi the volume occupied by the fluid within the
i-cell. Using previous definitions, and noting Γi the boundary of control volume Ωi,
straightforward calculations yield:

(S3)
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where Q= ρU is the momentum and H = (E+P)/ρ is the total enthalpy. Of course,
viscous effects and gravity forces could also be included if required.

We may now introduce a simple explicit Finite Volume scheme FVCA (Finite-
volumes for Variable Cross-section Applications) as follows:

(FVCA)
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where (ψ)h stands for some suitable flux scheme (exact or approximate Godunov
scheme) associated with the continuous flux ψ , and setting ∆ tn = tn+1− tn ; V (i)
refers to the neighbouring cells of cell i and to ghost ”mirror” cells associated with
the wall boundaries of cell i (see Figure 1).

We now assume that the initial condition at time tn is such that the transverse
velocity in the y−direction is null everywhere: Uy

n
i = 0. Using the exact Riemann

solution for fluxes around all interfaces, and using the mirror technique for all wall
boundaries, it may be easily checked that the scalar product of ey with the discrete
momentum equation in (FVCA) leads to: (Qy

n+1
i −Qy

n
i ) = 0, and thus Qy

n+1
i = 0

or Uy
n+1
i = 0. This simply means that the discrete flow remains 1D. We detail now

mass and energy balance equations. These read:
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and :
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setting Γ
ϕ

i+1/2 = min(Si,Si+1). Eventually, the discrete x−momentum balance for
Qx = ρux takes the final form:
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where P∗
i± 1

2 ,i
is an estimation of the Riemann pressure on the wall boundaries i±1/2.

Focusing for instance on perfect gas EOS, hence setting P= (γ−1)ρε(P,ρ), and
using classical results (see [2] for example), we obtain when Si > Si+1 :
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The same technique is applied when Si < Si+1 in order to estimate P∗
i+ 1

2 ,i+1
.

On the whole, we can now compute mass, x-momentum and energy balance with
the aid of (2),(4),(3), assuming that some standard explicit CFL condition holds
for ∆ tn. The counterpart of the latter expressions of P∗

i± 1
2 ,i

can be found for any

EOS, using the mirror state and shock/rarefaction curves in GNL waves. Obviously,
there are no intrinsic limits for cross-section values, even if Si = 0. Depending on
the choice of numerical fluxes at the fluid interfaces, CFL-like conditions must be
introduced in order to guarantee positive discrete values of the density ρn

i . Further
details can be found in [11].

3 Numerical results

We present in this section a few results arising from a comparison of the three dis-
tinct approaches.

• A first approach simply consists of computing the complete set of equations (S2)
using the approximate Godunov scheme [2] on a fine enough two-dimensional
mesh of about one million cells; the results will be called the reference solution;

• The second series of results were obtained with the classical well-balanced strat-
egy applied to the set of one-dimensional equations (S1), with the focus here on
very fine meshes only; the well-balanced Rusanov scheme used in these com-
putations is the one proposed in [8] and also used in [3] where the convergence
towards the correct solution has been verified;

• The third series illustrates the numerical approximations obtained by computing
the integral system (2),(4),(3) on fine one-dimensional meshes (called 1D+).
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Actually, two slightly different ways of estimating the pressure on the wall bound-
aries will be applied to the set of formulas above , corresponding respectively to the
exact Riemann solution and to the same approximation obtained by setting Mi = 0.

The experimental setup is the following: a one dimensional pipe contains a sud-
den cross-section contraction located at x = 0.8 (see Figure 2). At the start of
the simulation, a membrane at x = 0.7 separates two distinct states (ρL,uL,PL) =
(1,0,105) and (ρR,uR,PR) = (0.125,0,104). Hence, at the beginning, a right-going
shock wave followed by a contact discontinuity propagates, then ”hits” the cross-
section contraction ; this results in a right-going transmitted wave and a left-going
reflected wave. We have used a perfect gas EOS setting γ = 7/5. The fine one-
dimensional meshes used for the classical and 1D+ approaches contain 50000 reg-
ular cells, and the CFL number has been set to 1/2. Two different cross-section
ratios are considered, Sl/Sr = 2 (figures 3), and Sl/Sr = 100 (figures 4 and 5) in test
cases 1 and 2 respectively.

Test case 1: Sl/Sr = 2 : This corresponds to a rather classical situation arising
in many practical simulations. We have plotted on Figure 3 the density profiles at
time t = T0 = 1.5× 10−3 ; it must be emphasized that the yellow curve refers to
some earlier time t = 0.131× 10−3 when the right-going shock wave had not yet
reached x = 0.8 . As was expected in this particular case, the 1D+ approximation
where Mi is set to 0 -in green- fits experimental ”results”- in black- quite well, and
performs better than the standard wall-pressure estimation -in red-. The former 1D+
approach is also much more relevant than the classical approach (S1) using the well-
balanced Rusanov scheme ([8])- in blue-.

Test case 2: Sl/Sr = 100 : Here, the well-balanced Rusanov scheme [8] -in
blue- fails to provide approximations on fine meshes, and a similar problem occurs
when using the well-balanced approximate Godunov scheme [6]. Thus we were only
able to compare results of the multi-dimensional approach to the results provided by
the 1D+ approach (see figures 4 and 5). Both estimations of P∗

i± 1
2 ,i

provide similar

results, which again was expected, and the comparison with the multi-dimensional
approach is even better in this case, which may be explained.

4 Conclusion and further work

The present 1D+ approach is a very simple one relying on a straightforward inte-
gral formulation on particular Finite volumes, combined with an estimation of wall-
pressure interactions. We have briefly presented a few of the results from among the
sixteen distinct situations that have been investigated up till now, where rarefaction
or shock waves interact with eight contractions (Sl/Sr = 10−2/10−1/0.5/0.9 and
Sl/Sr = /(0.9)−1/2/10/100 , see [11]). We would like to emphasize that :
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• The present approach could be extended in order to take external forces, viscous
contributions into account, without any loss of generality;

• The focus here has been on Euler equations but other (single phase or multiphase)
fluid flow models could also be considered;

• A key point is that vanishing cross sections may occur in the duct ; furthermore,
it must be emphasized that numerical results depend continuously on the cross-
section distribution. This can hardly be achieved with the classical approach, at
least not when using well-balanced schemes that rely on approximate Godunov
schemes. Moreover, even when the classical approach (S1) is feasible, numerical
results do not sufficiently match multi-dimensional results.

Another important point is that this method could be extended in order to improve
the formulation that is currently applied in a particular three-dimensional porous
framework widely used in the nuclear industry (see [9] for instance). We also plan
to use the present results in order to improve the basic well-balanced strategy.
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Fig. 1 Finite volume Ωi with neighbouring cells, fluid interfaces and inner wall-boundaries.

Fig. 2 Experimental setup : 1D pipe with a sudden contraction and position of the initial mem-
brane.
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Fig. 3 Density profiles at t = T0 in test case 1. Yellow curve: earlier solution. Dashed red curve:
1D+ approach. Dotted and dashed green curves: 1D+ approach assuming Mi = 0 in wall pressures.
Dotted blue curve: well-valanced Rusanov scheme. Black curve: y−averaging of 2D results.
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Fig. 4 Density profiles and mass flow rate at t = T0 in test case 2. Yellow curve: earlier solution.
Dashed red curve: 1D+ approach. Dotted and dashed green curves: 1D+ approach assuming Mi = 0
in wall pressure estimations. Black curve: y−averaging of two-dimensional results.
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Fig. 5 Comparison of wall pressures. Dashed red curve: 1D+ approach. Dotted and dashed green
curves: 1D+ approach setting Mi = 0. Dotted blue curve: multidimensional computation using 4002

cells. Full black curve: multidimensional computation using 8002 cells.


