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Abstract

We present a new method to solve incompressible thermal flows and the transport
of scalar quantities. It is a finite volume scheme for unstructured meshes whose time
discretization is based upon the fractional time step method. The governing equations
are discretized using a collocated, cell-centered arrangement of velocity and pressure.
The solution variables are stored at the cell-circumcenters. This scheme is convergent,
stable and allows computing solutions that does not violate the maximum principle
when it applies. Theoretical results and numerical properties of the scheme are pro-
vided. Predictions of Boussinesq fluid flow, flow past a cylinder and heat transport in
a cylinder are performed to validate the method.
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Nomenclature

¢ : Specific heat J- kg™t K1
Ex : Set of interfaces surrounding volume K

Eeort : Set of interfaces surrounding the domain

Eint . Set of interfaces inside the domain

m(o) : Measure of a general hyperplane o

n : Unit normal vector

P Pressure kg-mt.s?
P : Kinematic pressure m? . s?

S . General source term

t : Time S

T :  Temperature K

v . Speed m-s!

v . Velocity Vector m-s

vk,, : speed normal to the interface of volumes K and L m - st

X . Coordinate m

Xk . Position associated to an element K m

Greek symbols

o . Diffusivity m?-s7!

U Dynamic viscosity kg-m=t-s71
v Kinematic viscosity m? . s

Q Computational domain

0] General scalar variable

p Density kg-m™3
ok, : Interface between elements (or volumes) K et L

Tk, ~ : ILransmittivity of interface og m



1 Introduction, mathematical model

In this paper we consider the following mathematical model. When the density
of the fluid is constant, the flow in a domain {2 is governed by the Navier-Stokes
equations:

V-v=0 (1)
‘Z_‘t”+v.(v®v)+vp—wuvv):f (2)
where

e P =p/p, P being the kinematic pressure, p the density and p the pressure;
e v = u/p, v being the kinematic viscosity and p the dynamic viscosity;
e f is a source term such as buoyancy force.

When the specific heat ¢, of the fluid is considered constant?, a model for the
transport of heat by the fluid is:

oT
E—FV-(vT)—V(aVT):s (3)
where a = i is the thermal diffusivity, & the thermal conductivity and s a

&P
source term.

In order to solve these equations, they must come with appropriate boundary
conditions and, for a non-permanent flow, a suitable initial condition. By ad-
justing the source terms to the problem being considered, this model can be
applied to many industrial problems that deal with the transport of a scalar
quantity by an incompressible flow. Even though many stable and globally con-
vergent schemes are already available for specific cases such as Euler flows or
Stokes flows, only a few fulfill the following physical principles for more general
problems:

e local conservation of mass and scalar quantities;
e numerical preservation of the maximum principle for the scalar quantities.

Some numerical schemes using the cell centered finite volume method on struc-
tured meshes satisfy these requirements. However, only a few theoretical results
are available for unstructured triangular or tetrahedral meshes (see Gallouét et
al.[1]). The scheme presented hereafter fulfills the previous requirements.

2 In general, the specific heat can be variable. We make this hypothesis to ease the
presentation of the scheme.



There are few cell centered finite volume methods that enable the use of unstruc-
tured meshes and accurate computations of the diffusion flux on non-orthogonal
grids. Many cell centered finite volume methods whose interpolation functions
are constant by control volume use the center of the cells as a reference position
to compute the diffusion flux. Let ¢ be a scalar variable®, K and L be adjacent
control volumes whose centers are Xy and Xy, many computer codes use the
following approximation of the normal gradient to the cells interface:

V¢ -nkg = 7¢Ld;\fK

where dg\r is the distance between the centers of cells K and L. For non-
orthogonal meshes, this approximation of the flux is not consistent, which can
lead to important errors. Even the approximation

oL — Ok
(XK - XL) Nk

V¢'1’1K=

does not lead to a consistent approximation of the flux. Furthermore, there here
is also a singularity when (X cx — Xe¢r)-nk tends to zero. For those discretization
schemes, accurate computations of reference quantities related to the diffusion
flux (Nusselt number, drag coefficient, lift coefficient, friction coefficient, ...) can
be tedious. Moreover, it is important to point out that when the approximation of
the diffusion flux is not consistent, the error does not vanish with grid refinement
(see [2] for more details).

With a cell based gradient reconstruction using a least-square method or the
Green-Gauss theorem, it is also possible to approximate the gradient at an in-
terface[3,4]. However, it can lead to a wider stencil with a less favorable weight
distribution of the coefficients[5,6]. In this latter case, the discretization of the
Laplacian can be nonpositive. Moreover, since the approximation of V¢ - ng on
K|L is not necessarily equal to the approximation —V¢ - n;, in the cell L, this
approach raises another difficulty about the conservativity of the diffusion flux.

In this paper, we propose a novel approach where the solution variables are
located at the cell-circumcenters. This allows computing a consistent approxi-
mation of the viscous fluxes on non-orthogonal meshes without gradient recon-
struction. Which leads to discretization of the Laplacian that is always positive.
With an appropriate discretization of the convective fluxes, this scheme is con-
vergent, stable and allows computing solutions that does violate the maximum
principle when it applies.

3 In this paper, when an equation or relation applies to any scalar variable (the tem-
perature, a concentration, a component of the velocity vector), we use the variable

é.



First of all, the time discretization of the the Navier-Stokes equations. will be
presented. This time discretization is based upon the fractional time step method
(or projection method) constructed in the late 60’s by Chorin[7] and Teman|8].

Second of all, the spatial discretization of the governing equations will be detailed
and some theoretical results will be provided. This spatial discretization is an
application of recent theoretical results on finite volume methods published by
Gallouét et al.[1] and a generalization of the recent work of Boivin et al.[9,10].
In these papers, Boivin et al. proposed a finite volume scheme for 2D triangular
meshes and gave an extension to two phase flows. The scheme presented here
after is a generalization of this work to 3D general meshes where a control volume
is not always a tetrahedron but can be an assembly of tetrahedras. This section
COVers:

the spatial discretization of the convective and diffusive fluxes,

the discrete interpolation of scalar variables and the diffusivity coefficients at
cell interfaces,

the approximation of the cell gradient of a scalar,

application of boundary conditions.

Afterward, we will discuss the projection scheme used to compute a divergence-
free vector field and update the pressure field. Finally, we present the whole
algorithm used to solve the Navier-Stokes equations on unstructured grids.

In the second part of the article, we present some numerical results that were
used to validate the present finite volume scheme. These results include: Boussi-
nesq flow in cavity, permanent flow past a cylinder and heat transport in a
cylinder. For all test cases, convergence history toward steady states are shown
and computations on several grids are performed.

2 Time discretization

The time discretization is semi-implicit and based upon a variation of the pro-
jection scheme originally proposed by Chorin[7] and Teman[8] and often called
“projection-2” scheme. Let,

0| _ oo
ot - 5t (4)

t=tn41

be the approximation of the temporal derivative for a scalar variable ¢ and

v(t=ty) = -v"— 3 vl (5)



the approximation of the velocity field at time ¢ = ¢,,,1, the time discretization
of the governing equations is the following:

e Prediction:

ov
ot

+V. [v (t =tpyr) @ vIT2 - I/VVn+1/2] +VP" =" (6)

t=tn+1

e Projection:

n+l _ ,n+1/2
—————=—pV (5P, P = Pt pr (7)
V.vitl=0. (8)

e Convection and diffusion of other scalar variables such as the temperature:

or
ot

+V. [v (t =tpy) T — aVT"“] = g" 9)

tn+1

The parameter § €]0, 2] is used for relaxation and its value is not arbitrary.
When the flow is steady, the final solution does not depend on its value. But the
rate of convergence does so. We found that a value of 5 = % often gives the best
rate of convergence. Hence this value is the one retained for all computations
shown in this article. When transient flows are considered, a second order time
discretization is more appropriate and § must be chosen accordingly. Since only
permanent flows are considered in paper, we will not give more information on
this matter. But the reader is invited to read some papers published by Shen et
al. on projection schemes[11-13] and the references[14,15] where transient flows
are solved with the scheme presented in this paper.

3 Space discretization

The convection and diffusion schemes are presented thereafter. The convection
scheme is simple and robust. The diffusion scheme is based upon theoretical
results recently published by Gallouét et al.[1]. A numerical study of this diffusion
scheme was performed in the report [17] and some of those results were also
published in [9]. Finally, this numerical scheme has given satisfactory results for
the resolution of incompressible two-phase flows in a 2D frame (see [10]).



3.1 Geometrical elements

The initial mesh is built with tetrahedras. For each tetrahedron K, let X be its
circumcenter. This point is allowed to be inside K, outside K, or on its boundary.
Let ok 1, be the interface between tetrahedras K and L, Xk and X, be the cir-
cumcenters of tetrahedras K and L. The straight line going through these points
is always perpendicular to the cell interface ok, (figure 1). Hence, by storing
the variables at these locations, we can compute a consistent approximation of
the diffusive flux with a minimal stencil. For this scheme, the circumcenters will
be the reference positions associated to the control volumes.

3.2 Control volumes and approrimation functions

Let ok, be the interface between tetrahedras K and L and ng ; the outward
normal unit vector of the interface o of K. We then introduce the following
quantity called “transmittivity” (see [1]):

m(oK,L)
X — XK) Nk,

(10)

TK,L = (

where m (0k,r,) is the area of ok . All meshes can fall into one these four cate-
gories of meshes:

e Category M, : For all interfaces ox , 7k, > 0 and for all tetrahedras K,
Xk € K. The control volumes are the tetrahedras.

e Category My: For all interfaces ok 1, Tk, > 0, but there exist at least one
tetrahedron K for which Xy ¢ K. The control volumes are the tetrahedras.

e Category Mj3: For at least one interface ok 1, 7k, < 0, the Delaunay condition
is not fulfilled. The tetrahedras K and L are combined together to form a new
macro-element and the control volume is the macro-element. At least two
positions (X and X, ) are associated to this control volume.

e Category My: For at least one ok, |Tk,r| — 00, at least two circumcenters
lie at the same location. The elements K and L are combined to form a new
macro-element and the control volume is the macro-element. At least two
positions (X and X ) are associated to this control volume.

These categories are the same in 2D when triangles are the elements, they are
shown on figure 2. In the 2D case, triangles in category M, are such that Xx =
X 1. Meshes of categories M; and M, fulfill the Delaunay condition.

For categories M3 and My, tetrahedras are combined together in a large macro-
element. This macro-element is used as the control volume. In practice, it is



almost impossible to construct meshes in category M; or M, in 3D.

For all variables, piecewise constant functions by control volumes are used for
approximation. Even when there are more than one position associated to a
control volume (meshes of categories M3 and My), there is only one degree of
freedom (D.O.F.) or unknown per control volume.

3.3 The convection scheme

We start with the approximation of the convective term

/v (¢v) dO (11)

Its discrete form is obtained by performing an integration on a cell K and ap-
plying the divergence theorem. When the flux is approximated with an upwind
scheme, the integral at an interface ok, is given by the following expression:

[ (v6(x))-n(x) dS = m(ow)vrién.s (12)
K/L
where:

® v, is an approximation of the speed normal to the interface ok 1, n(x) is
the outward normal unit vector;

ok, vk > 0

i ¢K7+ = . )
¢r,, otherwise

¢k and ¢y, being the unknowns associated to the volumes K and L.
3.4 The diffusion scheme

The approximation of the diffusion term

/ V- (aVe) dO (13)

is quite similar to the convective term. We first integrate it on a cell K and
use the divergence theorem to obtain the integral of the diffusion flux between



volumes K and L. Which gives the following expression:

/ (XV(]S(X) . n(x) dS =~ K LTK,L (¢L — ¢K) (14)

K/L

where ag r, is a discrete approximation of the diffusivity a(x) at the interface
Ok.,L, Tk, is the transmittivity of the interface ok  (see equation 10). In this
paper, for sake of simplicity, the diffusivity a(x) will be considered constant
(a(x) = ). For problems where diffusivity is variable, see [15,16].

3.5 Correction of the diffusion coefficient

It is well known that the upwind scheme implicitly introduces too much diffu-
sion. In order to gain more precision, we propose a correction on the diffusion
coefficient. This correction is based upon the power law scheme introduced by
Patankar[29]. Let ag, be an approximation of the diffusion coefficient at the
interface ox 1, it is corrected as follows:

Gk, = axz - max (0, (1 — 0.1Pe;)°) (15)

o] X=Xl

where Pe, is called the “local Peclet number”. As the mesh

07

size tends to zero, 1EhLere is no more “correction” of the diffusion coefficient
(limy_0 Pe; = 0) and the approximation of the diffusion flux stays consistent.
Furthermore, the stability of the convection scheme is preserved. Here, it is im-
portant to understand that this correction does not improve the order of the
approximation of the convection-diffusion scheme. But, as it will be shown later

with the numerical results, it does improve the accuracy of the scheme.

For now on, to simplify the notation, we will drop the hat and only keep ok ..

3.6 Boundary conditions

Let ok be a boundary interface which is a face of volume K and Xk, the inter-
section of the orthogonal bisectors of this interface. When a Neumann boundary
condition applies, the numerical diffusion flux is equal to the exact flux.

When a Dirichlet boundary condition applies, the value ¢xp = ¢ (Xkp) is im-
posed at the interface. In this case, the numerical diffusion flux is given by the



following expression

/ aVé(x) - n(x)dS =~ axsmics (brcs — dx) (16)

OK,b

As for the convective flux, the value of the variable ok at the interface is only
needed when the fluid is incoming (vk, < 0). The convective flux is then given
by:

/ (V¢(X)) . n(x) dS ~ m(O'K,b)UK,b¢K,b (17)

TKb

For meshes of category Ms, it is possible that for at least on boundary interface
Okp, Tkp < 0. Then, there exist Xx ¢ Q, Q being the computational domain. For
this configuration, there exist at least on position associated to a control volume
that is outside the computational domain and the function being approximated
can be undefined at such location. In the report [17], numerical results show
that for diffusion problems, the observed rate of convergence of the diffusion
operator is second order for regular functions and of order one when Dirac func-
tions are considered. Nevertheless, when negative transmittivities were located
on boundaries where Dirichlet boundary conditions are applied, we found that
for convection-diffusion problems the scheme showed poor convergence behavior.
In order to enhance the convergence behavior, we propose a simple treatment
that can be easily implemented.

Let ¢ be a scalar variable such has a concentration or a velocity vector compo-
nent, ok an interface of volume K for which 7x 3, < 0 and the Dirichlet boundary
condition ¢ (x) = ¢ (x) is provided. The cell value ¢x is imposed equal to the
boundary value: ¢x = ¢ (Xkp), Xkp being the position associated to the in-
terface ok p. Even though this approximation has shown to be satisfactory for
practical cases, we must say that locally the order of the approximation for the
scalar variable ¢ could be insufficient to ensure global convergence of the scheme
toward the true solution.

3.7 Theoretical results

In this section we present a very brief summary of the theoretical results that
were proven in [1].

10



3.7.1 Steady problems

Consider the steady problem:

V- -V (aVo) =
(V) = ¥ (aV9) =5 s
Boundary conditions

where V-v =0 and s € L? ().

The properties shown in [1] depend on the quality of the triangulation. Meshes
of the categories M7, My and M, (with macro-elements) are called “admissible
meshes”. For these meshes, the following properties were proven:

(1) Convergence. Let T be an admissible mesh and ¢7 (x) = ¢, for any K € T.
¢ converges to the unique variational solution ¢ of problem (18) as h — 0,
h being the diameter of the largest volume.

(2) Error estimate. Let T be an admissible mesh and ¢ € H? (Q) the unique

variational solution of (18). The following error estimate holds:
||€K||L2(Q) <Ch

where ex = ¢ — ¢ (Xk), is the error and C is a positive constant which
is independent of the mesh size h.
(3) Mazimum principle. Let T be an admissible mesh and

If sk > 0 for all K € T and positive Dirichlet boundary condition apply
for all o € 0L, then the solution ¢k satisfies ¢ > 0 for all K € T.

In theory, those properties insure that:

e Systematic grid refinement enables the computation of a solution that is glob-
ally more accurate.

e A converged solution does not violate the discrete maximum when it applies.
Hence, this solution should not exhibit any non physical behavior.

3.7.2 Transient problems

Consider the transient problem,

0¢ =
= +V-(vp) =V (aVep)=s (19)

Boundary conditions 4+ Initial condition

11



where V- v =0 and s € L? (9Q). For a first order Euler time discretization, the
following error estimate was also proven in [1]:

> (8(Xk) - éx)’ m(K) < C (h+ dt)

KeT

h being the diameter of the largest volume, ¢ the time step and C' > 0 a constant
independent from the time step and the mesh size h.

3.7.8 Remarks

For meshes of category M3, the approximation of the flux between two control
volumes is consistent. However, it is assumed that ¢ takes the same value for at
least two different positions associated to a control volume. In this case, locally
for some atypical edges, the order of the local approximation at the positions
associated to a control volume could not be enough to ensure that the latter
properties are fulfilled. Nevertheless, in [1], it is shown that even for meshes
where atypical edges are found, such as meshes of category M3 with macro-
elements, the numerical solution can still converge to the true solution if the
number of atypical edges is not too large.

Here it is important to bring forward the main weakness of this finite volume
scheme. For highly anisotropic meshes were the elements have very high aspect
ratios (such as most adapted meshes on shocks), the number of atypical meshes
can be too high to ensure global convergence to the true solution. This suggests
using mesh adaptation with a strict constraint on the aspect ratio of the elements
or using isotropic grid refinement. We also want to mention that this constraint
does not apply to computations of Euler flows: for such flows there is no diffusive
flux.

In the report[17], the numerical rate of convergence of the diffusion scheme was
studied with extensive numerical experiments. These numerical results show that
the observed rate of convergence of the diffusion scheme is of order 2 at the
circumcenters. It is not a contradiction with the theoretical results: it shows
that the theoretical rate of convergence is not optimal.

3.8 Discrete approrimation at an interface

We first consider meshes where all reference positions lie in their associated
control volume. Consider an interface ok 1, the value for ¢ at this interface
could be approximated with the linear interpolation

12



Ok =1—tk )oKk +txorL,

(XK - XK,L) - (XL - XK)
(X — Xg) - (XL — Xk)

lg=

With this linear interpolation, the minimum or the maximum of the approxima-
tive solution is preserved at the interfaces when 0 < ¢k ; < 1. Which is only the
case when the reference positions lie in their associated control volumes (meshes
of category Mj). Unfortunately, the most common meshes are those for which
there exist reference positions that do not lie in their associated control volume.
This is the case for meshes of category M (figure 3). Preliminary numerical re-
sults showed that the linear interpolation could make the scheme unstable when
the 1k did not satisfied the inequality 0 < ¢k < 1, which is rather frequent
in 3D.

In order to preserve the maxima and the minima of the solution when inter-
polating a scalar quantity other that the diffusivity at an interface, we use the
geometrical average

_ m(K)ox + m(L)¢r,
K. = m(K) + m(L) (20)

where m(K) is the measure of the hyperplane K (the volume of the cell K in
3D). Unfortunately, in theory, this approximation does not give as much precision
than the linear interpolation.

3.9 Discrete approrimation of the gradient

Since our approximation functions are constant by control volume, the gradient
of a function cannot be directly computed, but only approximated. We first
assume that the gradient (V¢), of a scalar ¢ over the volume K is a constant
vector. Let (V¢ -n)y ; be the normal gradient to the interface ox,r, (it being a
known quantity), we suppose that the projection of (V¢), over ok, should be
closed to (V¢ -n)y

(Vo) -nxr~ (V- n)K,L (21)
(Vo mis = oo (01— 6x)

13



To obtain a closed system of linear equations, (21) is applied to all interfaces
which belong the cell K:

Ng,1 (Vo - n)K,l
(Vo) =
Ngn (‘7¢' n)h;n

or, in a more compact way:

N (Vo) = (Vo-n), . (22)

The solution to this system of equations is the approximated gradient.

In general, the over-constraint system of equations (22) is not compatible. The
“best” solution is approximated with a least square method, the linear system

N'N(V¢), = N' (Vé-n),
being solved. It is worth to mention that this approximation is used to calculate
the pressure gradient in the momentum equations.

There is also a particular case when the control volume K is a tetrahedron and
the gradient of a scalar variable is divergence free:

> (V¢-mn), =0,

c€fK

Ek being the set of interfaces surrounding the control volume K. Based upon a
geometrical property of tetrahedras, we have the following linear combination:

0=Voéx- > m(o)n,= Y m(o)Vex-n,= > m(o)(Ve-n),

o€EK o€EK c€EK

In this case, given this linear combination, there is a unique solution to (22).

3.10 Duiscrete equations, convection-diffusion operator CD

In this section, to discretize the convections-diffusion equations, we put together
the operators that were defined in the previous sections . Let us consider the

14



following equation on the domain €2:

99

ai + V- (v (tag1) ® ¢*) = V (aV") = 5" (23)

t=tn+1

where

e ¢ can be any scalar variable or the components of the velocity vector;

8_¢ ¢n+1 ¢n
ot 6t

t=tn+41
e s" is a source term;

3 1
o V(ty1) = §v” — 35V n-l

is an approximation of v at time ¢ = ¢, 1, it is such that V - v (¢,41) = 0.

The discrete equations are obtained by integrating (23) over each control volume
K and applying the Gauss theorem:

/2—? dV+/ (tas1) ® 6°) - ndS
K

t=tn+t1

—/ v ( aw*)-ndsz/s”dv (24)
oK K

The quantities ¢*, ¢™ and s" are assumed constant over any given volume K.
When both the convective and the diffusive schemes presented in the previous
section are applied to the surface integrals, the discrete equation for K is given
by this expression:

mE) 2] LS mio)uds,
ot t=tn41 o€EK
— Y 0T, (87, — dk) = m(K)s (25)
c€efK

where € is the set of interfaces which belong to the boundary of volume K. The
system (25) is linear but not symmetric and the associated matrix is a diagonal
dominant M-matrix. This imply that A~! has all its coefficients greater or equal
to zero and as a consequence, for suitable source terms sk (sx = 0 for example),
the discrete maximum principle will hold for ¢g.

The system (25) is used to solve all scalar variables. The solution of this sys-
tem will be denoted as ¢} = CD (¢%). Thanks to the time discretization, the

15



components of the velocity vector are solved in a decouple manner. Therefore,
the convection and diffusion of the velocity field v" can be considered as the
convection and diffusion of its three components: vj, = CD (v2). It is worth
mentioning that for the momentum equations, the source term for the compo-
nents of the velocity vector takes into account the pressure gradient:

sk = £ — (VP)}

f? being the discrete approximation of a force on the control volume K and
(VP)} the pressure gradient over K. When convecting and diffusing the velocity
field, the solution v* is not divergence free and a projection has to be made.

3.11 Projection

In order to compute a velocity field that fulfills the incompressibility constraint,
a projection has to be made. It is a combination of two operators: the extension
operator £ and the projection operator P. The goal of the first operator is
to compute an intermediate normal component of the cell velocity on the cell
interfaces. The projection operator computes both an update of the pressure and
the normal component of the cell velocity field at the cell interfaces. The update
of the normal velocity field is latter used to correct the velocity field within the
cells.

3.11.1 FExtension operator £

This operator is applied on each interface of the control volumes to compute an
intermediate normal velocity (v - n)ZH/ %

E: (v"KH/Z, V”K) > ((v . n)"+1/2)

g

To define this operator, we make the assumption that the variation of the normal
velocity component must agree with the variation of the cell velocity computed
in the predictor step. To interpolate the variation of the normal velocity, we use
the geometrical average:

(m(K)dvk +m(L)ovy] - ng,p

m(K) + m(L) (26)

(v- n)K,L =(v- n)?{,L +

Sv=vntlZ _yn

16



When ok lies on the domain boundary, the intermediate normal velocity is
computed with this expression:

(v-n)iy? = Vi, + 6vi - ngy (27)

It is worth to mention that the boundary condition for the normal velocity must
not be considered at this stage. If it were so, it would be possible to construct
a non-constant velocity field for which the discrete divergence approximation
would be zero. In this case, the solution would exhibit spurious pressure oscilla-
tions that have no physical meaning (false pressure modes).

Later on, the computation of the velocity field v "*1/2 with the extension operator
will be denoted as:

(V . n)2+1/2 —E (V n+1/2’ V%) (28)

3.11.2  Projection operator P

The projection operator actually computes a velocity field that is divergence
free, it is applied to both the pressure and the velocity
P (PR, (von)it) o (P vit) (29)

[

and it is carried out in two steps. The equation (7) is first written under this
form:

vl — —5tBV (5Pn—|—1) +v n+1/2 (30)

This expression is then substituted into the continuity equation, which is then
discretized:

Bty m(o) <V5P”+1 : n)a = > mfo)(v- n)" /2 (31)

c€EK o€EK

The solution to equation (31) gives the correction to the pressure field. As for
the correction of the velocity field on the cell interfaces, it is given by equation
(30). Which is discretized as

To

v = —6tp (6P — 6Px) + v, 172 (32)

g

m (o)

on the cell interfaces.
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Before solving (31), appropriate boundary conditions have to be given. When
the normal velocity vk is imposed (at an inlet, a wall or on a symmetry plane),
the following Neumann boundary condition holds:

AAY (5P”+1) ‘n = v}?’rblﬂ — VK (33)

The only other case considered is an imposed pressure (such as at an outlet).
In this case, the boundary condition for the pressure correction is a Dirichlet
boundary condition:

5P}€Zl =g (XK,[,, tn+1) — g (XK,ba tn) (34)

where g (Xkp, t"*!) is the given pressure at time ¢ = ¢"*! at the position X
associated to cell ogp of volume K.

After updating the velocity at all interfaces, a velocity correction is also made
on the cells. Let o 1 be an interface between the cells K and L, this last cor-
rection has to be compatible with the velocity update that has been made on
this interface:

(vt = vt g = Wi (v )il — (v ) (35)

where Wi 1, is a parameter such that

big number : (i.e. 10°) og 1, € wall
Wk = .
1 otherwise

For each control volume K, a linear system of equations is built by applying
(35) to all interfaces which belong to K. This linear system can be inconsistent,
its solution is always approximated with a least square method. In order to
make sure that the cell velocity always agrees with an adjacent wall boundary
condition, the parameter W had to be introduced.

Both the velocity-pressure formulation and the projection operator fall into the
same class than the operators presented in [18]. Hence, the proof of the unicity
of the solution for the pressure given in [18] also applies to this scheme.

Finally, the application of the projection operator on the intermediate velocity
field (v - n)ZH/ ? and the pressure P? will be denoted as:

(P, virtt) =P (PR, (v-m);H7?) (36)

[
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We end this section by making a short remark for the special case where there
are no macro-elements. For this type of mesh, all control volumes are tetrahedras
and it is possible to use the zero degree Raviart-Thomas finite element which
contains the following polynomials[19,20]:

a + dx
b+dyp,V(a, b c)eR.
¢+ dz

With this family of elements, it is possible to compute a velocity field v which
satisfies the following equations:

Vg Nk =—Vy Nk (37)

Z Vi ‘n,=0

o€l

Then, it is possible to use an extension and a projection operators for which
the normal components of the cell velocity field on each interface is continuous
and satisfies the divergence free constraint ([9,10,22]). For our scheme, where
macro-elements are frequent, it is not the case: the normal components of the
cell velocity field cannot directly be computed from the cell velocity and we do
not make use of the Raviart-Thomas finite elements.

3.12 The complete algorithm

We end this first part of the article by giving the whole algorithm for solving
the Navier-Stokes equations coupled with other scalar transport equations such
as the energy equation. We always use a start-up step and care must be given
to the notation for the initial step:

v, stands for an initial velocity field which is always null;
vI_(l/ ? is the initial condition for the velocity field;
Pgl is the initial condition for the pressure;

9 is the initial condition for the scalar variables.

The algorithm is as follows:

e Given the initial conditionvy' = 0, v}l/ 2 Pr!' and ¢%, apply the extension

and the projection operators:

(v- n);l/Z —FE (v}l, v;/z)
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(PR: vic) =P (Pi", (v-m);"”)

e Given a solution v"™, P™ and ¢",
(1) apply the convection-diffusion operator to all components of the velocity
vector:

V?{_H/Q =CD (v})
(2) apply the extension and the projection operators:

(v- n)Z_l/2 =F (vnK+1/2, V”K)

(PI’}“, V’I?Ll) =P (PI’}, (v- n)"_l/Q)

[

(3) apply the convection-diffusion operator to all scalar quantities:

¢k = CD (¢k)

4 Numerical results

In this section, we present some numerical tests that were conducted to validate
this numerical scheme. All computations were carried out in three dimensional
domains, even for the 2D flows.

Before showing our results, we must say a few words about the resolution of the
systems of discrete of equations. First, we recall that these systems of equations
are linear and the scheme does not require any non-linear solver. To speed-up
the computations, we always store the matrix of coefficients associated to the
discrete systems of equations. In this paper, all results were obtain using the
Orthomin2 algorithm. This algorithm is not as known as the conjugate gradi-
ent. It requires more operations (one matrix vector multiplication by iteration),
but does not need the linear system to be symmetric. We compared the perfor-
mance of this algorithm to GMRES and the conjugate gradient. For the problems
we considered, Orthomin2 was a better choice than the others or the combina-
tion GMRES-CG (conjugate gradient for the symmetric systems associated the
projection operator and GMRES for the other linear systems). As for the pre-
conditioner, we only used a simple Jacobi diagonal preconditioner. For more
information on these solvers, see [23].

For all problems, we give plots of the convergence history for the computations
made on the finest grids. The goal is to verify the consistency of the extension-
projection operator. A contradiction between convergence histories for the varia-
tions of variables and the residuals would show that the solution computed after
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the projection does not satisfy the Navier-Stokes equations. Thus showing that
the projection operator is not appropriate.

4.1 Natural Convection in a square cavity

This problem deals with a confined Boussinesq 2D fluid flow in a square cav-
ity. The free convection originates from buoyancy forces due to a fluid density
gradient. We consider the body force g (po — p) where g is the local accelera-
tion and p is the density for a reference state. For an incompressible flow with
small temperature gradients, this force can be approximated with the Boussinesq
approximation

g (Poo — P) =2 8PS (T — Tio)

where [ is the volumetric thermal expansion coefficient and T, the temperature
for the reference state. This source term is added to the momentum equations
to model the body force.

We carried out computations for a fluid of Prandt number 0.71 and Rayleigh
number of 10%. The details for the set up for this problem are presented there-
after.

Domain:

[0.0,0.1] x [0.0, 1.0] x [0.0, 1.0]

Boundary conditions:
Venlgo=0, Vv:T|go=0

oT
T(y=0,2)=0, T(y=L2)=1, = =0
(y=0,2)=0, T(y=Lz2)=1, o

2=0,z=L

Initial condition: v(x) =0, P(x)=0, T(x)=0

Physical properties and dimensions:

_pllgl ATE?
kp

p=10, =1, L=10, p=0."71

Ra —10%, pr=" —om1,
cpk

We recall that £ is the thermal conductivity and ¢, the specific heat at constant
pressure.
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Time step: 6t = 0.1

,Un—|—1 _

Convergence criteria: | v"‘ <1x10?and |w"Jr1 — w"‘ <1x10?
[e o]

o
This problem has been studied in details by Vahl Davis et al.([24,25] for different
Rayleigh numbers. These authors solved this problem on several meshes with
a second order difference method and extrapolated reference quantities with
Richardson’s extrapolation. Hence, our results are compared to those obtain by
others with a second order discretization scheme. We solved this problem on
three different unstructured meshes made of 902, 3656 and 8254 control volumes
(a plane cut of the coarsest mesh is shown in figure 4). Two simulations were
carried out for each meshes: one with the power-law scheme, the other without
a correction of the diffusion coefficient.

In table I, we compare the maximum value of the velocity components on the
mid-plane sections and their locations to the benchmark values published by Vahl
Davis et al. Our functions of approximation being constant by control volume,
we do not give an exact location. Instead, we give the interval in which they are
located.

In table II, we present the maximum value of the Nusselt number and its av-
erage on the hot wall. For each control volume K adjacent to the hot wall, the
approximation of the Nusselt number was computed as follows:

Lotk T,, =T
NUK = JOK . K K
krefATref ||XU _XK”

where, in this case, Lyef = 1, kyef = 1, AT,y = 1. For the Nusselt number, we
give the exact location where the flux was computed.

For all benchmark quantities, systematic grid refinement lead to more accurate
results. Moreover, the power law scheme gave more accurate results than the
upwind scheme. For all further computations presented in this paper, the power-
law scheme is preferred to the simple upwind scheme.

In figures 5 and 6, we show plane cuts of the velocity components and the
temperature for the solution obtained with the finest grid and the power-law
scheme. The convergence history for this solution is shown on figure 7.

4.2 2D flow around a cylinder

This problem deals with an internal flow between two parallel planes. A cylinder
is present near the inlet and its center is slightly above the mid-section. Hence,
the flow is not symmetric and lift is produced. The computations were carried out
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for the Reynolds number Re = 20. For such a low Reynolds number, there is no
vortex shedding and the flow is permanent. It is not a thermal flow. Nevertheless,
it evaluates the capacity of the scheme for computing, on unstructured non-
orthogonal meshes, quantities related to the diffusion flux. The set-up for this
problem is as follows:

Domain: [0.0,0.1] x [0.0, 2.2] x [0.0, 0.41], see figure 8.

Boundary conditions:

4-v, (H—
Inlet: v(z, y =0,2) = v IETQ Z), w(z,y=0,2)=0
ov
Outlet: — =0, w,y=222 =0, Plz,y=22,2)=0
an z,y,2=2.2

Walls: v-n=0, v.-7=0
Initial condition: v(x) =0, P(x)=0

oD
Physical properties: Re = Va2 _ 20, v, =0.2, D=0.1
v

Time step: 6t = 0.05

Convergence criteria: |[v" ™ — w"| <1 x 107 and [p"*! —w"| <1 x 1075
For this problem, we compare our results to benchmark quantities published by
Turek et al.[26]. In this report, the drag, lift and difference of pressure between

two positions on the disc are given. The following quantities are provided:

(1) drag coefficient:

2. Fp
P p2DHL’
FD=/ (0, 1/6&, P) -TdA;
on
a5
(2) lift coefficient:
2. F
" w2DHL’
FL:—/ (O, l/aﬁ, P> -ndA;
on
as

(3) pressure difference:

AP = P(0, 0.15,0.2) — P(0, 0.25,0.2) ;
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where:

e L = 0.10 is the depth in the 3rd dimension (the flow being solved in a 3D
domain);

e 7 is a tangent vector to the cylinder surface;

e v, = v - T is the tangential speed at the cylinder surface;

e n is the unit normal vector to the surface cylinder;

e 0S is the area of the cylinder.

In order to show that we are able to obtain a solution which is independent

from the grid size, computations were carried out on three different meshes. The

benchmark quantities provided by Turek et al[26] and our results are presented
in table III.

We were able to predict the drag coefficient accurately for all three meshes. As for
the lift, the difference between our results and the reference quantities diminish
as we refine our grid. Finally, for the pressure difference, the value given by our
scheme is slightly below the benchmark result. We give the convergence history
for the finest mesh in figure 9.

4.8 3D thermal flow in a cylinder

This problem deals with a forced thermal flow in a cylinder. The temperature is
imposed both at the inlet and on the cylinder’s surface. The flow is not developed
at the inlet, a constant velocity being imposed at this location. All the data
needed to solve this problem are presented below.

z(0) 0.05 - cos(f)
Domain: 0Q = [ 4(#) | = | 0.05-sin(d) |, 0<0<7/2, 0<2<1.2
z z

Boundary conditions:

Inlet: u(z, y, 2=0)=0,v(z,y,2=0)=0,w(z,y, 2=0)=1,
T(z,y,z=0)=1

0
Outlet: u(z, y, z=1.2) =v(z,y, 2=1.2) =0, ow -0

8n 2=1.2
oT

P =12)=0, — =0
(‘/L" y7Z ) ) an 221-2

Walls:v-n=0, v-7=0, T=0
Initial condition: v(x) =0, P(x)=0, T(x)=0
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mD
Physical properties and dimensions: Rep = Um=Z _ 120, w, = 1.0,
v

Pr=%=1.0, D=01,c,=1.0
Time step: 6t = 0.1

Convergence criteria: [w"tt —w"| <1 x107°

w, is the average of the speed for a section of the duct and D the diameter. This
flow being symmetric, the computations were carried out only on one quarter
of the domain. The 3D meshes were built using the extrusion of 2D meshes
composed of triangles. The grids were made of 40, 60 and 80 sections respectively.

For this flow, there is an analytical solution in the region of the domain where
the flow is fully developed. For a laminar flow, Rep < 2300, the location at
which the flow starts to be fully developed is approximated as follows:

L
(E)Mm ~ 0.05Rep

In this region, the velocity component w and the pressure gradient can be com-
puted with these equations:

w(r= e )= L2 (D) (1_ (23) ) , (39
P _ 8-p-wn (39)

As for the temperature, the length at which the flow is thermally developed is
given by the empirical expression:

L
— ~ 0.05Rep - P
(D)lam,T °p "

In this region, we do not have an exact solution for the temperature. Neverthe-
less, in this part of the domain, there is no variation along the cylinder of the
dimensionless temperature:

5 (T = “

T.»(2) being the mean axial temperature in a given section. For each cross section
area, this mean axial temperature is often called mixed mean fluid temperature
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and is defined as (see Kays [28]):

1
T = 2o A/ w (x) T (x) dS

A, being the area of a cross section.

There is another important result for thermally developed flow in a circular tube,
it can be shown that the Nusselt number at the surface is constant[28]:

Nup = 3.657

For the computation of Nup, the length of reference is L,y = D = 0.1 and the
reference temperature is the mean axial temperature.

In order to verify the convergence behavior of our scheme toward the exact solu-
tion, we computed some estimates of the error for the velocity, pressure gradient
and Nusselt number in the last section of the duct. For all these variables, the
Ly norm

lell,,, = @ m(K) (px — ¢ (Xk))”

was computed. Those norms are given in table IV. We also provide the following
ratios:

(1) A™/h™1 the ratio between the diameters of the largest cell of mesh m and
mesh m — 1;

2) lle™ll,, / Hem_l HL , the ratio between the norms of the error for mesh m and
mesh m — 1. ’

In section 3.7.1 we gave an error estimate for the convection-diffusion operator.
We also recall that the Ly norm of this error estimate depends on the diameter of
the largest cell. In this case, the results given in table IV show that the observed
rate of convergence agrees with the theoretical results. Moreover, for the problem
we considered, the the rate of convergence of the approximative flux is also of
the same order.

In figure 10, we show that there is no significant difference between the computed
velocity component w and the analytical solution given by equation (38). As for
the other problems, we show the convergence curves for the simulation on the
finest grid in figure 11.

In table IV, we provide some statistics relative to the performance of the com-
puter code. We believe that those statistics are relevant to those who want to
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compare their code with others. This computer code was written in C++ and
and all the real numbers were stored in double precision format. All the prob-
lems considered in this paper were ran on a single processor PC equipped with
AMD1000 thunderbird. We must say that those statistics show one odd behav-
ior of the computer code: the number of time steps needed to reach convergence
grows with the number of unknowns. Hence, the time taken to solve a problem
does grow linearly with the number of unknowns. This behavior is mainly caused
by the deterioration of the conditioning of the matrix associated to the projec-
tion operator (we recall that the projection operator requires solving a Laplacian
equation). It can be shown that the condition number of the matrix associated to
the discretized Laplacian equation is inversely proportional to the diameter h of
the mesh[23]. Hence, the time needed to solve this system of equations increases
as the mesh size decreases. This behavior is not unique to our scheme: it is one
of the drawbacks of all incompressible flow solvers that use a projection, that
includes SIMPLE’s family of algorithms[29].

5 Conclusion

A numerical method has been proposed to solve the Navier-Stokes equations
for incompressible thermal flows and the convection-diffusion of scalar quanti-
ties. This solver is based upon a fractional step scheme and the finite volume
cell centered method on unstructured meshes. One of its main characteristics is
the usage of the cell-circumcenters to store the unknowns. This leads to a very
simple diffusion scheme on non-orthogonal unstructured meshes. By combining
together elements of the mesh to form new cells, this scheme can be used on
general unstructured meshes that do not satisfy the Delaunay condition. This
solver allows the local conservation of mass and scalar quantities and the nu-
merical preservation of the maximum principle for scalar quantities. However,
in its present form, the scheme is not optimal for meshes where many elements
have high-aspect ratios. Thereby, the extension to Navier-Stokes compressible
flows where shocks need adapted meshes aligned with contact discontinuities
and shocks is not straightforward.

The convection-diffusion scheme is very robust and easy to implement. Being of
order one, it is a low order scheme. Nevertheless, the convection scheme accu-

racy’s could be improved with a more sophisticated reconstruction method such
as MUSCL.

Numerical solutions for laminar steady flows were presented. For all cases, the so-
lutions computed with this scheme were in good agreement with those presented
by other researchers or exact solutions. For all problems, reference quantities
associated with the diffusion flux were computed on non-orthogonal grids. To
show that the solution computed after the projection satisfies the Navier-Stokes
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equations, we gave the convergence curves for both the variations of the variables
and the residuals. This scheme is under active development, numerical results
for a turbulent flow using the £ —e model have already been presented in [27,14].
Current developments of the scheme include: a second order approximation of
the convection flux, more exhaustive computations of turbulent flows with heat
transfer and an extension to compressible flows.
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Fig. 1. Circumcenters for tetrahedras K and L
Fig. 2. Mesh categories
Fig. 3. Interpolation at an interface
Fig. 4. 2D Boussinesq flow: coarsest mesh (902 cells)

Fig. 5. 2D Boussinesq flow: comparative results, velocity components on the mid-planes
y=1/2 and z=1/2

Fig. 6. 2D Boussinesq flow: comparative results, temperature on the mid-plane section
z=1/2

Fig. 7. 2D Boussinesq flow: convergence: the graph on the left shows the norms of the
variations |¢"+1 — ¢"|oo, the norms ||¢"+1 — ¢"|| 12 of the residuals are shown on the
right

Fig. 8. 2D flow around a cylinder: geometry

Fig. 9. 2D flow around a cylinder: convergence, the graph on the left shows the norms
of the variations |¢”+1 — ¢”|Oo, the norms ||gz§”"’1 — ¢”|| 12 of the residuals are shown
on the right

Fig. 10. Thermal flow in a cylinder: velocity profile near the outlet

Fig. 11. Thermal flow in a cylinder: convergence, the graph on the left shows the norms
of the variations |¢”+1 — ¢”|oo, the norms ||g15”"'1 — " 2 of the residuals are shown
on the right
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Table I

2D Boussinesq flow : maximum velocity components at mid-plane sections

Power-law Wmaz Umaz
scheme z=1/2 y=1/2

Our results

902 cells no 215.12 y € [0.0002, 0.0433] | 72.46, z € [0.827, 0.870]
902 cells yes 217.58 y € [0.0002, 0.0433] | 66.89, z € [0.827, 0.870]
3656 cells no 217.11, y € [0.0431, 0.0433] | 69.99, z € [0.870, 0.870]
3656 cells yes 218.83, y € [0.0416, 0.0433] | 65.89, z € [0.848, 0.868]
8254 cells no 217.82, y € [0.029, 0.433] | 68.095, z € [0.855, 0.856]
8254 cells yes 219.34, y € [0.029, 0.433] 65.74, z € [0.855, 0.856]
Reference 219.36, y = 0.0379 64.63, z = 0.850

solution

43




Table II
2D Boussinesq flow: maximum and average Nusselt number at the hot wall

Power-law Nupmaz Nu
scheme

Our results
902 cells no 22.419, y = 0.0750 | 11.152
902 cells yes 20.785, y = 0.0750 | 10.632
3656 cells no 20.077, y = 0.0375 | 9.883
3656 cells yes 19.086, y = 0.0375 | 9.374
8254 cells no 18.712, y = 0.0417 | 9.521
8254 cells yes 18.443, y = 0.0417 | 9.105
Reference solution 17.925, y = 0.0378 | 8.800
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Table III
2D flow around a cylinder: maximum drag, lift and other comparative results

Cells Cp Cy, AP
16933 5.58 0.0073 0.119
36724 5.58 0.0124 0.117
49231 5.58 0.0118 0.116
Benchmark quantities | 5.57-5.59 | 0.0104-0.0110 | 0.1172-0.1176
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Table IV

Thermal flow in a cylinder, norm ||¢x — ¢ (Xk)||1, of the error

. Is)
Variable w 6—2 Nu
Cells h™ /™1
29080 77576 | 4.7275 | 2.89—*
67500 0.667 3.5076 | 3.7675 | 1.957*
em
% 0.452 | 0.796 | 0.675
lem=1|,,

133200 0.750 27776 129175 | 1.377*
em

% 0.791 | 0.774 | 0.703
le™ g,
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Table V

Thermal flow in a cylinder, statistics

Statistics | Iterations Time Time per | Memory usage

Unknowns (seconds) | iteration | (megabytes)
145400 84 1612 19.2 67
337500 95 4688 49.3 150
666000 134 12526 93.5 294
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