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1LIX - UMR 7161, 1 rue Honoré d’Estienne d’Orves, Bât. Alan Turing
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The programs we consider are written in a restricted form of the language introduced by

(Dijkstra (1968)). A program is said to be conservative when each of its loops restores

all the resources it consumes. We define the geometric model of such a program and

prove that the collection of directed paths on it is a reasonable overapproximation of its

set of execution traces. In particular, two directed paths that are close enough with

respect to the uniform distance result in the same action on the memory states of the

system. The same holds for weakly dihomotopic directed paths. As a by-product, we

obtain a notion of independence which is favourably compared to more common ones.

The geometric models actually belong to a handy class of local pospaces whose elements

are called isothetic regions. The local pospaces we use differ from the original ones, we

carefully explain why the alternative notion should be preferred. The title intentionally

echoes the article by (Carson and Reynolds Jr. (1987)).

1. Introduction

The importance of the ideas introduced by (Dijkstra (1968)) cannot be overestimated,

neither from the theoretical point of view (Hansen, 2002, p.7-12) nor from the practical

one, as evidenced by their influence on the POSIX Threads Programming norm. Its

underlying philosophy consists of having things done in parallel unless otherwise specified

by the programmer. Strictly speaking, Dijkstra’s PV language refers to an extension of

the language ALGOL60 with the synchronization mechanism parbegin ... parend (also

called ‘parallel composition’) and the the primitives P ( ) and V ( ) with which one takes

and releases general semaphores. It is not hard to see that the same would have been

possible with any reasonable sequential language (e.g. Parallel Pascal in (Cridlig (1995,

1997))). The PV language allows parallel composition to occur anywhere in a program so

they can be nested. In this paper, we only allow it in outermost position so the programs

we consider are parallel compositions of sequential processes.

parbegin

process1;

...

processN;

parend
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A program is thus made of a pool of sequential processes executing their instructions

in parallel and sharing a pool of resources. The limited amount of resources is thus

a constraint on the simultaneous execution of processes. In our framework it is also

constrained by the ‘wait’ instruction W ( ) which synchronizes a given group of existing

processes. Indeed it stops any process which meets it until a certain number of processes

get blocked by it. When the threshold is reached the executions of all the processes

stalled by the instruction resume. The ‘Wait’ instruction can be seen as a weakened form

of parallel composition. Indeed the latter creates the processes that it synchronizes while

the former does not. These restrictions are commonly met in the design of asynchronous

control command systems, to which the methods that we will describe were dedicated in

the first place.

The idea that higher dimensional geometric structures offer a natural framework for

modelling such a kind of program was implicitly suggested by (Dijkstra (1968)) but the

concept was later made explicit by (Coffman et al. (1971)) who introduced the progress

spaces†. Coffman and its co-authors emphasized that the instruction pointers of a set

of tasks {T1, . . . , Tn} can be gathered to become the coordinates of a point on a shape

of dimension n. They also pointed out that the evolution of this point (with respect to

time) induces a ‘trajectory’ (on the shape) which can never result in a decrease in either

coordinate, the progress being irreversible. Then (Carson and Reynolds Jr. (1987)) defi-

nitely made things clear stating that a progress graph is a ‘multidimensional, Cartesian

graph in which the progress of each of a set of concurrent processes is measured along an

independent time axis’. They also used the term ‘solid geometry’ and mentioned ‘areas of

relative progress disallowed by synchronization primitives invoked by the processes’, spec-

ifying that these forbidden regions are represented as finite unions of rectangles. Their

terminology strongly suggests that the model of a program is obtained by extruding the

forbidden region from some Cartesian product.

However the only models considered in those articles are cubical regions, that is finite

unions of n-dimensional hyperrectangles (i.e. n-fold products of intervals of R). In the

abstract of (Carson and Reynolds Jr. (1987)) one can actually read that ‘the model is

shown to be exact for systems composed of [...] concurrent processes, each consisting of a

straight line sequence of [...] ordered semaphore operations.’ In particular the trajectories

that (Coffman et al. (1971)) talked about are monotonic continuous paths on Rn. On one

hand it suggests that the standard topology and order on R can be used to model certain

concurrent programs. It also highlights the importance of the mathematical structure

carried by the collection of cubical regions, which will be proven to be a restriction of

the one carried by the collection of isothetic regions. On the other hand it brings out the

limitations on the class of programs one can model that way: neither branching nor loop

is allowed.

Contribution. In line with the theoretical pioneering works on geometric models of

concurrency, this article aims at going beyond the limitation mentioned above yet pay-

† For further details on the rise of topological methods in concurrency theory see (Goubault (2000)).



The geometry of conservative programs 3

ing more attention to practice. Our first contribution is to emphasize the role of the

metric structure of geometric models by proving that two execution traces that are close

enough (with respect to the uniform distance) have the same effect on the states of the

abstract machine associated with a given toy language (Theorem 6.1). As an immediate

consequence, the same holds for weakly dihomotopic execution traces (Corollary 6.2).

Another interesting by-product of that approach is its relation to program independence

(Theorem 6.2). We insist that our geometric models are obtained from discrete ones by

elementary mathematical methods. In particular, we completely avoid the traditional

use of precubical sets (Pratt (1991); van Glabbeek (1991)) and realization functors (Fa-

jstrup et al. (2006)). Discrete models faithfully reflect the runtime behaviour of programs

(Theorem 4.1); the geometric models do so because of their relation to discrete ones (Sec-

tion 6.2). The geometric model construction that we provide only applies to conservative

programs (Definition 4.1), a class that was independently studied by (Fahrenberg (2002))

and that comes with a breadth-first traversal algorithm deciding whether a program be-

long to it (end of Section 4.1). In return, it can be automated and the models of such

programs are isothetic regions (Corollary 6.1). The collection of isothetic regions enjoys a

rich and tractable mathematical structure (Proposition 7.3, Theorems 7.1 and 7.2). The

crucial fact is that all the relevant operations on isothetic regions can be automated from

basic operations on intervals of R. By the way, we return to the notion of local pospaces

and propose a seemingly slight change in the original definition (Fajstrup et al. (2006)).

We hope that Remark 5.5 will convince the reader of the advantage of that change.

Organization of the paper. In Section 2 we introduce the program representations

from which the models are defined. Such representations are obtained by standard meth-

ods of compilation. We also introduce the parallel composition of such representations

and the notion of syntactically independent programs (Definitions 2.3 and 2.4). The

abstract machine of the language is described in Section 3 thus providing it with a se-

mantics from which we introduce the notion of observationally independent programs

(Definition 3.6). Conservative programs and their discrete models are introduced in Sec-

tion 4. In Section 5 we make a foray into the realm of directed topology adopting the

formalism of local pospaces. In Section 6 we switch to geometric models and provide re-

sults justifying that change. Building on metric graphs we introduce and study isothetic

regions in Section 7. Section 8 is dedicated to related works and open problems.

2. Middle-end representations of programs

Instead of specifying a toy language we describe the abstract representations of the pro-

grams we are interested in. Those representations are based on control flow graphs‡ (Allen

(1970)) which are built the same way as transition graphs (Fajstrup et al., 2016, p.7-14,

27) except that the instructions are carried by vertices instead of arrows. Echoing the

remark from (Pratt (1991)) control flow graphs are only defined for sequential processes,

‡ Control flow graphs are very similar to flowcharts (Floyd (1967)). The former were introduced in the

context of compiler optimization, the latter in that of program verification.
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one of the purpose of the present article is precisely to provide a control flow structure

to programs made of several cooperating sequential processes.

The variables, semaphores, and barriers occuring in a program are respectively col-

lected in the finite sets X , S, and B. Each semaphore or barrier z comes with its arity

α(z) ∈ N ∪ {∞}. A valuation is a mapping ν : X → R. An expression is a mapping

ε : {valuations} → R together with a subset F(ε) ⊆ X such that if the valuations ν and

ν′ match on F(ε) then ε(ν) = ε(ν′). The free variables of ε are the elements of F(ε).

The set of expressions occuring in the program is denoted by E . The assignments are

the elements of X × E yet we write x := ε instead of (x, ε). By extension the set of free

variables of such an assignment is F(ε). Given a graph

G : A
∂-
//

∂+
// V

a conditional branching at vertex v ∈ V is a mapping

β : {valuations} → {a ∈ A | ∂-a = v}

together with a subset F(β) ⊆ X such that if the valuations ν and ν′ match on F(β)

then β(ν) = β(ν′). No such mapping exists when the vertex v has no outgoing arrows. An

instruction of the language is either an assignment, a branching, a request P (s) (resp. a

release V (s)) for some semaphore s ∈ S, or a synchronization W (b) for some barrier

b ∈ B. An instruction which ‘does nothing’, namely Skip, is also provided. Except for

assignments and conditional branchings, the instructions have no free variables.

Definition 2.1. A process is a graph together with a distinguished vertex, its origin,

and a labelling λ : V → {instructions} such that if λ(v) is not a Skip instruction, then v

has at least one outgoing arrow, and if λ(v) is not a branching, then v has at most one

outgoing arrow. We also impose that the origin carries a Skip instruction and that all the

vertices and all the arrows of the graph are met by some path starting at the origin of the

graph. In reference to (Allen (1970)) we also write ‘control flow graph’ as a synonym for

‘process’. The arrows are interpreted as intermediate positions of the instruction pointer

so a point on a control flow graph is either a vertex or an arrow.

Definition 2.2. A program consists of:

— the finite sets X , S, and B which collect the variables, the semaphores, and the

barriers appearing in the program,

— the arity map α : S t B → N ∪ {∞},
— the initial valuation ν : X → R which provides the values of the variables at the

beginning of each execution of the program, and

— the tuple (G1, . . . , Gn) of processes which are launched simultaneously at the begin-

ning of each execution of the program.

Following (Coffman et al. (1971)) the instruction pointer of a program is defined as

the n-tuple which gathers the instruction pointers of its running processes. It is thus

natural to define a point p of (G1, . . . , Gn) as an n-tuple whose ith component, which is

refered to as pi, is a point of Gi in the sense of Definition 2.1. The origin of the program
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is the tuple of the origins of its running processes. By analogy with the multisets of

actions from (Cattani and Sassone (1996)), we define a multi-instruction as a partial

map µ : {1, . . . , n} → {instructions}. A multi-instruction is said to be trivial when, as

a mapping, it always returns Skip. By a slight abuse of notation, we define λ(p) as the

multi-instruction defined by λ(p)(i) = λi(pi) over the set below.{
i ∈ {1, . . . , n}

∣∣ pi is a vertex of Gi
}

Our language neither allows dynamic creation of processes nor runtime alteration of

semaphore and barrier arities. Under obvious assumptions we can form the parallel com-

position of programs.

Definition 2.3. Two programs P and Q are said to be compatible when their initial

valuations and their arity maps coincide on the intersection of their domains of definition.

In that case we can form the parallel composition P |Q. The sets of variables, semaphores,

and barriers appearing in P |Q as well as the initial valuation and the arity map are defined

in the obvious way. The tuple of running processes of P |Q is the appending of the tuples

of the running processes of P and Q. By extension we define the parallel composition of

P1, . . . , PN when the programs are pairwise compatible.

It is then natural to ask when a program can be split into a parallel composition of

simpler programs. We propose a straightforward approach.

Definition 2.4. Two programs are said to be syntactically independent when X∩X ′ = ∅,
S ∩S ′ = ∅, and B∩B′ = ∅. The programs P1, . . . , PN are syntactically independent when

they are pairwise syntactically independent.

Syntactically independent programs are compatible so they can be composed. Conversely

if one can split the running processes of a program into groups of processes without

common resources, then one can ‘parallelize’ this program in the obvious way up to the

order of the terms of the tuple of running processes.

3. Abstract machine

The abstract machine ‘executes’ programs. Its functioning explains on the way the use

of barriers and semaphores as well as the behaviour of the related instructions, namely

P (s), V (s) for s ∈ S, and W (b) for b ∈ B. First we define its internal states denoting by

n the number of running processes of the program under consideration.

Definition 3.1. A state of the abstract machine is a mapping σ defined over the disjoint

union X t S such that:

— for all variables x, σ(x) ∈ R (i.e. the restriction of σ to X is a valuation), and

— for all semaphores s, σ(s) is a mapping from {1, . . . , n} to Z.

A state σ is said to be initial when σ(s) is the zero map for all semaphores s ∈ S. The

valuation part of σ is the memory state of the machine. The elements of the set {1, . . . , n}
should be thought of as process identifiers. The number of occurrences of the semaphore



E. Haucourt 6

s held by the ith process is therefore given by σ(s)(i), namely the coefficient of i in the

multiset σ(s). Yet, it is convenient to allow negative values in order to make subsequent

definitions more concise.

Definition 3.2. Two instructions conflict when:

— both modify the same variable (i.e. the instructions are x := ε and x := ε′ regardless

of ε and ε′ being identical), one says that it is a write-write conflict, or

— one of them alters a free variable of the other (i.e. one of the instructions is x := ε

and the other is a conditional branching or an assignment in which x occurs as a free

variable), one says that it is a read-write conflict.

A multi-instruction µ is conflicting when there are i, j ∈ M with i 6= j such that µ(i)

and µ(j) conflict. As an immediate byproduct we soundly define the action of a non-

conflicting multi-instruction µ on the right side of a state σ:

— for all variables x ∈ X , there is at most one i ∈ {1, . . . , n} such that the instruction

µ(i) modifies x. In that case the instruction is an assignment x := ε and one has

(σ · µ)(x) = ε(σ|X )

the latter being well-defined because for all j ∈ {1, . . . , n} \ {i} the instruction µ(j)

does not alter any free variable of ε. In the other case one has (σ · µ)(x) = σ(x).

— for all semaphores s ∈ S, the mapping (σ · µ)(s) : {1, . . . , n} → Z is given below:

i 7→


σ(s)(i) + 1 if i ∈ domµ and µ(i) = P (s)

σ(s)(i)− 1 if i ∈ domµ and µ(i) = V (s)

σ(s)(i) in all other cases.

The abstract machine is the mapping which sends each (σ, µ) to σ · µ when µ is non-

conflicting. It provides our language with an operational semantics allowing several pro-

cesses to execute their current instruction simultaneously.

The arity of a semaphore s is the number of available occurrences of s while the arity

of a barrier is the maximal number of processes that it can stop. In particular any

process trying to acquire an occurrence of a semaphore of null arity is definitely blocked.

The same happens when a process comes across a synchronization barrier whose arity

is infinite. On the contrary, semaphores of infinite arity and barriers of null arity are

harmless: the latter are roughly speaking ignored and the former cannot bring about the

process stalling.

Definition 3.3. A non-conflicting multi-instruction µ is said to be admissible at state

σ when for all semaphores s ∈ S, we have the following inequalities

0 6 |σ(s)|+ card{i ∈M | µ(i) = P (s)} − card{i ∈M | µ(i) = V (s)} 6 α(s)

and for all synchronizing barriers b ∈ B, card{i ∈ M | µ(i) = W (b)} is either null

or strictly greater than α(b). It is worth noticing that our semaphore semantics slightly

differs from the one found in (Dijkstra (1968)) which does not take the concept of ‘owner’

of a semaphore occurrence into account. By extension, a sequence µ0 · · ·µq of multi-

instructions is said to be non-conflicting when so are all its elements. It is said to be
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a0

a1p

s

Fig. 1. Discrete directed paths are ‘continuous’.

admissible at state σ when for all k ∈ {0, . . . , q}, the multi-instruction µk is admissible

at state σ · µ0 · · ·µk−1.

Definition 3.4. A directed path γ on a given tuple of graphs (G1, . . . , Gn), typically the

running processes of a program, is a sequence (γ(k))k∈{0,...,q} of points (in the sense of

Definition 2.2) such that for all k ∈ {0, . . . , q} we have

— γi(k) = γi(k + 1) or ∂-γi(k + 1) = γi(k) for all i ∈ {1, . . . , n}, or

— γi(k) = γi(k + 1) or ∂+γi(k) = γi(k + 1) for all i ∈ {1, . . . , n}.
The constraints imposed in Definition 3.4 might seem surprising at the first sight. They

actually force the directed paths to be ‘continuous’ in the following sense: assume that

the picture in Figure 1 is the unit square [0, 1]2 split into points (its corners), open

segments (the interior of its edges), and open unit square (its interior). A naive definition

would accept sequences of points such that γi(k) = γi(k + 1), ∂-γi(k + 1) = γi(k), or

∂+γi(k) = γi(k + 1) for all i ∈ {1, . . . , n}. In doing so, we would make the sequence

(a0, a1) in Figure 1 a directed path although no continuous increasing path on the unit

square can go from a0 to a1 without meeting p or s.

Each directed path γ is associated with a sequence of multi-instructions (µk)k∈{0,...,q−1}.

The domains of definition of the maps µk, for k ∈ {0, . . . , q − 1}, are given below.

domµk =
{
i ∈ {1, . . . , n}

∣∣ γi(k + 1) = ∂+γi(k) or λi(γi(k + 1)) = W ( )
}

Then we have µk(i) = λi(γi(k + 1)) for all k ∈ {0, . . . , q − 1} and all i ∈ domµk.

This convention implements a specific behaviour: any instruction is triggered at the very

moment it is reached by the instruction pointer. It also reveals that the instruction W ( )

is persistent in the sense that it remains active until the instruction pointer leaves the

vertex carrying it. On the contrary, the instructions P ( ) and V ( ) instantly alter the

internal state of the machine whereafter their effect is over. With the abuse of notation

introduced in Definition 2.2 and for k ∈ {0, . . . , q − 1}, the multi-instruction µk seen

as a partial map is a restriction of λ(γ(k + 1)). The point γ(0) is intentionally ignored

so that the sequence of multi-instructions associated with a concatenation γ · γ′ be the

concatenation of the sequences of multi-instructions associated with γ and γ′. A directed

path is said to be non-conflicting when so is its associated sequence of multi-instructions.

It is said to be admissible when its associated sequence of multi-instructions is admissible

at the initial state of the program. In both cases, we define the action of γ on the right

of σ as follows.

σ · γ = σ · µ0 · · ·µq−1
An admissible path is an execution trace when all the conditional branchings met along

the way are respected, in other words the following equality holds for all k ∈ {0, . . . , q − 2}
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and all i ∈ {1, . . . , n} such that µk(i) is a branching.(
µk(i)

)
(σ · µ0 · · ·µk−1) = γi(k + 2)

Let n and N be non-zero natural numbers. Thinking of the elements of the set {1, . . . , n}
as the process identifiers of a program, we consider a mapping g from {1, . . . , n} onto

{1, . . . , N} as a way of gathering processes in view of a parallelization of the program.

In that regard, we say that two multi-instructions µ and µ′ (whose domains of definition

are contained in {1, . . . , n}) can be swapped when the sets of ‘groups’ of processes they

trigger are disjoint. Formally, if J (resp. J ′) is the set of indices j ∈ {1, . . . , N} such that

domµ (resp. domµ′) meets g -1({j}), then J ∩ J ′ = ∅.
The permutations π of the set {0, . . . , q − 1} act on the left of sequences of length q

in the usual way: for all k ∈ {0, . . . , q − 1} the element at position k in the sequence s is

moved to position π(k) in the sequence π · s. Dually, the element at position k in π · s is

the one that was at position π -1(k) in s. Interpreting sequences as mappings defined over

{0, . . . , q − 1}, the sequence π · s is the mapping s ◦ π -1.

Definition 3.5. Given a sequence µ0, . . . , µq−1 of multi-instructions such that domµk ⊆
{1, . . . , n} for all k ∈ {0, . . . , q − 1}, a permutation π of the set {0, . . . , q − 1} is said to

be compatible with that sequence when it is order preserving on all pairs {k, k′} such

that µk and µk′ cannot be swapped. The permutation π is said to be compatible with the

directed path γ when it is compatible with its associated sequence of multi-instructions.

Suppose that the programs P1, . . . , PN are compatible in the sense of Definition 2.3 and

that Pj has nj running processes. For j ∈ {0, . . . , N} define sj = n1 + · · · + nj with

the convention that s0 = 0. In particular the set {1, . . . , n1 + · · ·+ nN} of indexes of the

running processes is divided into subsets S1, . . . , SN where Sj = {sj−1 + 1, . . . , sj}. If

i ∈ Sj then the ith process of the parallel composition comes from the program Pj . With

the notation introduced before, we have g -1({j}) = Sj for all j ∈ {1, . . . , N}. With the

notation of Definition 3.4, we introduce another notion of independence.

Definition 3.6. The programs P1, . . . , PN are said to be observationally independent

when for all execution traces γ and all permutations π compatible with the sequence

of multi-instructions (µ0 · · ·µq−1) associated with γ, the sequence π · (µ0 · · ·µq−1) is

associated with an execution trace γ′ having the same action on the system state than

γ, that is to say σ · (µ0 · · ·µq−1) = σ · (µπ -1(0) · · ·µπ -1(q−1)) .

Remark 3.1. Syntactically independent programs are observationally independent but

the converse is false. For example, consider the program whose unique process has a

unique instruction, namely the assignment x := cst where the expression cst has no free

variable (hence cst always returns the same value when it is evaluated). This program is

observationally independent from itself, but not syntactically.

Syntactical independence is decidable yet too restrictive. On the contrary observational

independence is purely theoretic because it cannot be stated until all the execution trace

prefixes have been tested or a mathematical proof has been given. We complete this

section with a technical result that will be used in the proof of Theorem 6.2.
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Definition 3.7. Let us define a rolling as a cyclic permutation ρ of the following form

( x x+ 1 · · · x+ y )

for some x, y ∈ N, that is to say defined by ρ(x+ t) = x+ (t+ 1 mod y + 1).

Lemma 3.1. Given a permutation π which is not an identity, the rolling

ρ = ( x x+ 1 · · · π -1(x) )

where x = min{x ∈ domπ | π(x) 6= x} is the unique one such that π ◦ ρ -1(x) = x.

Proof. By definition of x we have π -1(x) > x. From the relation π ◦ ρ -1(x) = x we

deduce that ρ(π -1(x)) = x. Hence x and π -1(x) are the least and the greatest elements of

{x ∈ dom ρ | ρ(x) 6= x} which characterizes the rolling ρ.

The next lemma, which is stated with the notation introduced in Lemma 3.1, justify our

interest in rollings.

Lemma 3.2. If the permutation π is compatible with a sequence of multi-instructions

µ0 · · ·µq−1, then so is the rolling ρ. Moreover the permutation π ◦ ρ -1 is compatible with

sequence of multi-instructions ρ · (µ0 · · ·µq−1).

Proof. Let x be the least element of dom(π) such that π(x) 6= x. We have π -1x >

x and π(k) > x for all k ∈ {x, . . . , π -1x− 1}. Since π is compatible with the se-

quence (µ0 · · ·µq−1), the multi-instruction µπ -1x can be swapped with all the multi-

instructions µk for k ∈ {x, . . . , π -1x− 1}. The rolling ρ is thus compatible with the

sequence (µ0 · · ·µq−1).

Let (µ′0 · · ·µ′q−1) be the sequence of multi-instructions ρ · (µ0 · · ·µq−1). In other words

the equality µ′k = µρ -1(k) holds for all k ∈ {0, . . . , q − 1}. Let k, k′ ∈ {0, . . . , q − 1} be such

that the multi-instructions µ′k and µ′k′ cannot be swapped and assume that k < k′. One

has to prove that π ◦ρ -1(k) < π ◦ρ -1(k′). To do so, it suffices to check that ρ -1(k) < ρ -1(k′)

because the permutation π is compatible with the sequence (µ0 · · ·µq−1). That inequality

is readily satisfied when k < x or π -1x < k′ so we can suppose that both k and k′ belong

to the set {x, . . . , π -1x}. In particular ρ -1(k) and ρ -1(k′) also belong to that set. Then we

have ρ -1(k) 6= π -1x otherwise we would have ρ -1(k) > ρ -1(k′) and π ◦ ρ -1(k) < π ◦ ρ -1(k′),

the latter inequality being deduced from the definition of x. But then µ′k and µ′k′ would

be able to swap because the permutation π is compatible with the sequence (µ0 · · ·µq−1).

It follows that k differs from x. We conclude by noting that ρ -1 is order-preserving on

the set {x+ 1, . . . , π -1x}.

Definition 3.8. Let π0 be a permutation which is not an identity. Inductively applying

Lemma 3.1 we define a finite sequence of permutations π0, . . . , πA and a finite sequence

of rollings ρ0, . . . , ρA by the relation πa+1 = πa ◦ ρ -1
a for a ∈ {0, . . . , A− 1}. The natural

number A is the least one such that πA is a rolling. It is well-defined by Lemma 3.1

which ensures that the sequence xa = min{x ∈ domπa | πa(x) 6= x}, for a ∈ {0, . . . , A},
is strictly increasing. We have π0 = ρA ◦ · · · ◦ ρ0 and the sequence ρ0, . . . , ρA is called the

rolling decomposition of the permutation π0. By convention, the rolling decomposition

of the identity is the empty sequence.
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1

2

3

4

5

6

7

πρ -1
0ρ -1

1ρ -1
2ρ -1

3ρ -1
4

x0

x1

x2

x3

x4

Fig. 2. The rolling decomposition of the permutation π = (1 3)(2 7 6)(4 5).

Example 3.1. Let π0 be the permutation (1 3)(2 7 6)(4 5).

a πa xa π -1
a (xa) ρ -1

a

0 (1 3)(2 7 6)(4 5) 1 3 (3 2 1)

1 (2 3 7 6)(4 5) 2 6 (6 5 4 3 2)

2 (4 7 6) 4 6 (6 5 4)

3 (5 7 6) 5 6 (6 5)

4 (6 7) 6 7 (7 6)

5 id − − −

Corollary 3.1. Let ρ0, . . . , ρA be the rolling decomposition of a permutation π0 that is

compatible with a sequence of multi-instructions (µ0 · · ·µq). For all a ∈ {0, . . . , A}
— the rolling ρa is compatible with the sequence (ρa−1 ◦ · · · ◦ ρ0) · (µ0 · · ·µq), and

— the permutation πa+1 is compatible with the sequence (ρa ◦ · · · ◦ ρ0) · (µ0 · · ·µq).

Proof. By iterated applications of Lemma 3.2.

4. Discrete models of conservative programs

A directed path γ that is not admissible ‘crashes’ the abstract machine in the sense that

σ · γ is not well-defined (Definition 3.4). Under mild hypotheses on a given program,

we define a collection of ‘forbidden’ points such that the admissible directed paths are

‘almost’ the ones that do not meet any of them, the subtlety being explained in Theo-

rem 4.1. We will be done if we can prove that admissibility no longer depends on the state

of the abstract machine (Definition 3.3). The crucial point is that only the constraints on

semaphores depend on the state σ. From a physicist point of view, the situation suggests

to compare the action of a directed path on the semaphores sharing with the work of

a force along a curve. As a physicist saying that a force is conservative when this work

only depends on the starting and the ending of the curve, we say that a program is
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conservative when the action (on the abstract machine states) of a directed path (over

the control flow graphs of the running processes) only depends on its endpoints.

4.1. Conservative programs

Conservative programs were independently introduced by (Fahrenberg (2002)) as parallel

composition of well behaved processes. The notion of a conservative program given below

is slightly more general. The idea is that the amount of semaphores held by the running

processes of a program can be encoded in its model.

Definition 4.1. A PV-test is a program written only with instructions P ( ), V ( ), and

Skip, and such that the arities of its semaphores are infinite. Denoting by G1, . . . , Gn for

the running processes of a PV-test and following Definition 3.2, every directed path on

(G1, . . . , Gn) is non-conflicting. A PV-test is said to be conservative when for all directed

paths γ on (G1, . . . , Gn) the restriction of σ · γ to S (i.e. the sharing of semaphores

between the running processes) is nonnegative§ and only depends on the endpoint of γ,

being understood that σ is an initial state (Definition 3.1) and that γ starts at the origin

of the program (Definition 2.2). Every program is associated with a PV-test by changing

the arities of all its semaphores to ∞ and replacing all the instructions occurring in it

but P ( ) and V ( ) by Skip. A program is said to be conservative when so is its associated

PV-test. In that case, its sharing function is the canonical map

F : {points of (G1, . . . , Gn)} × S → {multisets over {1, . . . , n}}

which associates (p, s) with σ · γ(s) where γ is any directed path from the origin of the

program (Definition 2.2) to p (such a directed path always exists by Definition 2.1). The

mass of the multiset F (p, s) (seen as a mapping from {1, . . . , n} to N) is the following

sum

|F (p, s)| =

n∑
i=1

(
F (p, s)

)
(i) .

The potential function of a conservative program is the mapping |F |.

If the program under consideration has a single running process, viz n = 1, then

the sharing and the potential functions from Definition 4.1 can be identified. For each

i ∈ {1, . . . , n} the ith sequential projection of a program is obtained by removing all its

running processes but Gi. The next result is the reason why it is so important to keep

track of the owners of the semaphore occurrences.

Lemma 4.1. A program is conservative iff so are all its sequential projections. Moreover

for all points p and all semaphores s ∈ S, the multiset F (p, s) is the following map

F (p, s) : i ∈ {1, . . . , n} 7→ Fi(pi, s) ∈ N

where Fi is the sharing function of the ith process. In particular the potential function

§ For all semaphores s, the range of the mapping σ(s) is contained in N, so it can be seen as a multiset.
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of the program is the sum of the potential functions of its sequential projections.

|F (p, s)| =

n∑
i=1

Fi(pi, s)

Proof. Suppose that the program is conservative. To check that the ith sequential

projection is conservative, it suffices to consider the directed paths whose points have

their jth coordinate on the origin of the graph Gj for all j ∈ {1, . . . , n} \ {i}.
Conversely, let σ be an initial state and γ be a directed path on (G1, . . . , Gn) starting at

the origin of the program. Following Definitions 3.1 and 3.4, the amount of occurrences of

the semaphore s held by the ith process at the end of the directed path γ is
(
σ · γ(s)

)
(i).

Given i ∈ {1, . . . , n}, let γi be the directed path on Gi obtained by replacing the jth

coordinate of each point of γ, for j 6= i, by the origin oj of Gj . In other words one applies

the following mappings to all points of γ.

(G1, . . . , Gn) → Gi ↪→ (G1, . . . , Gi−1, Gi, Gi+1, . . . , Gn)

(p1, . . . , pn) 7→ pi 7→ (o1, . . . , oi−1, pi, oi+1, . . . , on)

From Definition 3.2, no running process but the ith one can alter the amount of occur-

rences of the semaphore s held by the ith running process of the program. Therefore the

next equality is satisfied and the conclusion follows.(
σ · γ(s)

)
(i) =

(
σ · γi(s)

)
(i) = Fi(pi, s)

Lemma 4.1 would not be satisfied if we had allowed processes to release occurrences of

tokens they do not hold. Consider indeed the concurrent execution of the instructions

P (s) and V (s) for some semaphore s with only one occurrence left.

Remark 4.1. From a given control flow graphG (Definition 2.1) one can write a program

whose unique running process is G. We can then say that G is conservative when so is

that program. Indeed, two such programs only differ over their declarations, which are

anyway ‘forgotten’ by the corresponding PV-tests. Hence G being conservative does not

depend on the chosen program.

Examples of conservative and nonconservative processes are given in Figures 3 and 4.

The latter suggests that certain nonconservative control flow graphs can be turned into

conservative ones by a mild transformation, the overall idea being that we try to encode

the amount of semaphore occurrences held by a process into its finite control flow graph.

As shown by Figure 5 there are situations where no such transformation is possible.

For a given control flow graph, the property of being conservative can be checked

by a breadth-first traversal algorithm that was independently discribed by (Fahrenberg

(2002)). Let us denote the commutative group of mappings from S to Z by ZS . We

inductively define a sequence of partial functions of type {points} → ZS . The first term

π0 is only defined at the origin of the graph and π0(origin) is the empty multiset (i.e. the

map sending all s ∈ S to 0). Suppose that πn is defined for some n ∈ N. If there exists

an ordered pair of points (p, p′) such that:
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P(s)

V(
s)

Nop P(s)Nop

Fig. 3. Conservative loop vs nonconservative loop.

Nop

P(b)

P(a)

Nop
Nop

P(b)

P(a) Nop

Nop

Fig. 4. Conservative process may be obtained by duplicating a vertex.

— πn(p) is defined but not πn(p′), and

— ∂-p′ = p or p′ = ∂+p,

we define a strict extension of πn by setting:

p′ 7→
{
πn(p) if ∂-p′ = p

πn(p) · λ(p′) if p′ = ∂+p

If all those extensions are compatible, then πn+1 is their union; otherwise the induction

stops and the graph is not conservative. If the mapping πn cannot be extended (i.e. no

ordered pair as above exists), then it is defined everywhere because every point of a control

flow graph can be reached from its origin (Definition 2.1). Moreover G is conservative if

and only if πn is nonnegative and the following property holds for all ordered pairs of

points (p, p′) such that ∂-p′ = p or p′ = ∂+p.

πn(p′) =

{
πn(p) if ∂-p′ = p

πn(p) · λ(p′) if p′ = ∂+p

In that case, the sharing function of the control flow graph G is πn. Applying the

P(s)Nop

Nop Nop Nop NopP(s) P(s) P(s) P(s)
. . .

Fig. 5. A nonconservative loop and its unfolding.
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algorithm to the left hand control flow graph in Figure 4 results in a sequence of length 5,

the map π6 being undefined. On the contrary, if the algorithm is applied to the right hand

control flow graph from Figure 3, one obtains a mapping π3 which is defined everywhere

but does not satisfy the latter property.

4.2. Discrete models

We introduce the discrete models of conservative programs and explain the purpose for

which they are studied.

Definition 4.2. A point p = (p1, . . . , pn) of the conservative program is said to be:

— conflicting when λi(pi) and λj(pj) conflict for some i 6= j (Definition 3.2),

— exhausting when there is some semaphore s ∈ S such that

|F (p1, . . . , pn, s)| > arity(s) ,

— desynchronizing when there is some synchronization barrier b ∈ B such that

0 < card
{
i ∈ {1, . . . , n}

∣∣ λi(pi) = W (b)
}
6 α(b) ,

— terminal when the sequence of multi-instructions associated with any directed path

starting at p only contains trivial multi-instructions (Definitions 2.2 and 3.4).

The forbidden set of the program P gathers all the conflicting, exhausting, and desyn-

chronizing points.

{fobidden} = {conflicting} ∪ {exhausting} ∪ {desynchronizing}

The discrete model of the program is the complement of its forbidden set.

{points of the program} \ {forbidden}

A deadlock is a non-terminal point p such that any directed path on the model starting

at p is associated with a sequence of trivial multi-instructions. Equivalently, a deadlock

is a point p such that any directed path which starts at p and triggers some non trivial

multi-instruction actually meets a forbidden point. The latter formulation exactly states

that the forbidden region hinders the expected functioning of the program.

The following result, which is illustrated by Figure 6, is one of the main motivations for

introducing conservative programs and discrete models.

Theorem 4.1. Any directed path on the discrete model (i.e. which does not meet any

forbidden point) is admissible. Conversely, for each admissible path γ there exists a

directed path on the discrete model whose sequence of multi-instructions is the same as

the one of γ.

Proof. Let γ be a directed path that is not admissible and let k be such that the

multi-instruction µk from Definition 3.4 is not admissible at state σ · µ0 · · ·µk−1. If µk
contains a conflict then so does λ(γ(k + 1)), the latter being an extension of the former

as explained in Definition 3.4. By definition of µk, the equality

{i | µk(i) = W (b)} = {i | λi(γi(k + 1)) = W (b)}
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x:=1
x
:
=
0

× × ×

Fig. 6. A discrete model, an admissible path on it that meets a forbidden point, a

possible replacement, and a nonadmissible path.

holds for all barriers b ∈ B; hence if µk forces a barrier (i.e. the left hand set above is

not empty and its cardinal is less or equal than α(b)) then the point γ(k) is forbidden in

the sense of Definition 4.2. Since the program is conservative, the equality

σ · µ0 · · ·µk(s) = F (γ(k), s)

holds for all semaphores s ∈ S; hence if the mass |F (γ(k), s)| is strictly greater than the

arity α(s), then the point γ(k) is forbidden.

Conversely, let γ be an admissible path such that γ(k) is forbidden, and suppose that k

is minimum. By similar arguments to those exposed above, we conclude that there exist

i, i′ ∈ {1, . . . , n} such that λi(γi(k)) and λi′(γi′(k)) conflict in the sense of Definition 4.2.

For γ is admissible, there must be some k′ < k such that the following holds for all

k′′′ ∈ {k′, . . . , k}.
λi′(γi′(k

′′′)) = λi′(γi′(k))

In less formal words, the i′
th

process is stalled on an assignment in conflict with the

instruction λi(γi(k)). The interpretation of arrows as interlude between instructions plays

a role here. Denote by k′′ the first index such that the i′
th

coordinate of γ(k′′) is the

unique arrow α outgoing from γi′(k
′). If no such index exists, then k′′ = ∞. To obtain

the expected directed path, it suffices to change the i′
th

coordinate of points γ(k′′′) into

α for all k′ < k′′′ < k′′, which amounts to set the instruction pointer of the i′
th

process

in an intermediate position. One readily deduces from Definition 3.4 that the altered

directed path induces the same sequence of multi-instructions than the original one. Of

course there might be another i′′ ∈ {1, . . . , n} such that λi(γi(k)) and λi′′(γi′′(k)) conflict,

but then it suffices to iterate the preceding construction until all such indices have been

treated. Finally we obtain a directed path γ′ whose initial segment γ′(0), . . . , γ′(k) does

not meet any forbidden point and induces the same sequence of multi-instructions than

γ(0), . . . , γ(k). We conclude by a straightforward induction over k.

Remark 4.2. Theorem 4.1 guarantees that restricting the class of admissible directed

paths to those which do not meet any forbidden point does not result in a significant

loss. Moreover, it allows to treat the instructions P ( ), V ( ), and W ( ) statically rather

than dynamically. Indeed, since directed paths on the model are admissible in the sense of

Definition 3.3, it is no longer needed to check at runtime whether resources are exhausted
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or barriers are violated. Moreover, our language does not offer any feature to access the

current distribution of resources. Consequently, it is no longer needed to keep it up-to-

date during an execution. In other words, once the discrete model is built, the relevant

part of an abstract machine state is reduced to its memory (Definition 3.1), and the

instructions P ( ), V ( ), and W ( ) can be ignored, that is to say replaced by Skip.

Theorem 4.1 demands a notion of conflicting instructions that can be decided statically.

For example, according to Definition 3.2, every assignment conflicts with itself. Our credo

is, as far as possible, to statically treat concurrency by encoding in the model of a program

all the constraints imposed on its executions.

5. Locally ordered spaces

Locally ordered spaces are mathematical objects combining topology and order. They

were introduced by (Fajstrup et al. (2006)) as a generalization of partially ordered spaces

(Nachbin (1965)) in order to model the directed circle. Since then, local pospaces have

often been cited and used but never studied for themselves. Moreover, some local pospace

definitions found in the literature (Bubenik and Worytkiewicz (2006); Bubenik (2009);

Kahl (2009)) do not match the original one (Fajstrup et al. (2006)). As a discriminating

example, the original approach allows an ordered atlas on the circle containing only two

ordered charts while some other ones do not. It therefore seemed appropriate to explicitly

define the local pospaces we are working with, which are yet different, and gather some

facts giving a rather good account of their features. The characteristic of our approach

is that all the ordered atlases are explicitly required to induce a basis of topology of the

underlying space. This condition is in accordance with the idea that local pospaces are

obtained from pospaces as n-dimensional manifolds from Rn, viz by methods inspired

from sheaves. The resulting definition is strictly weaker than the original one.

There is an obvious price to pay: unlike d-spaces (Grandis (2003)) and streams (Kr-

ishnan (2009)), which behave much like topological spaces, local pospaces are closer to

manifolds. A colimit of local pospaces, as long as it exists, may not respect the underlying

topology. In comparison, the category of d-spaces and that of streams, which are actually

close to each other (Haucourt (2012)), are complete and cocomplete, and their colimits

behave well with respect to the underlying topology. They even admit Cartesian closed

subcategories enjoying the same convenient features (Goubault-Larrecq (2014)). Never-

theless we prefer local pospaces because they are much more constrained than streams

and d-spaces. For example, a local pospace has no vortex (Remark 5.4).

Definition 5.1. (Nachbin (1965)) A partially ordered space (or pospace) is a topological

space X together with a partial order v on (the underlying set of) X whose graph

{(a, b) ∈ X ×X | a v b}

is a closed subset of X×X. A pospace morphism is an order-preserving continuous map.

Pospaces and their morphisms form the category PoTop. The underlying space of a

pospace is Hausdorff (Nachbin, 1965, p.27).
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Example 5.1.
The ordered real line (i.e. R with its standard topology and order).
The sub-pospaces of a pospace (i.e. its subsets with the induced topology and order).
The category of pospaces is cocomplete (Haucourt (2012)). However due to antisymmetry

of partial orders, the following coequalizer in PoTop is reduced to a point.

{∗}
∗7→0 //
∗7→1

// [0, 1] // {∗}

To overcome this difficulty we consider patchworks of pospaces.

Definition 5.2. (Fajstrup et al. (2006)) Let X be a Hausdorff space. An (ordered) chart

on X is a pospace U whose underlying space SU is an open subset of X. An (ordered)

atlas is a collection U of ordered charts whose underlying spaces form a basis of the

topology of X. Moreover, it is required that for all U, V ∈ U , for all x ∈ U ∩ V , there

exists W ∈ U such that x ∈ W ⊆ U ∩ V and denoting by vU |W the relation induced by

vU on the underlying set of W , the restrictions of vU and vV to W match vW .

vU |W = vW = vV |W
Remark 5.1. Let U be a collection of charts whose underlying spaces form an open

cover of X and such that for all x ∈ X, all U0, U1 ∈ U that both contain x, there exists

an open neighborhood W of x in U0 ∩ U1 such that both U0 and U1 induce the same

pospace structure on W . Then the collection of all open sub-pospaces of all the charts

in U forms an atlas in the sense of Definition 5.2.

Since there is no possible confusion with the atlases from differential manifolds, we will

just write ‘atlas’ instead of ‘ordered atlas’. As we shall see, an atlas might contain two

globally incompatible ordered charts upon the same open subset. In particular, writing

U ⊆ U ′ for U,U ′ ∈ U we mean that the underlying space of U is included in the one

of U ′ without taking the compatibility of their partial orders into account. Therefore

U ∩U ′ refers to the intersection of the underlying subspaces while U ∧U ′ refers to U ∩U ′
equipped with the partial order vU ∩ vU ′ and thus forms a pospace.

Definition 5.3. Two atlases on the same space are said to be compatible when their

union is still an atlas.

The following results are easily checked and provide a good insight of the behaviour of

atlases. Moreover they lead to the notion of local pospaces.

Lemma 5.1. The atlases U and V are compatible iff for all U ∈ U , for all x ∈ U , there

exists V ∈ V such that x ∈ V ⊆ U and vV =vU |V .

Lemma 5.2. The notion of compatibility induces an equivalence relation over the col-

lection of atlases sharing the same underlying space. In particular the union of all the

atlases of a compatibility class is an atlas.

Definition 5.4. An atlas morphism from U to V is a map f from the underlying set of

U to that of V such that for all x ∈ dom f , there exists an ordered chart U ∈ U and an

ordered chart V ∈ V such that x ∈ U and f induces a pospace morphism from U to V .
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Lemma 5.3. A mapping is an atlas morphism iff for all x ∈ X and all V ∈ V containing

f(x), there is U ∈ U containing x such that f induces a pospace morphism from U to V .

By Lemma 5.3, an atlas morphism is necessarily continuous because any atlas induces a

basis of its underlying topology.

Lemma 5.4. Let f be a map. Let U and U ′ (resp. V and V ′) be equivalent atlases on

dom f (resp. codom f). Then f : U → V is an atlas morphism iff f : U ′ → V ′ is so.

Definition 5.5. A locally ordered space (or local pospace) is a Hausdorff space together

with an equivalence class of ordered atlases. A local pospace morphism is an atlas mor-

phism (Lemma 5.4). The category of local pospaces is denoted by LpoTop.

Remark 5.2. Given an atlas U on a space X and a subspace Y of X, the collection of

sub-pospaces of the form U ∩Y with U ∈ U is an atlas on Y . The inclusion map Y ↪→ X

thus becomes a local pospace morphism, and Y is said to be a sub-local pospace of X.

Remark 5.3. The collection of ordered charts induced by a pospace on its open sub-

sets is an atlas. However, the ‘obvious’ functor A : PoTop → LpoTop is neither full

nor injective on objects. Indeed, let X be the sub-pospace of R over [0, 1] ∪ [2, 3]. The

homeomorphism from [0, 1]∪ [2, 3] to itself that swaps the connected components induces

an endomorphism of X in LpoTop, but not in PoTop. Moreover if we let X ′ be the

coproduct in PoTop of [0, 1] and [2, 3], then X and X ′ have the same image under A

though they are not isomorphic in PoTop (Soko lowski (2002)).

Definition 5.6. The local pospace induced by a pospace X is its image under A.

The following proposition is an immediate consequence of Lemma 5.1.

Proposition 5.1. Two pospaces on the same underlying space X induce the same local

pospace iff every point of X admits an open neighborhood upon which both partial orders

coincide. Moreover, a local pospace lies in the image of functor A iff its greatest atlas

contains an ordered chart supported by its whole underlying space.

Example 5.2. The locally ordered real line is the image under A of the ordered real line

in PoTop (Example 5.1 and Definition 5.6). The following atlases over R are equivalent.

1 {(I,6) | I open interval of R},
2 {(U,6) | U open subset of R},
3 {(U,vU ) | U open subset of R} where x vU y stands for x 6 y and [x, y] ⊆ U , and

4 {(U,v′U ) | U open subset of R} where x v′U y is any extension of vU .

In particular any subinterval of R inherits a local pospace structure. A directed path on

a local pospace X is a morphism from a locally ordered compact interval to X.

Proposition 5.2. If X is a pospace and δ is a directed path on AX starting at x and

ending at x′, then x vX x′.

Proof. Let the domain of δ be [0, r]. The collection V of open sub-pospaces of X is an

atlas of AX. In particular we have vX|V =vV for all V ∈ V. By Definition 5.4, we have
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an atlas U of [0, r] such that for all U ∈ U the mapping δ induces a pospace morphism

from U to some V ∈ V. From Example 5.2, we can suppose that all the elements of U
are open intervals of [0, r]. Given a finite sequence

0 = t0 < · · · < tn = r

such that tk − tk−1 is strictly less than the Lebesgue number of the covering U , we

have a chart Vk ∈ V such that δ(tk−1) vVk
δ(tk) for all k ∈ {1, . . . , n}. Since we have

vX|Vk
=vVk

for all k ∈ {1, . . . , n}, we actually have x = δ(0) vX δ(r) = x′.

Corollary 5.1. If X is a pospace such that x vX x′ implies the existence of a directed

path on AX from x to x′ (Example 5.2), then the next equality holds for all pospaces Y .

LpoTop(AX,AY ) = PoTop(X,Y )

Proof. Let f be a local pospace morphism from AX to AY and suppose that we have

x vX x′. If γ is a directed path on AX from x to x′, then f ◦ γ is a directed path on

AY from f(x) to f(x′). From Proposition 5.2 it comes that f(x) vY f(x′); and thus f

is actually a pospace morphism.

Corollary 5.2. A directed path δ on a local pospace X is constant iff its extremities

are equal and its image is contained in some ordered chart of an atlas of X.

Proof. Let U be a chart as in the statement of the corollary. The restriction of δ to a

non-empty interval [t, t′] is a directed path on the local pospace AU . From Proposition 5.2

we have δ(t) vU δ(t′). Hence δ is a constant directed path on the pospace U .

Remark 5.4. From Corollary 5.2 we deduce that every non-constant directed loop on a

local pospace meets at least two charts. Put another way, a local pospace has no vortex

(i.e. no point every neighbourhood of which contains a non-constant directed loop). In

particular the complex plane cannot be provided with a local pospace structure whose

set of directed paths would be as below, since the origin would then be a vortex.

{ρ(t) · eiθ(t) | r > 0 ; θ : [0, r]→ R ; ρ : [0, r]→ R+ ; ρ, θ nondecreasing}

Example 5.3. The locally ordered circle is the local pospace obtained by exporting the

ordered real line (Example 5.2) to S1 through the exponential map.

t ∈ R 7→ eit ∈ S1

In particular the directed paths δ on the directed circle can be written as δ = eiγ where

γ is a directed path on R. An arc is a connected proper subspace of S1. Any arc is the

image of some interval of R under the exponential map. The following atlases on S1 are

compatible, the last of them being the greatest one.

1 {(A,6) | A open arc} where 6 is the order induced by R and the restriction of the

exponential map to an open subinterval of {t ∈ R | eit ∈ A} of length at most 2π,

2 {(U,vU ) | U proper open subset of S1} where x vU y means that the anticlockwise

compact arc from x to y is included in U , and

3 {(U,v′U ) | U proper open subset of S1} where v′U is any extension of the partial

order vU .
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In fact, the locally ordered circle is the following coequalizer in LpoTop.

{∗}
∗7→0 //
∗7→1

// [0, 1] // S1

No ordered chart is supported by S1 hence the locally ordered circle does not arise from

a pospace (Proposition 5.1). However, the unordered circle (i.e. the discrete pospace over

S1) induces a local pospace over the circle. We insist on this example to emphasize the

difference between loops in algebraic topology and directed loops.

Remark 5.5. Example 5.3 also offers an opportunity to compare our local pospaces to

the original ones. An original atlas is a Hausdorff space X together with a collection of

pospaces U whose underlying spaces form an open cover of X and such that every point

x ∈ X comes with a pospace Wx such that

— the underlying space of Wx is a neighborhood of x, and

— given any U ∈ U containing x, the pospaces induced on U∩Wx by U and Wx coincide.

An original local pospace is an equivalence class of orginal atlases, both of them being

equivalent when their union is again an original atlas. Given a point x ∈ X, the pospace

Wx only depends on x. We think that it should not be so. For example, the second

atlas described in Example 5.3 is not an atlas in the original sense. Indeed, it contains

open dense subsets of arbitrary low non-zero measure (i.e. the cumulated length of its

connected components). Let x be any point of S1, its associated pospace Wx contains a

neighborhood A of x which is a closed arc. Then there exists an open dense subset D of

S1 which contains x and whose measure is strictly less than the length of A. Let a0 and

a1 be the extremities of A with a0 coming before a1 in the partial order on Wx. Then a0
and a1 are not comparable in D because A 6⊆ D for measure consideration.

From there, one may ask how annoying is that situation. We might as well consider

such an atlas as irrelevant. But then, observe that the identity map on S1 induces an

isomorphism between the first and the second atlases on the list of Example 5.3. In fact,

given an atlas in the original sense, we obtain an atlas in the sense of Definition 5.2 by

gathering, for all x ∈ X, all the open sub-pospaces of Wx containing x (Remark 5.1).

In categorical terms the category of original atlases is a full subcategory of the cate-

gory of atlases in the sense of Definition 5.2. The question of whether the full inclusion

is an equivalence, which amounts to have an original atlas in each equivalence classes

(Lemma 5.2), is open.

We advocate for shifting to the new formalism for, at least, the following three reasons.

First, the original notion of an atlas requires a mapping, namely the one that associates

each point with a pospace, besides the collection of charts, whereas the latter should be,

in the author’s point of view, intrinsic. Second, the new definition is better suited to the

analogy with manifolds. Indeed, a collection of charts forms a manifold when the charts

are compatible two-by-two. Finally, it is also better suited to local orders arising from a

given class of paths of a space, that is to say when for all charts U of the atlas U , we

write x vU y when there exists a path of the distinguished class from x to y and whose

image is wholly contained in U . Such local pospaces may naturally arise when the class

of distinguished paths consists of the smooth curves γ on a manifoldM with vector fields
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f1, . . . , fn such that for all t ∈ dom γ the vector γ̇(t) is a linear combination of vectors

f1(t), . . . , fn(t) with non-negative coefficients. Note that the directed circle falls into this

range of examples.

A routine verification proves that the category LpoTop is finitely complete and has all

coproducts. As we shall see in Section 6.2, local pospaces are sufficiently supple to model

all conservative programs.

6. Geometric models of conservative programs

This section aims at building the geometric models of conservative programs from their

discrete ones in an elementary way. Let G1, . . . , Gn be the running processes of a program

P , we denote the set of arrows and vertices of Gi by Ai and Vi. In terms of instruction

pointer dynamics, this approach imposes a paradigm shift about the meaning of arrows

of control flow graphs. In Definition 2.1, they are interpreted as intermediate positions

between instructions. In this context, being inbetween instructions is a qualitative state-

ment. After each arrow of a control flow graph has been replaced by a copy of the open

segment ]0, 1[ in the associated metric graph, the abovementioned statement becomes

quantitative. Indeed, an intermediate point can be ‘close to’ the preceding instruction or

‘almost on’ the next one (which are respectively carried by the source and the target of

the arrow along with which the instruction pointer moves).

6.1. Locally ordered metric graphs

A metric graph is a metric space obtained by assigning a strictly positive length to

each arrow of a graph G : A ⇒ V . The description we provide is inspired from that of

(Bridson and Haefliger (1999)) but in our case, the length of every arrow is supposed

to be 1. The underlying set of the metric graph |G| is the disjoint union of V and

A×]0, 1[. Two elements of that set are said to be neighbours when they both belong to

{α}×]0, 1[ t {∂-α, ∂+α} for some arrow α. If ∂-α 6= ∂+α, there is an obvious bijection φ

from {α}×]0, 1[ t {∂-α, ∂+α} to [0, 1]. If ∂-α = ∂+α, its codomain is [0, 1[. The distance

between two neighbours p and p′ is defined as follows

d(p, p′) =

{
|t− t′| if ∂-α 6= ∂+α

min
{
|t− t′| , 1− t+ t′ , 1− t′ + t

}
if ∂-α = ∂+α

where t = φ(p) and t′ = φ(p′). An itinerary is a finite sequence p0, . . . , pq of points of |G|
such that pk−1 and pk are neighbours for all k ∈ {1, . . . , q}; its length is defined as the

following sum.

`(p0, . . . , pq) =

q∑
k=1

d(pk−1, pk)

The distance between two points p and p′ of |G| is the greatest lower bound of the set of

lengths of itineraries from p to p′. It extends the distance between neighbours.

d(p, p′) = inf
{
`(p0, . . . , pq)

∣∣ p0, . . . , pq is an itinerary from p to p′
}
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...
...a inputs b outputs

Fig. 7. Ordered open stars.

Let B be the collection of open balls of radius 6 1
3 that are centred at a vertex together

with the open subintervals of length 6 1
3 contained in {α}×]0, 1[ for some arrow α. The

collection B is a basis of the topology induced by the metric graph |G|. The open ball

of radius 0 < ε 6 1
3 centred at a vertex v is the disjoint union {v} ∪ v+ε ∪ v−ε with v+ε

(resp. v−ε ) being the union of {α}×]0, ε[ (resp. {α}×]1 − ε, 1[) for all α ∈ A such that

∂-α = v (resp. ∂+α = v). The other elements of B are the subsets {α} × U with α ∈ A
and U being an open interval of length 0 < ε 6 1

3 contained in ]0, 1[. The latter inherit

their pospace structures from that of U . The former are equipped with the partial order

v characterized by the following statements (see also Figure 7):

— v−ε @ {v} @ v+ε , and

— each branch inherits from the total order of R.

Each element of the basis B is thus a chart of |G|. Because of the numerical constraint

imposed on the radii and the lengths of the elements of the collection B, it is stable under

intersection. The valuable property is that for all B,B′ ∈ B, the partial order on B ∩B′
is the restriction of the partial order on B, which is much stronger than stating that the

collection B is an atlas (Definition 5.2). The locally ordered metric graph associated with

G, denoted by �G�, is the resulting local pospace together with the distance described

above.

Remark 6.1. The locally ordered metric graph associated with G is related to a basic

graph transformation. Note that each chart of the atlas B is isomorphic with the colimit

over 0 of a finite family of copies of R+ and R - (i.e. the extremities of the half-lines are

identified). Such a pospace is called an ordered open star and it is entirely characterized

by (a, b) with a (resp. b) being the number of copies of R - (resp. R+). In particular, the

ordered open star associated with (0, 0) is the point {0} while the one associated with

(1, 1) is the ordered real line R. Any point p of the underlying space |G| has a basis of

neighborhoods all the elements of which are isomorphic with the same open star, in other

words an element of N× N which we call the type of p. It is not difficult to see that the

collection B of points of �G� whose type differs from (1, 1) is finite. No more difficult it is

to find a (necessarily finite) collection C that meets every connected component of �G�
that is isomorphic with the locally ordered circle exactly once. Then denote the union

B ∪ C by V ′ and note that �G� \V ′ is a finite disjoint union of connected components

that are all isomorphic with the ordered open segment ]0, 1[. These components are the

arrows of the reduced graph of G, denoted by red(G), while its set of vertices is V ′. The

source and the target maps are defined with respect to the local pospace structure of �G�
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in the obvious way. For all finite graphs G and G′ we have the following equivalence.

red(G) ∼= red(G′) ⇔ �G� ∼= �G′�

Given a finite sequence of graphs G1, . . . , Gn, we would like to equip the local pospace

product �G1� × · · ·× �Gn� with a distance. Since the duration of a parallel execution is

the duration of the longest execution, the maximum metric is certainly better suited to

our context than the Euclidean one. For all i ∈ {1, . . . , n}, let di be the distance from

the metric graph |Gi|. Then every sub-local pospace of �G1� × · · ·× �Gn� is equipped

with the distance

dX(p, q) = max
{
di(pi, qi)

∣∣ i ∈ {1, . . . , n}}
where pi and qi are the ith coordinates of p and q.

6.2. Switching to the geometric framework

The next proposition is a consequence of (Haucourt, 2012, Corollary 6.7) which plays an

important role in the sequel, especially in the proof of Theorem 6.1.

Proposition 6.1. For all directed paths γ on �G� and all finite unions X of connected

subsets of �G�, the inverse image of X by γ has finitely many connected components.

Proposition 6.1 is specific to directed topology in the sense that it does not hold for undi-

rected paths on the metric graph |G|. For example, consider a path oscillating infinitely

many times around to origin of R, the magnitude of the oscillations getting close to zero.

Definition 6.1. For each point p of (G1, . . . , Gn) in the sense of Definition 2.2, the

canonical block Bp is the subset of �G1� × · · ·× �Gn� whose ith component is {pi} when

pi is a vertex, and {pi}×]0, 1[ when it is an arrow. The canonical blocks form the canonical

partition of �G1� × · · ·× �Gn�. It is finite because the graphs Gi are so. The dimension

of Bp is the number of arrows appearing in the n-tuple p. Any union of canonical blocks

is said to be a canonical subset of �G1� × · · ·× �Gn�. The notion of a directed path on

(G1, . . . , Gn) (Definition 3.4) was motivated by the following lemma.

Lemma 6.1. If there exists a directed path starting in Bp, ending in Bp′ , and whose

image is contained in Bp ∪Bp′ then one of the following facts is satisfied:

— for all i ∈ {1, . . . , n}, pi = p′i or pi is the source of the arrow p′i, or

— for all i ∈ {1, . . . , n}, pi = p′i or p′i is the target of the arrow pi.

Proof. The conclusion is obviously satisfied when p = p′ so we assume that p differs

from p′. The inverse images γ -1(Bp) and γ -1(Bp′) have finitely many connected compo-

nents, it is a consequence of Proposition 6.1 and the standard equality below.

γ -1(Bp) =

n⋂
i=1

γi
-1(proji(Bp))

Hence we have a partition of the domain of γ into intervals which are alternatively

contained in γ -1(Bp) and γ -1(Bp′), the first interval I being contained in the former while
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Fig. 8. A directed path and its discretization.

the second one J is contained in the latter. In particular we have sup I = inf J which

either belongs to I or J . The conclusion follows.

Definition 6.2. Given a directed path γ on the local pospace �G1� × · · ·× �Gn� we have,

by the same arguments as in the proof of Lemma 6.1, a finite partition I0 < · · · < IN
of dom γ such that for all k ∈ {0, . . . , N}, there exists a (necessarily unique) point pk

such that γ(Ik) ⊆ Bpk . By Lemma 6.1, the sequence p0, . . . , pN is a directed path in

the sense of Definition 3.4. It is called the discretization of γ and denoted by D(γ).

Conversely, given a directed path δ on (G1, . . . , Gn) (Definition 3.4), it is not difficult to

find a directed path on �G1� × · · ·× �Gn� whose discretization is δ. Such a directed path

is said to be a lifting of δ. Discretization and lifting are illustrated in Figure 8.

Lemma 6.2. For all directed paths γ on �G1 � × · · ·× �Gn � and all points p′ in the

canonical block containing ∂+γ (resp. ∂-γ), there exists a directed path γ′ such that

∂+γ′ = p′ (resp. ∂-γ′ = p′) and both γ and γ′ have the same discretization.

Proof. Assume that D(γ) is the sequence of canonical blocks B0, . . . , Bq with q ∈ N.

If q = 0, then γ is contained in a single block so the constant path standing on p′ fulfils

the requirements. Suppose that q > 0 and let p′ ∈ Bq be the point that γ′ should reach.

Then choose a point p′′ ∈ Bq−1 such that there exists a directed path γ′′ from p′′ to p′

whose discretization is the two elements sequence (Bq−1, Bq). By induction, we have a

directed path γ′′′ arriving at p′′ whose discretization is B0, . . . , Bq−1. The concatenation

of γ′′ followed by γ′′′ is the expected directed path γ′.

Definition 6.3. The sequence of multi-instructions associated with a directed path γ on

�G1� × · · ·× �Gn� is the one associated with its discretization. Following Definition 3.4,

the directed path γ is admissible (resp. is an execution trace) when so is D(γ). We define

the sharing function

F ′ : �G1� × · · ·× �Gn� × S → {multisets over {1, . . . , n}}

by setting F ′(p′, s) = (σ ·D(γ))(s) where γ is an admissible directed path from the origin

of the program to p′, and σ is an initial state. As a consequence of Lemma 6.2, for all

semaphores s ∈ S, the mapping F ′( , s) is constant on every reachable canonical block.

Moreover, Definition 4.2 still makes sense for points of �G1 � × · · ·× �Gn � instead of

(G1, . . . , Gn), and the potential function |F ′| instead of |F |. We thus obtain the geomet-

ric forbidden region and the geometric model JP K of the program, the latter being the

complement of the former in �G1� × · · ·× �Gn�. Due to the correspondence between dis-

cretization and lifting (Definition 6.2), Theorem 4.1 is still valid with the words ‘directed
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Fig. 9. Binary synchronization: producer vs consumer on a flat torus (the opposite edges

of the dotted frame are identified).

path’, ‘forbidden point’, and ‘admissible’ being understood in the geometric context. The

notion of a terminal point and that of a deadlock point from Definition 4.2 readily adapts

to the geometric framework �G1� × · · ·× �Gn�, we collect the latter to form the deadlock

space. The deadlock attractor is the set of points x such that for every directed path γ

starting at x, there exists a directed path γ′ starting at ∂+γ such that ∂+γ′ is a deadlock

point. The following result is an immediate consequence of Lemma 6.2.

Corollary 6.1. The geometric model, the deadlock space, and the deadlock attractor

of a program are canonical (Definition 6.1).

Example 6.1. The right hand model in Figure 9 represents a ‘producer vs consumer’

situation. Using synchronization barriers we ensure that items are made and delivered

just-in-time. This example lie on the directed torus, each dotted edge being identified

with its opposite. The grayed out subspace is unreachable from the origin of the model.

Example 6.2. The models shown in Figure 10 are standard examples of deadlocking

programs. The ‘Swiss Cross’ model and the ‘Dining Philosophers’ problem appear in

(Coffman et al. (1971)) and (Dijkstra (1971)) respectively.

Example 6.3. The models shown in Figure 11 illustrate how drastically sensitive the

model of a program is to the arities of the semaphores it uses. The left hand model is

obtained with a semaphore of arity 1 while the right hand one is obtained by setting the

arity to 2.

Example 6.4. The model depicted in Figure 12 was introduced by (Lipski and Papadim-

itriou (1981)) as an example of program without deadlock though its ‘request graph’ has

cycles. A careful examination reveals that there is indeed a ‘tunnel’ going through the

geometric forbidden space.

The ‘replacement’ shown in Figure 6 might seem cryptic in the discrete setting but as

shown in Figure 13, it becomes obvious in the light of the continuous one.
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Fig. 11. The tetrahemihexacron a.k.a. 3D Swiss Cross, and the ‘floating’ cube.

p

q

r

sem 1: u v w x y z

proc:

XXp = P(a);P(y);P(z);V(a);P(w);V(z);V(y);V(w)

XXq = P(u);P(v);P(a);V(u);P(z);V(v);V(a);V(z)

XXr = P(y);P(w);V(y);P(u);V(w);P(v);V(u);V(v)

init: p q r

Fig. 12. The geometric model of the Lipski algorithm.
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Fig. 13. Comparing the discrete and the continuous approaches: an admissible directed

path that meets a forbidden point and a possible replacement for it.

6.3. Uniform distance and weakly directed homotopy

Given a compact Hausdorff space K and a metric space (X, dX), the set of continuous

maps from K to X can be equipped with the uniform distance (Manetti, 2015, p.122)

d(f, g) = max{dX(f(k), g(k)) | k ∈ K} .

Any subset X ⊆ �G1� × · · ·× �Gn� is equipped with the distance dX defined in Sec-

tion 6.1. The projection of a directed path γ on �Gi� is denoted by γi.

From the computer science point of view, the next theorem states that the uniform

distance on directed paths is compatible with the action of admissible directed paths and

execution traces, which justifies the use of geometric models in the study of concurrency.

Let X be the geometric model of the program P . Given two subsets B and B′ of X, we

denote by dX [0,r](B,B′) for the set of directed paths γ : [0, r] → X such that ∂-γ ∈ B
and ∂+γ ∈ B′. This set inherits from the uniform distance.

Theorem 6.1. For all γ in dX [0,r](Bp, Bp′), there exists an open ball Ω centred at γ

such that all the elements of Ω induce the same action on valuations as γ, and if γ is an

execution trace, then so are all the elements of Ω.

Proof. By Section 6.2, the locally ordered space X is a subobject of �G1� × · · ·× �Gn�
with each Gi being the control flow graph of a process. The set of vertices of Gi is

denoted by Vi. For each coordinate i ∈ {1, . . . , n}, the subspace γi
-1(Vi) is the union

of finitely many pairwise disconnected compact intervals because γ is a directed path

(Proposition 6.1). As a consequence there exists a real number δ > 0 such that for all

i, j ∈ {1, . . . , n}, for all connected components I and J of γi
-1(Vi) and γj

-1(Vj), if I and

J are disjoint, then so are their δ-neighbourhoods¶.

In particular, for each i ∈ {1, . . . , n} and each connected component I of γi
-1(Vi), the

points γi(min I − δ) and γi(max I + δ) do not belong to Vi. Because each set Vi is finite,

the numbers dX(γi(min I− δ), Vi) and dX(γi(max I + δ), Vi) are non-zero. The collection

of numbers dX(γi(min I − δ), Vi), dX(γi(max I + δ), Vi), for i and I ranging through

{1, . . . , n} and the connected components of γi
-1(Vi), is thus finite and does not contain

¶ The δ-neighbourhood of a subset of a metric space is the union of all the open balls of radius δ centred

at some point of that set (e.g. the δ-neighbourhood of [a, b] is [a− δ, b+ δ]).
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zero. Note that we implicitly ignore min I−δ if it is strictly less than zero, and max I+δ

if it is strictly greater than r. We let ε > 0 be the least element of that collection, and

define Ω ⊆ dX [0,r](Bp, Bp′) as the open ball of radius ε centred at γ.

Given γ′ ∈ Ω, the points γ′i(min I− δ) and γ′i(max I+ δ) belong to the same connected

component of |Gi| \ Vi as the points γi(min I − δ) and γi(max I + δ). Since γ′i is a local

pospace morphism, the set γ′i
-1
(Vi)∩ [min I − δ,max I + δ] consists of a compact interval.

Indeed, the image of the restriction of γ′i to [min I − δ,max I + δ] is entirely contained in

some ordered open star centred at γi(min I), and γ′i(min I − δ) is before the centre while

γ′i(max I + δ) is after.

The case where I is the first (i.e. the leftmost) connected component of γi
-1(Vi) deserves

a special treatment. If 0 ∈ I (i.e. γi(0) ∈ Vi) then we also have γ′i(0) ∈ Vi because both γ

and γ′ start in the same canonical block. Otherwise, for the same reason, neither γi(0) nor

γ′i(0) belong to Vi. The same observation applies to the last (i.e. the rightmost) connected

component of γi
-1(Vi), yet with r instead of 0. Moreover, if I0 and I1 are two consecutive

connected components of γi
-1(Vi), then the image of the interval [max(I0)+δ,min(I1)−δ]

by γi does not meet Vi.

It follows that γi
-1(Vi) and γ′i

-1
(Vi) have the same number of connected components.

We denote by φi the poset isomorphism from the totally ordered collection of connected

components of γi
-1(Vi) to that of γ′i

-1
(Vi). Then for any connected component I of γi

-1(Vi),

the instructions λi(γi(min I)) and λi(γ
′
i(minφi(I))) are the same and φi(I) is contained

in the δ-neighbourhood of I:

φi(I) ⊆ [min I − δ; max I + δ] .

In particular for all i ∈ {1, . . . , n} the dipaths γi and γ′i share the same discretization.

Following Remark 4.2, we can suppose that the only instructions met are assignments,

branchings, and Skip. In order to avoid useless distinctions between assignments and

branching, the output of an instruction will indistinguishably denote the content of the

altered variable (in case of an assignment) or the chosen branch (otherwise).

For all i ∈ {1, . . . , n} and all connected components I of γi
-1(Vi), define τi(I) as the

greatest element of the set {min I,minφi(I)}. If I is the kth connected component of

γi
-1(Vi), starting the set of indices at 1, then τi(I) is the first instant at which both γi

and γ′i have executed exactly k instructions. In particular one always has the following

inequality:

min I − δ 6 τi(I) 6 max I + δ

We prove that for all i ∈ {1, . . . , n} and all connected components I of γi
-1(Vi), the

instructions λi(γi(min I)) and λi(γ
′
i(minφiI)) (which are the same) return the same

output after the executions of the sequences of multi-instructions associated with γ|[0,τi(I)]
and γ′|[0,τi(I)]. The result is obtained by induction on the finite totally ordered set

I =
{
I ⊆ [0, r]

∣∣ I connected component of γi
-1(Vi) for some i ∈ {1, . . . , n}

}
equipped with the lexicographic order (i.e. [a, b] 6 [c, d] when a < c, or a = c and b 6 d).

The output of the instruction λi(γi(min I)) only depends on the contents of finitely

many variables that are gathered in the set F . The idea is to apply the induction hy-
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pothesis to every ordered pair (j, J) where j ∈ {1, . . . , n} and J is the greatest connected

component of γj
-1(Vj) that is strictly less than I. That hypothesis provides us with in-

formation about the behaviour of γ and γ′ up to τj(J), but the latter might differ from

τi(I). So we have to analyse what can happen during the interval of time bounded by

the instants τi(I) and τj(J).

If the interval J meets the interval I, then neither the instruction λj(γj(min J)) nor

the instruction λj(γ
′
j(minφj(J))) (which are the same), alter the content of a variable of

F . The reason is that both γ and γ′ are dipath on the geometric model so they do not

meet any conflicting point. In that case, we may have τi(I) 6 τj(J) but it is harmless

with regards to the preceding remark. If the interval J does not meet the interval I then,

by definition of δ, we also have the inequality

max J + δ < min I − δ

from which we deduce that τj(J) < τi(I). Whether the intervals I and J meet or not, we

still have to treat the case of the connected components J ′ of γj
-1(Vj) that are strictly

greater than J . As above, either J ′ meets I and therefore λj(γj(min J)) does not alter any

variable appearing in F , or max I < min J ′. But in the later case, by definition of δ, we

also have max I+δ < min J ′−δ, from which we deduce that τi(I) < {min J ′,minφj(J
′)}.

If γ is an execution trace and if the instruction λi(γi(min I)) is a branching, then its

output is the arrow α of the graph Gi such that γi visits the segment {α}×]0, 1[ just

after it leaves the point γi(min I). According to what we have proven, the branchings

λi(γi(min I)) and λi(γ
′
i(minφiI)), which are the same, return the same output at the

end of the directed paths γ|[0,τi(I)] and γ′|[0,τi(I)]. Hence γ′ is an execution trace too.

Continuous deformations of paths are basic objects in algebraic topology which have

a natural counterpart in directed topology. Weakly directed homotopies have been in-

troduced by (Fajstrup et al. (2006)), yet Definition 6.4 slightly differs from the original

concept: instead of requiring that the intermediate paths be inextendible, we require that

they all have the same endpoints, as usual in algebraic topology (Brown, 2006, p.207).

Definition 6.4. Let γ, δ : [0, r] → X be two paths on a topological space with r > 0,

γ(0) = δ(0), and γ(r) = δ(r). A homotopy h from γ to δ is a continuous map defined

over [0, r]× [0, q] for some q > 0 such that:

— for all s ∈ [0, q], h(0, s) = γ(0) and h(r, s) = γ(r), and

— for all t ∈ [0, r], h(t, 0) = γ(t) and h(t, q) = δ(t).

Assuming that X is a local pospace, h is said to be weakly directed when all the inter-

mediate paths h( , s) are directed. Two directed paths are said to be weakly dihomotopic

when there exists a weakly directed homotopy between them. Given a conservative pro-

gram, we thus obtain an equivalence relation upon the collection of directed paths on its

geometric model. The sequence of weakly directed homotopies on the “flat” torus which

are depicted in Figure 14 shows that, as in classical algebraic topology, the “vertical”

directed circle is weakly dihomotopic to the “horizontal” one. The effect of weakly di-

rected homotopies on the corresponding sequences of multi-instructions is illustrated in

Figure 15 and explained below.
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Fig. 14. Dihomotopies on the flat torus.
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Fig. 15. Timelines and sequences of multi-instructions interpreting weakly dihomotopic

directed paths.

Corollary 6.2. Two weakly dihomotopic directed paths on the geometric model of a

conservative program induce the same action on the valuations. Moreover, one is an

execution trace if and only if the other is so.

Proof. Let h be a weakly directed homotopy. By a standard result from general topol-

ogy (Manetti, 2015, p.152) and with the notation of Definition 6.4, the mapping

ĥ : s ∈ [0, q] 7→ (t ∈ [0, r] 7→ h(t, s) ∈ X)

is a path on dX [0,r](Bp, Bp′). Its image is thus compact, we cover it with open balls given

by Theorem 6.1. By the Lebesgue number theorem (Manetti, 2015, p.192) there exists a

real number ε > 0 such that |s− s′| < ε implies that ĥ(s) and ĥ(s′) belong to the same

open ball from the covering. The conclusion follows.

Building on the geometric models and following the intuition that Cartesian product of

models should represent parallel composition, we introduce another notion of indepen-

dence that only applies to conservative programs.
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Definition 6.5. The conservative programs P1, . . . , PN are said to be model independent

when they are compatible (Definition 2.3) and the following equality holds.

JP1| · · · |PN K = JP1K× · · · × JPN K

Remark 6.2. It readily comes from Definition 2.4 that syntactically independent pro-

grams are model independent. However, model independent programs might not be syn-

tactically independent. It suffices to consider the program P made of two copies of

the process P (a);P (c);V (c);V (a) and the program Q made of two copies of the pro-

cess P (b);P (c);V (c);V (b) assuming that a and b are semaphores of arity 1 while c is a

semaphore of arity 2. Then P and Q are compatible in the sense of Definition 2.3 therefore

we can consider their parallel composition P |Q. A direct yet rather tedious calculation

proves that JP |QK = JP K× JQK. But one can also get convinced of this fact by a simple

reasoning. Due to the semaphore a, the two processes of P cannot hold more that one

occurrence of c. As the same applies to program Q, the parallel composition P |Q never

uses more than two occurrences of c. Consequently, the forbidden region generated by

c is included in the forbidden region generated by a and b. From the computer science

point of view, it means that c has no influence on the executions of the program P |Q so

it is harmless to drop it. Denote by P ′ and Q′ the programs obtained by removing the

instructions P (c) and V (c) from P and Q, then P ′ and Q′ are separated and we have

JP |QK ∼= JP ′|Q′K. This example is due to (Balabonski and Haucourt (2010)).

Theorem 6.2. Model independent programs are observationally independent.

Proof. Let S1 t · · · t SN be the associated partition of the set of running processes of

the parallel composition P1| · · · |PN (Definition 3.6) with n being the total number of run-

ning processes. Let δ be an execution trace (Definition 3.4) and denote by (µ0, . . . , µq−1)

its associated sequence of multi-instructions. First, we treat the case where the permu-

tation is a rolling (0 · · · q − 1) compatible with δ (Definitions 3.6 and 3.7). The idea is to

consider a lifting of δ and to deform it (by a weakly directed homotopy) so it becomes a

directed path whose discretization is associated with the sequence of multi-instructions

(µ′0, . . . , µ
′
q−1) with µ′k = µρ−1(k). If we succeed, then we have, by Corollary 6.2, that

both sequences of multi-instructions (µ0, . . . , µq−1) and (µ′0, . . . , µ
′
q−1) come from execu-

tion traces and induce the same action on valuations. The general case will follow from

the rolling decomposition of the compatible permutation to treat (Corollary 3.1). As ρ

is compatible with δ we have J ∩ J ′ = ∅ with J and J ′ defined below.

J =
{
j ∈ {1, . . . , N}

∣∣ domµq−1 ∩ Sj 6= ∅
}

J ′ =
{
j ∈ {1, . . . , N}

∣∣ domµk ∩ Sj 6= ∅ for some k ∈ {0, . . . , q − 2}
}

The projections projJ and projJ′ send a point of �G1 � × · · ·× �Gn � to the extracted

tuples of components whose indices respectively belong to the following sets.⋃
j∈J

Sj
⋃
j′∈J′

Sj′

Therefore we have a lifting γ of δ (Definition 6.2) that can be written as a concatenation

γ = γJ′ ·γJ such that projJ ◦γJ′ and projJ′ ◦γJ are constant. As an instance of Godement
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exchange law between composition and concatenation, we have the directed paths γ1 and

γ2 defined below.

γ1 = projJ′ ◦ γ = γJ′ · cst γ2 = projJ ◦ γ = cst · γJ

So we have γ = (γ1, γ2) with the convention that we omit all the ‘harmless’ components,

that is to say the ones in following set.

{1, . . . , n} \
⋃

j∈J∪J′
Sj .

Since P1, . . . , PN are model independent, the geometric model JP1| · · · |PN K is the local

pospace product JP1K× · · · × JPN K. Therefore, assuming that both γ1 and γ2 are defined

over [0, 1], the mapping below induces a local pospace morphism from [0, 1]2 to the

geometric model of the parallel composition.

(x, y) 7→ (γ1(x), γ2(y))

By precomposing with a weakly directed homotopy from [0, 1] × {0} ∪ {1} × [0, 1] to

{0} × [0, 1] ∪ [0, 1] × {1} we obtain a weakly directed homotopy from γ = γJ′ · γJ to

γ′ = γ′J · γ′J′ with γJ′ , γJ , γ′J , and γ′J′ being characterized by the relations below:

— projJ ◦ γ′J = projJ ◦ γJ and projJ′ ◦ γ′J′ = projJ′ ◦ γJ′ , and

— projJ ◦ γ′J′ = cst and projJ′ ◦ γ′J = cst .

The sequence of multi-instructions associated with γ′ is (µ′0, . . . , µ
′
q−1) and we are done.

Remark 6.3. From Remark 3.1 we deduce that observationally independent programs

might not be model independent. Gathering the results of the article, we have proven

the following chain of strict implications.

syntactic independence⇒ model independence⇒ observational independence

Relevance of model independence goes beyond the theoretical aspect since there exists a

unique decomposition theorem for cubical regions together with factorization algorithms

(Balabonski and Haucourt (2010); Ninin (2017)). In addition, the Boolean algebra of

n-dimensional cubical regions is the n-fold tensor product of the Boolean algebra of

1-dimensional cubical regions (Haucourt and Ninin (2014)). These results should be ex-

tendible to all isothetic regions and gathered in a more general formulation.

7. Isothetic regions over compact metric graphs

The canonical subsets of the local pospace �G1 � × · · ·× �Gn � obviously form a finite

Boolean subalgebra of its powerset. Moreover, one easily checks that the topological

interior and closure of a canonical subset of �G1� × · · ·× �Gn� is again canonical. In fact

we even prove that the set of points of �G1� × · · ·× �Gn� that are visited by directed

paths starting in a canonical subset of �G1� × · · ·× �Gn� is canonical. The purpose of

this section is to extend the family of canonical subsets to a collection enjoying the same

properties but that depends on the local pospace structure of �G1� × · · ·× �Gn� instead
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of the graphs G1, . . . , Gn. As a Boolean algebra, it is generated by the connected subsets

of the compact‖ metric graphs �Gi� for i ∈ {1, . . . , n} and comes with basic operators

which are extensively described in the sequel. Our intention is to convince the reader

that all of them derive from basic operations over the intervals of R and therefore can

be automated.

A finite product of nonempty intervals is called a cube. One of the remarkable properties

of the collection of cubes is that it is stable under monotonic union. This feature is

entirely due to the fact that a monotonic union of connected sets is connected. Another

remarkable property is that the collection of finite unions of cubes of a given dimension n

forms a Boolean subalgebra of Pow(Rn). In this section, we adapt the preceding result to

products of compact metric graphs instead of Rn. In order to facilitate the presentation,

the terms of that product are supposed to be equal to �G� for a given finite graph G.

Proposition 7.1. The collection R1G of all finite unions of connected subsets of |G|
forms a Boolean subalgebra of Pow(|G|) which is isomorphic to the following Cartesian

product of Boolean algebras

R1G ∼= Pow(V )× (R1]0, 1[)cardA

with A (resp. V ) being the set of arrows (resp. vertices) of G, and R1]0, 1[ being the

Boolean algebra of finite unions of subintervals of ]0, 1[.

Proof. First note that R1G is always stable under binary unions. Moreover, there is a

canonical bijection between the connected components of |G| and that of G. Since the

latter is finite, |G| belongs to R1G. Let C be a connected subset of |G|. For all arrows

α, the set {α}×]0, 1[ ∩ Cc is the union of at most two separated intervals (i.e. contained

in disjoint open subsets). From the last remark and the finiteness of G, we deduce that

R1G is stable under complement and therefore that it is indeed a Boolean subalgebra of

Pow(|G|). The isomorphism readily follows.

Definition 7.1. A block of dimension n ∈ N, or n-block, is the product of n connected

nonempty subsets of the metric graph |G|. A collection of blocks is called a block covering

of X ⊆ |G|n when the union of its elements is X. A block contained in X is said to be

a block of X. Such a block is said to be maximal when no block of X strictly contains

it. The maximal block covering of X ⊆ |G|n is the set of all its maximal blocks, it is

denoted by αn(X). In particular α1(X) is the collection of connected components of X.

Also note that αn(X) = ∅ if and only if X = ∅. An isothetic region of dimension n is

a subset of |G|n that admits a finite block covering. The collection of isothetic regions

of dimension n is denoted by RnG and the collection of sets of n-blocks is denoted by

CovnG. The latter is preordered by the relation 4 defined below.

C 4 C ′ ≡ ∀w ∈ C ∃w′ ∈ C ′, w ⊆ w′

If G is isomorphic to 0→ 1→ · · · → x→ x+ 1 for some x ∈ N, then the corresponding

regions are said to be cubical.

‖ It is well-known that the metric graph |G| is compact iff the graph G is finite.
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The term ‘isothetic region’ is borrowed from (Preparata and Shamos, 1985, p.329). By

Corollary 6.1, the geometric model of any conservative program is an isothetic region.

Remark 7.1. The maximal block covering of X may contain strict sub-coverings of X.

For example, consider the maximal block [1, 2]× [0, 3] of [0, 2]2 ∪ [1, 3]2.

Remark 7.2. Given two subsets X and X ′ of |G|n, any maximal block of the intersection

X ∩X ′ is a maximal block of w ∩ w′ for some maximal blocks w of X and w′ of X ′.

Lemma 7.1. Any block of X ⊆ |G|n is contained in a maximal block of X.

Proof. Let w be a block of X ⊆ |G|n. By the Hausdorff maximal principle there exists

some maximal ⊆-chain of blocks of X containing w. The union of this chain is calculated

component by component, each of them being a monotonic union of connected subsets

of the metric graph |G|. The result is a maximal block of X containing w.

Remark 7.3. Given two maximal block coveringsD andD′, the following are equivalent:

— D = D′

—
⋃
D =

⋃
D′

— any block of D is included in a block of D′, and vice versa.

Proposition 7.2. We obtain a Galois connection (γn, αn) between CovnG and Pow(|G|n)

defining γn(D) as
⋃
D for all D ∈ CovnG.

CovnG
γn //

Pow(|G|n)
αn

oo

In particular γn ◦ αn = id. That Galois connection induces an isomorphism of Boolean

algebras between Pow(|G|n) and the image of αn (i.e. the collection of maximal block

coverings).

Proof. The collection CovnG is equipped with the preorder 4 from Definition 7.1.

One readily checks that both αn and γn are monotonic. A point of X is connected,

so it can be seen as a block. The equality γn ◦ αn = id thus follows from Lemma 7.1.

Remark 7.3 actually states that the preorder 4 induces a partial order on the image of

αn and that the restriction of αn ◦ γn to the image of αn is the identity. Hence (γn, αn)

induces a poset isomorphism between Pow(|G|n) and the image of αn. Boolean algebras

can be defined as partially ordered sets satisfying some properties expressed in terms of

finite least upper bounds and finite greatest lower bounds. Their morphisms are poset

morphisms that preserve these bounds. Thus any poset that is isomorphic to a Boolean

algebra is a Boolean algebra itself. Hence the image of αn is a Boolean algebra.

We now prove that X ⊆ |G|n is an isothetic region iff its maximal block covering is

finite, thus giving the higher dimensional version of Proposition 7.1 and an analog of

Proposition 7.2 for isothetic regions. To achieve this aim, we examine how the maximal

blocks of a binary intersection and of a complement are obtained from the maximal blocks

of their operands. The next statement is a standard result from general topology.
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Lemma 7.2. The connected components of a product of spaces are the products of

connected components of those spaces.

Lemma 7.3. If w = w1 × · · · ×wn is a block, then αn(wc) is the collection of blocks w′

such that there exists i ∈ {1, . . . , n} such that w′i is a connected component of |G| \ wi
and for j 6= i, w′j is a connected component of |G|. Moreover, if the graph G is finite,

then wc has finitely many maximal blocks.

Proof. The complement of a block w can be written as the finite union of the sets

Xi = |G| × · · · × |G| × wci︸︷︷︸
ith position

×|G| × · · · × |G|

for i ranging through {1, . . . , n}. Given a block w′ of wc there exists i ∈ {1, . . . , n}
such that w′i 6⊆ wi. Since w′ is connected so is w′i which is therefore contained in some

connected component of wci (i.e. |G| \wi). In other words w′ is contained in Xi and thus

in one of its connected components, which has the expected form by Lemma 7.2. The

finiteness derives from Proposition 7.1.

Remark 7.4. Computing the maximal block covering of X ∩X ′ amounts to gather all

the maximal block coverings of w∩w′ for w ∈ αn(X) and w′ ∈ αn(X), and then to drop

all the elements that are strictly contained in another one. Fortunately, the maximal block

covering of a given intersection w ∩ w′ is easy to compute. It is indeed the collection of

products c1×· · ·×cn where for all i ∈ {1, . . . , n}, ci is a connected component of wi∩w′i.
That description is obtained from the set theoretical relation below and Lemma 7.2.

w ∩ w′ = (w1 ∩ w′1)× · · · × (wn ∩ w′n)

The collection of finite sets of n-blocks is denoted by Covnf G.

Theorem 7.1. Suppose that the graph G is finite. The collection of n-dimensional iso-

thetic regions RnG forms a Boolean subalgebra of Pow(|G|n) and the Galois connection

from Proposition 7.2 restricts to a Galois connection between Covnf G and RnG, which

induces an isomorphism of Boolean algebras between RnG and the image of αn (i.e. the

collection of finite maximal block coverings).

Covnf G
γn // RnG
αn

oo

Proof. From Remark 7.2, Lemma 7.3 (which holds because G is finite), and De Mor-

gan’s laws, we deduce that the complement of an isothetic region has finitely many

maximal blocks. It follows that any subset of |G|n is an isothetic region iff it has finitely

many maximal blocks. The restriction of αn is therefore well-defined.

The collection RnG has further interesting stability properties which we now examine.

The interior and the closure of X are respectively the greatest open subset of |G| con-

tained in X and the the least closed subset of |G| containing X. They are denoted by

int(X) and clo(X). The closure of X is also denoted by X. Also denote the boundary of

X (i.e. the set difference clo(X) \ int(X)) as bnd(X).
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Proposition 7.3. The Boolean algebra RnG is stable under closure, boundary, and

interior operators.

Proof. The closure operator preserves finite products, therefore it preserves blocks.

Moreover it preserves finite unions, hence it preserves isothetic regions. The boundary

of a subset is the intersection of its closure and the closure of its complement (Manetti,

2015, p.44), hence it also preserves isothetic regions. The interior of a set is difference

between its closure and its boundary. It follows that the interior operator also preserves

isothetic regions.

From a practical point of view, the crucial property of isothetic regions is that the Boolean

algebra RnG also inherits from the local pospace structure of �G�n.

Definition 7.2. The forward operator is defined for all subsets A and B of a local

pospace X as the union of the images of the directed paths on A ∪B starting in A.

frw(A,B) =
⋃{

img(δ)
∣∣ δ directed path of X; ∂-δ ∈ A; img(δ) ⊆ A ∪B

}
Dually, the backward operator is defined as the union of the images of the directed paths

on A ∪B ending in A.

bck(A,B) =
⋃{

img(δ)
∣∣ δ directed path of X; ∂+δ ∈ A; img(δ) ⊆ A ∪B

}
Until the end of this section, capital letters A, B and C, with or without index, are

subsets of a local pospace X. Yet, Definition 7.2 obviously makes sense for d-spaces

(Grandis (2003)) instead of local pospaces.

Remark 7.5. Both operators are ⊆-increasing in both variables. Also note that for all

subsets A and B, we have A ⊆ frw(A,B) ⊆ A∪B, and that if A and B are disconnected

(i.e. neither A nor B meets the closure of the other) then frw(A,B) = A. Note however

that the converse is false (e.g. A = [1, 2] and B = [0, 1]). The same obviously holds for

the backward operator. Moreover, if A is (path) connected then so are frw(A,B) and

bck(A,B).

Lemma 7.4. If Ak ⊆ Bk for all k ∈ {1, . . . , n}, then the forward and the backward

operators preserve products.

frw(A1 × · · · ×An, B1 × · · · ×Bn) = frw(A1, B1)× · · · × frw(An, Bn)

bck(A1 × · · · ×An, B1 × · · · ×Bn) = bck(A1, B1)× · · · × bck(An, Bn)

Proof. If δ is a directed path on B1 × · · · × Bn with ∂-δ ∈ A1 × · · · × An, then

for all k ∈ {1, . . . , n}, prk ◦ δ is a directed path on Bk whose source belongs to Ak.

Conversely, given some n-tuple of directed paths (δ1, . . . , δn) with δk directed path on

Bk with its source in Ak, the directed path defined by t 7→ (δ1(t), . . . , δn(t)) has its source

in A1 × · · · ×An and its image contained in B1 × · · · ×Bn.

The inclusion assumption cannot be dropped from the statement of Lemma 7.4, indeed

taking the disconnected sets A = [0, 1[×[0, 1] and B = [1, 2]×]1, 2] we have frw(A,B) = A

though frw([0, 1[, [1, 2]) = frw([0, 1], ]1, 2]) = [0, 2].
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Definition 7.3. For all A ⊆ X we define

— the future closure A
f

as frw(A,A) and the past closure A
p

as bck(A,A).

— the future cone conef(A) as frw(A,X) and the past cone conep(A) as bck(A,X).

— The subset A is said to be future stable when conefA = A. The past stable subsets

are defined dually.

Remark 7.6. The future (resp. past) cone is future (resp. past) stable. A subset is

future stable iff its complement is past stable. The collection of future (resp. past) stable

subsets of X forms a sub-complete lattice of Pow(X).

Remark 7.7. As a consequence of Lemma 7.4, the future closure and the future cone

operators preserve products.

A1 × · · · ×An
f
= A1

f × · · · ×An
f

conef(A1 × · · · ×An) = conef(A1)× · · · × conef(An)

Dually, the same holds for the past closure and the past cone operators.

From the operators of Definition 7.3 one defines some meaningful new ones.

Definition 7.4. The future escape of A is the set of points of X whose future cones

avoid A. It is denoted by escapefA. the past attractor of A is the set of points x ∈ X
such that any directed path starting at x can be extended to a directed path arriving

in A. It is denoted by attpA. The past escape and the future attractor of A, denoted by

escapepA and attfA, are defined dually.

From a mere reformulation of Definition 7.4 we obtain the following fact.

Proposition 7.4. The past attractor is future stable and can be written in terms of

past cone, future escape, and Boolean operators.

attpA = conepA \ conep
(

(conepA)c
)

= escapef(escapefA)

In general, the past attractor is not past stable.

Lemma 7.5. For all A ⊆ B ⊆ C we have

frw(A,C) = frw(frw(A,B), C) and bck(A,C) = bck(bck(A,B), C)

Proof. The left member is contained in the right one by Remark 7.5 and because

A ⊆ frw(A,B) (no assumption upon A, B, nor C is required here). Conversely we have

frw(A,B) ⊆ B ⊆ C, then let γ be a directed path from frw(A,B) to C whose image is

contained in C. In particular there exists a directed path δ from A to ∂-γ whose image

is contained in B, hence in C. Their concatenation γ · δ therefore starts in A and has its

image contained in C.

Once again the inclusion assumption cannot be dropped. Taking A = [0, 1], B = [1, 2],

and C = [2, 3] provides an obvious counter-example. The next proposition is a key

ingredient when it comes to practical computations.
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Proposition 7.5. Let A be a subset of a local pospace X. Under the assumption that

δ -1(A) has finitely many connected components for all directed paths δ on X, the forward

and the backward operators can be written as follows.

frw(A,B) = A ∪ frw(A
f ∩B,B) ∪ frw(A ∩Bp

, B)

bck(A,B) = A ∪ bck(A
p ∩B,B) ∪ bck(A ∩Bf

, B)

Proof. Let δ be a directed path on A ∪ B starting in A and such that ∂+δ 6∈ A

(hence ∂+δ ∈ B). Let C be the connected component of δ -1(B) that contains 1 and

denote by t0 its greatest lower bound. Then any neighborhood of t0 contains some t < t0
such that δ(t) 6∈ B, and therefore δ(t) ∈ A. By hypothesis on A the last connected

component of δ -1(A) makes sense. Its least upper bound is t0. Then δ(t0) ∈ Af
. If δ(t0) ∈ B

then δ|[t0,1] is a directed path whose image is contained in B. It follows that ∂+δ ∈
frw(A

f ∩B,B). If δ(t0) 6∈ B the image of δ|[t0,1] is then included in B
p

and δ(t0) ∈ A
(since img(δ) ⊆ A ∪ B). It follows the image of δ|[t0,1] in included in A ∩Bp ∪B and

therefore ∂+δ ∈ frw(A ∩Bp
, B).

Conversely, suppose there exists a directed path δ starting in A
f ∩B and whose image

is contained in B. Then consider a directed path γ starting in A and such that ∂+γ = ∂-δ.

The image of the conctenation δ ·γ is then contained in A∪B. Therefore ∂+δ ∈ frw(A,B).

The inclusion frw(A ∩Bp
, B) ⊆ frw(A,B) follows from Remark 7.5. The result for the

backward operator is obtained by duality.

Note that the extra hypothesis is only required for the first parameter. Also note that in

the case where X is the d-space R equipped with the chaotic direction (i.e. all continuous

maps from [0, 1] to R are directed) this property fails for all A but ∅ and R. Given any

t ∈ R there is indeed a path converging to t that oscillates infinitely many times around t.

As we shall see the isothetic regions behave much better. From now on we strengthen the

hypotheses upon local pospaces represented by capital letters A, B, and C assuming they

are actually isothetic regions contained in X = �G�n. The next result is an immediate

consequence of Proposition 6.1.

Proposition 7.6. For all isothetic regions A and all directed paths γ on �G�n, the inverse

image γ -1(A) has finitely many connected components.

Corollary 7.1. Under the hypotheses of Lemma 6.1 (i.e. there exists a directed path

starting in Bp, ending in Bp′ , and whose image is contained in Bp ∪Bp′) we have

frw(Bp, Bp′) = bck(Bp′ , Bp) = Bp ∪Bp′ .

Theorem 7.2.

The Boolean algebra RnG is stable under forward and backward operators.

Proof. First we prove that for all isothetic regions A and B compatible with the canon-

ical partition (Definition 6.1) and for all directed paths γ on A ∪B starting in A, every

canonical block met by γ is contained in frw(A,B). Let Bp1 , . . . , BpN be the discretization

of γ (Definition 6.2). By definition Bp1 meets A which contains it by compatibility with
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the canonical partition. Suppose that N > 2. By Corollary 7.1 and because the forward

operator is monotonic in both arguments, frw(A,B) also contains Bp2 . In particular we

have frw(A,B) = frw(A ∪Bp2 , B). Let γ′ be a restriction of γ whose discretization is

Bp2 , . . . , BpN . Then γ′ is a directed path on A ∪ B starting in A ∪ Bp2 . The result im-

mediately follows from an induction on the parameter N > 1. Formally we have proven

the following inclusion, its converse being an immediate consequence of Definition 7.2.⋃{
Bp
∣∣ ∃δ directed path on A ∪B that starts in A and meets Bp

}
⊆ frw(A,B)

The general case is obtained by replacing each graph Gi by a graph G′i with the same

reduced graph (Remark 6.1), the graphs G′i being chosen so that A and B are compatible

with the canonical partition of �G′1� × · · ·× �G′n�. For i ∈ {1, . . . , n}, let G′i be the graph

whose vertices are all the vertices of Gi plus all the points of �Gi� that belongs to the

boundary of proji(M) for some maximal block M of A or B. The set V ′i of vertices of

G′i is thus a discrete subspace of �Gi�, the arrows of G′i are the connected components of

�Gi� \V ′i . Each of them is isomorphic, as a pospace, to ]0, 1[, so the source and the target

maps of G′i are defined accordingly. In particular one has a local pospace isomorphism

Φi from �Gi � to �G′i � whose restriction to V ′i is the identity. The tuple (Φ1, . . . ,Φn)

is thus a local pospace isomorphism Φ from �G′1 � × · · ·× �G′n � to �G1 � × · · ·× �
Gn�. Due to its specific form Φ also induces an isomorphism between the corresponding

Boolean algebras of isothetic regions. In addition Φ(A) and Φ(B) are compatible with the

canonical partition of �G′1� × · · ·× �G′n� and therefore frw(A,B) = Φ-1(frw(Φ(A),Φ(B)))

is an isothetic region. Note that Gi and G′i have isomorphic reduced graphs.

Corollary 7.2. Given isothetic regions A and B, the sets A
f
, A

p
, frw(A

f ∩B,B),

bck(A
p ∩B,B), frw(A ∩Bp

, B), and bck(A ∩Bf
, B) are isothetic regions.

Corollary 7.2 combined with Propositions 7.5 and 7.6 provides the algorithms that com-

pute the forward and backward operators on isothetic regions. The next corollary imme-

diately derives from Proposition 7.4.

Corollary 7.3. If A,X ∈ RnG with A ⊆ X, then the future and the past attractors of

A (in X) belong to RnG.

8. Perspectives and related works

We discuss some related works, further developments, and open problems related to

computer science and mathematics.

8.1. Precubical sets

The category of precubical sets can be defined as the presheaf category Set�
+op

where

�+ is the small category generated by the face inclusions with ε ∈ {0, 1}, n ∈ N, and

i ∈ {0, . . . , n}.

δni,ε : (x0, . . . , xn−1) ∈ [0, 1]n 7→ (x0, . . . , xi−1, ε, xi, . . . , xn−1) ∈ [0, 1]n+1



E. Haucourt 40

6⊆

Fig. 16. Cartesian product vs tensor product of precubical sets.

Its connection with concurrency theory is brought out by labelling precubical set elements

to obtain the notion of a higher dimensional automaton (Pratt (1991); van Glabbeek

(1991))††. Given a precubical set K, the elements of K(n) for n ∈ N are its n-dimensional

elements. The dimension of K is the least natural number d such that K(n) is empty for

all n > d. The category of graphs thus appears as the full subcategory of 1-dimensional

precubical sets. Following the way sequences of multi-instructions are built from directed

paths on tuple of graphs (Definition 3.4) an element of dimension n is an intermediate

position from which n processes can execute their next instruction simultaneously. This

strongly suggests that the running processes G1, . . . , Gn of a program (Definition 2.2)

should be combined to form a precubical set of dimension n from which the forbidden

elements would be removed. Cartesian product naturally comes to mind but actually

does not fit at all because, for example, a Cartesian product of graphs is still a graph. In

fact, the right notion is that of tensor product of precubical sets (see Figure 16) which is a

slight and even simpler variation on the tensor product of cubical sets (Brown et al., 2011,

p.373). In particular the elements of G1⊗· · ·⊗Gn are precisely the points of G1, . . . , Gn
(Definition 2.2). Tensor products of graphs thus seem to be a reasonable alternative to

Cartesian products of metric graphs. However, removing an element e from a precubical

set is not an obvious operation: in doing so, one also has to drop all the elements e′ whose

border contains e, and so on so forth. From the mathematical point of view, the problem

is that the subobjects of a precubical set do not form a Boolean algebra. Therefore, mod-

elling parallel programs by means of higher dimensional automata, we implicitly make a

strong assumption which actually derives from the mere presence of the face operators.

The upper corner of an n-dimensional cube c is labelled with a tuple of instructions

among which only a subset of n components, namely {i ∈ {1, . . . , n} | ci is an arrow},
can be executed in parallel. The upper corner of any back face of that cube has the same

upper corner, but the subset of available instructions now contains n′ elements, with n′

being the dimension of that face. According to the foregoing interpretation, it means

that if a multi-instruction is admissible, all its sub-multi-instructions are so. In other

words, the expressiveness of higher dimensional automata easily allows one to prevent

processes from synchronizing, but not to force them to synchronize. In this context, we

cannot express that all the instructions of a given multi-instruction must be executed si-

multaneously. Specifically, the ‘wait’ instruction W ( ) has no obvious semantics in terms

†† A detailed account of the origin of higher dimensional automata as well as their relation to other models

of concurrency can be found in (Pratt (2000)). The similar notion of a higher dimensional transition

system induces a category that is proven to be equivalent to that of non-degenerate higher dimensional
automata (Cattani and Sassone (1996)). The relation between both notions has been thoroughly

studied by (Gaucher (2010)). Many traditional models of concurrency are actually subsumed by

higher dimensional automata (van Glabbeek (2006); Goubault and Mimram (2012)).
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of higher dimensional automata. For example, if b is a synchronization barrier of arity

2 and s is a square in some higher dimensional automata, then the upper corner of s

cannot be labelled with (W (b),W (b)). As suggested by (Fahrenberg and Legay (2015))

one could relax the definition of precubical sets allowing the face maps to be partial, but

this approach would come with many technical issues we do not want to deal with here.

One of them being that the face maps, which send n-dimensional elements to (n − 1)-

dimensional ones, do not ‘generate’ partial precubical sets. To conclude this section, we

draw reader’s attention to the fact that synchronizing instruction like ‘wait’ are by no

means artificial, they are in fact an essential feature of modern parallel programming

(POSIX Thread).

8.2. A closely related work

The present paper was written in parallel with a book dealing with the same subject (Fa-

jstrup et al. (2016)). However, their approaches differ on several points. The book is based

on the toy language PIMP (p.8), viz a parallel extension of the language IMP (Winskel

(1993)) together with Dijkstra’s instructions P ( ) and V ( ) (p.27), allowing the parallel

composition operator to occur anywhere in a program. On the contrary we only consider

programs with parallel composition in outermost position. For example we reject the

program x:=0;(x:=1||y:=1);y:=0. That restriction allows simple middle-end representa-

tions of programs (Section 2) and actually preserves us from handling oversized models.

In the book, deciding whether a program is conservative or not actually requires to com-

pute (at least) its transition graph (p.13), that is to say the one-dimensional skeleton of

its precubical model. By opposition, we only have to deal with each sequential process

independently from the others (Lemma 4.1). In fact the geometric models described in

the book are built inductively, and involve tensor products of precubical sets which are

responsible for combinatorial explosions (p.62). On the contrary, a careful examination of

the framework offered by isothetic regions reveals that in practice, it can be used without

performing any tensor product of precubical sets. From the semantic point of view, the

geometric models defined in the book do not take conflicts (nor synchronization barriers)

into account. Instead, a program is said to be coherent precisely when it satisfies the

conclusion of Corollary 6.2. Moreover, the presence of synchronisation instructions W ( )

in a given program is not without consequences for the topology of its geometric model.

If such an instruction actually contributes to the forbidden region of a program, then its

geometric model is not locally compact. In particular, the results from (Fajstrup (2005))

and (Krishnan (2013)) cannot be applied to such isothetic regions. The cubical region

{(x, y) ∈ R2 | x = 0⇔ y = 0}, which is depicted in Figure 9, is the simplest illustration

of that phenomenon.
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8.3. Hemi-metric spaces

A hemi-metric‡‡ on a set X is a mapping d from X × X to R+ ∪ {∞} satisfying the

triangle inequality and d(x, x) = 0 for all x ∈ X. The ordered pair (X, d) is called a

hemi-metric space (Goubault-Larrecq, 2013, p.203). For example, a natural hemi-metric

on the unit circle consists of defining the distance d(p, q) from p to q as the minimal

length of clockwise arcs from p to q. In that case d(q, p) = 2π − d(p, q). In general, the

length `(γ) of a path γ on a metric space (X, d) is the supremum of the sums

N∑
k=0

d
(
γ(tk), γ(tk−1)

)
taken over all N ∈ N and all the finite sequences t0 < . . . < tN with dom γ = [t0, tN ]

(Bridson and Haefliger, 1999, p.12). If X is an isothetic region together with the distance

dX introduced in Section 6.1, we obtain a hemi-metric on X defining the distance from p

to q as the infimum of `(γ) over all the directed paths γ from p to q, with the convention

that the infimum of the empty set is ∞ (Bridson and Haefliger, 1999, p.32).

Together with 1-Lipschitz maps, viz f : X → Y such that dY (f(x), f(x′)) 6 dX(x, x′)

for all x, x′ ∈ X, hemi-metric spaces form a cocomplete category (Goubault-Larrecq,

2013, p.236). Since the latter category naturally contains cubes in all dimensions we can

define the hemi-metric realization of precubical sets, which is studied and compared to

the usual geometric realization by (Goubault and Mimram (2016)).

8.4. Continuous Kripke structures

Drawing from (Clarke et al., 2000, p.14) we define a Kripke structure over a set AP of

atomic propositions as a triple M = (S,R,L) where:

— S is the finite set of states.

— R ⊆ S × S is a binary relation called the accessibility relation.

— L : S → Pow(AP) labels each state with the set of atomic propositions that are true

in that state.

Following (Blackburn et al., 2008, p.9), the syntax of the modal language is given below.

φ ::= p | ⊥ | (¬φ) | (φ ∨ φ) | ♦φ

It is interpreted, for any state s, as follows:

— M, s 
 p iff p ∈ L(s)

— M, s 
 ⊥ is false

— M, s 
 φ1 ∨ φ2 iff M, s 
 φ1 or M, s 
 φ2
— M, s 
 ♦φ iff there exists a sequence of states s0s1s2 . . . sN such that M, sN 
 φ,

s0 = s, and si−1Rsi or si−1 = si for all i ∈ {1, . . . , N}.
In doing so, we drift from the orginal approach (Blackburn et al., 2008, p.9) by implicitly

assuming that (S,R) is a preorder. Therefore it is natural to focus on the corresponding

‡‡ See (Lawvere (1973)) for a historical reference.
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modal logic, to wit S4. In particular (S,R) can be understood as a graph G whose

vertices are the states and whose arrows are the ordered pairs (s, s′) such that sRs′. We

then ask whether (S,R), which is called a frame in (Blackburn et al., 2008, p.16), can

be replaced by the locally ordered metric graph �G�. In that case the sequences of states

are replaced by directed paths on �G� and the language is interpreted as above except

for the operator ♦ whose semantics is adapted accordingly:

— M, s 
 ♦φ iff there exists a directed path on �G� from s to s′ such that M, s′ 
 φ.

According to the description of the metric graph given at the beginning of Section 6.1,

the set S is actually a finite subspace of �G�. Hence we have to equip �G� with a labelling

L′ that extends L in order to obtain some kind of Kripke structure over �G�. In this

regard we observe that, as a consequence of Definition 6.2 in the one-dimensional case,

the following equivalence holds for all s ∈ S, all extensions L′ of L, and all modal logic

formula φ.

(S,R,L), s 
 φ ⇔ (�G�, L′), s 
 φ

Conversely, given a local pospace Σ together with a labelling L : UΣ → Pow(AP) over

the underlying set of Σ we have what we call a continuous Kripke structure. One easily

deduce a usual Kripke model of S4 taking the elements of UΣ as states together with

the following accessibility relation.

R = {(x, y) | there exists a directed path on X from x to y}

As before we observe that, as a consequence of Definition 6.2 in the one-dimensional case,

the following equivalence holds for all s ∈ UΣ, and all modal logic formula φ.

(Σ, L), s 
 φ ⇔ (UΣ, R, L), s 
 φ

Modelling S4 by standard Kripke structures or continuous ones is therefore a matter of

taste. Similar arguments would have led to the conclusion that one can indifferently model

S4 with small categories. Indeed their corresponding accessibility relation turn them into

preordered sets. This is because the satisfaction of an S4 formula only depends on the

existence of a (directed) path between two given points.

One is tempted to go further and consider temporal logics. For this purpose we intro-

duce CTL∗ε, a modified version of CTL∗ (Clarke et al., 2000, p.42) as a case study. The

syntax of CTL∗ε offers two types of formulas, the state ones and the path ones. They are

respectively gathered in the collections SF and PF which are mutually recursively defined

using the atomic propositions, the path quantifiers E and A, the temporal operators Xε

for ε ∈ R+, F , G, U , and all the Boolean connectives (Clarke et al., 2000, p.29). In other

words SF and PF are characterized by the following constraints:

— AP ⊆ SF ⊆ PF,

— both SF and PF are stable under Boolean connectives,

— {Ef,Af | f ∈ PF} ⊆ SF, and

— {Xεf, Ff, fGg, fUg | f, g ∈ PF, ε ∈ R+} ⊆ PF.

In particular all the formulas of CTL∗ε are path formulas but each one is assigned a type

according to the smallest set of the filtration AP ⊆ SF ⊆ PF it belongs to. The type

of a CTL∗ε formula only matters when it comes to the semantics. Let M = (Σ, L) be
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a continuous Kripke structure. As for standard CTL∗ semantics, we have to consider

infinite directed paths on Σ to define CTL∗ε semantics, in other words local pospace

morphisms π : R+ → Σ. Given a state (resp. path) formula f the notation M, s � f
(resp. M,π � f) means that f holds at state s (resp. along path π) in M . The inductive

definition of � is a carbon copy of the one given in (Clarke et al., 2000, p.29) except

that i, j and k belongs to R+ instead of N. In particular the operators Xε and U are

interpreted as below with πε denoting the ε-suffixe of π (i.e. t ∈ R+ 7→ π(t+ ε) ∈ Σ):

— M,π � Xεf iff M,πε � f
— M,π � fUg iff ∃r ∈ R+ (∀ε ∈ [0, r[ M,πε � f and M,πr � g)

On that occasion we remark that the equivalences thereinafter hold.

X0f ≡ f Xε1+···+εnf ≡ Xε1 · · ·Xεnf

In particular the operator X0 is useless and for all n ∈ N the operator Xn is obtained

from X1 setting εk = 1 for all k ∈ {1, . . . , n} in the preceding formula. The preceding

observation no longer holds in the context of continuous Kripke structure so we indeed

need to introduce the operators Xε for all ε ∈ R+, though R+ could have been replaced

by any of its nontrivial initial segments.

Let us go back to our initial motivation and let Σ be the geometric model of a conser-

vative program P . Following Definition 2.2, we let X be the finite set of all the variables

appearing in the program P , all of them ranging through R. Assuming that X is to-

tally ordered and contains N elements, the set X can be seen as an N -tuple of variables

without repetitions. In this context any valuation δ can be seen as a point of RN , hence

AP = RN and L(s) ⊆ RN . As a by-product of Definitions 3.4 and 6.2, each infinite

directed path π on Σ is associated with a sequence of valuations (δ∗) and a strictly in-

creasing sequence (a∗) of elements of R+ such that for all t ∈ [ak, ak+1[, the valuation δk
is δ0 · π|[0,t]. Note that both sequences may be finite (e.g. when π is constant beyond a

given value). However if one is infinite, then so is the other and the sequence (a∗) goes

to infinity.

lim
n→+∞

an = +∞

Mimicking the notion of collecting semantics, one defines the interpretation L as below.

L(s) = {δ0 · π|[0,t] | π(t) = s}

Everything has been settled to obtain the next statement for all k ∈ N that is less than

the length of the sequence (δ∗) .

M,π � (X = δ0) U (X = δ1) U (X = δ2) U · · · U (X = δk) U >

Moreover, given ai 6 b < ai+1 and aj 6 c < aj+1, if π|[b,c] and γ, both defined on [b, c],

are weakly dihomotopic then we have the following fact by Corollary 6.2.

M,π|[0,b] · γ · πc � (X = δ0) U · · · U (X = δi) U (X = δj) U · · · U (X = δk) U >

In doing so we have formalized, in CTL∗ε logic, the intuitive fact that one can locally

replace a segment of an execution trace by a weakly dihomotopic one without altering

its long time behaviour. However, a global reparametrization like θ : t ∈ R+ 7→ et ∈ R+
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may drastically change the validity of a formula along a path in a given model since the

operators Xε allows, for example, to express the fact that some property is satisfied at a

given instant.
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