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Abstract : We provide herein some ways to compute flashing flows in variable cross section ducts, 
focusing on the Homogeneous Relaxation Model. The basic numerical method relies on a splitting 
technique which is consistent with the overall entropy inequality. The cross section is assumed to be 
continuous, and the Finite Volume approach is applied to approximate homogeneous equations. 
Several suitable schemes to account for complex Equation Of State (EOS) are discussed namely :  
Rusanov scheme, an approximate form of Roe scheme, and VFRoe scheme with help of non 
conservative variables. In order to evaluate respective accuracy, the homogeneous Euler equations are 
computed first, and the L1 error norm of transient solutions of shock tube experiments are plotted. It is 
shown that Rusanov scheme is indeed less accurate, which balances the fact that it enjoys interesting 
properties, since it preserves the positivity of the mean density, and the maximum principle for the 
vapour quality. Eventually, computations of real cases are presented, which account for mass transfer 
term, and time-space dependent cross sections. 
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1.  INTRODUCTION 

 Some applications in industry require predicting flashing flows in variable cross section ducts. 

In some cases, it even becomes compulsory to account for cross sections which vary in time too, for 

instance when predicting flows in safety valves, which were one of the basic motivations of the 

following developments. From the modelling point of view, it is almost well admitted that the 

Homogeneous Relaxation Model is accurate enough to represent the true behaviour of that kind of 

flow. During past years, Bilicki and co-workers investigated such a kind of closures. For stationary 

one-dimensional flows, this model enables to predict the critical mass flow rate and the pressure 

distribution with a good accuracy3-5, 16 . It requires some time scale to account for mass transfer which 

governs phase change in strong rarefaction waves. Friction effects will be disregarded herein, though 

they may be easily accounted for, without altering the global behaviour of the algorithm. This is due 

to the fact that the mean diameter of pipes in our applications is rather large. Present contribution 

actually aims at providing some ways to compute these complex industrial problems involving 

unsteady flashing flows, and more specifically giving some deep enough insight on the strength and 

weaknesses of three different upwinding techniques used in Finite Volume conservative schemes. We 

underline that emphasis is given on the latter schemes  since they allow computation of any Equation 

Of State (EOS) on any kind of mesh. 

 We first describe the basics of the Homogeneous Relaxation Model (HRM), which governs 

the motion of the two phase mixture, assuming that relative velocities are small compared with the 

speed of acoustic waves in the medium, and have little influence on the whole behaviour of the 

flashing flows. Then, the overall numerical technique of  reference21  is briefly recalled, which relies 

on the Finite Volume method 19. Special emphasis is given on three upwinding schemes to account for 

convective fluxes : an approximate Godunov 27 scheme (see 7-11, 23-24 , on the basis of initial proposition 

25, 35 ), and  an extended version of Rusanov and Roe schemes 38-39, 18  to the frame of non conservative 

systems 6, 13, 15, 29 (see références 14, 32  for the theoretical framework). Some properties of schemes are 

recalled, and special emphasis is given on the true level accuracy (and the rate of convergence) 

obtained with the latter three, focusing on either steady flows in nozzles or on shock tube experiments 

involving gas, vapour or liquid and complex EOS. More precisely the L1 error norm is plotted in 

various cases, which provides quantitative comparison which is seldomly available in the literature. 

This is one of the main contributions of the present work, which examines both steady and highly 

unsteady flow patterns. Eventually, we present an application of some two phase flashing flow in a 

nozzle ; this case is examined using the three different schemes. Though much important in practice, 

considerations about parallelizing of the code are not discussed herein, and the reader is referred to 



Schemes to compute unsteady flashing flows, M. Barret, E. Faucher, J.M. Herard 

3 

références 2, 22 for such a matter. Some appendices provide more information on the way boundary 

conditions are handled 17 , and on the efficient VFRoe-ncv approximate Godunov scheme 7-11. 

2. BASIC SET OF EQUATIONS 

The basic set of equations of the Homogeneous Relaxation Model (noted HRM afterwards) 

consists in the following four equations, which govern the conservation laws for mass of the two-

phase mixture, vapour phase, and total energy of both phases  and an additional non conservative 

equation for the mean momentum. The whole writes 3, 4, 5, 16, 20, 33, 34 :  

( ) ( )
( ) ( )
( ) ( )
( ) ( )
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2
     (2.1) 

when restricting to adiabatic flows. S(x,t) is the mean continuous cross section (otherwise, previous 

equations are meaningless), and is expected to be provided by users. ρ, U, P, α , E respectively stand 

for the mean density, the mean velocity, the mean pressure, the vapour quality (which is expected to 

lie in [0,1]), and the mean total energy of the two-phase mixture in the mean section. Subscripts ″t″ 

and ″x″ denote the time and space variables.  The total energy of the two phase mixture is related to 

the internal energy as follows : 

( )E e P u= +ρ τ α ρ, , 1
2

2      (2.2) 

τ stands for the specific volume ( τ ρ= 1 / ). This must be supplemented by closure laws for the mass 

transfer term Γ, and for the total internal energy of the two-phase mixture e, which is given by : 

( )e P e P e P
P

SV ML
SV

τ α α α
τ α τ

α
, , ( ) ( ) ,

( )
= + −

−
−









1

1
  (2.3) 

Subscripts ″ML″ and ″SV″ refer respectively to the metastable liquid and saturated vapour. 

Thermodynamic laws are given by Pollack 37. 

 

Now an important issue when computing flashing flows concerns the forms for the mass transfer term. 

Bilicki and co-authors proposed some simplified form for this term  :  

Γ = −
−

ρ
α α

θ
      (2.4) 

The mass transfer term requires computing the equilibrium quality  : 

( )
( ) ( )α =
−

−
h h P

h P h P
SL

SV SL
     (2.5) 
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where hSL(P) and hSV(P)  respectively denote the specific enthalpy of the saturated liquid and the 

saturated vapour. Correlations used in computations for the time scale θ were given by Downar 

Zapolski and co-authors and are recalled in appendix C.  

 

Before focusing on the numerical implementation of the model, we need to introduce some additional 

variables. Throughout the paper : 

$

,

,

γ
∂
∂
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e
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    (2.6) 

and the square of the celerity of density waves is: c P2 = $γ τ . The specific entropy : ( )s s P= , ,τ α  

is a function in agreement with :  

$
, ,

γ
∂
∂

τ
∂
∂ττ α α

P
s
P

s

P





 − 



 = 0     (2.7) 

Hence the whole model is closed. 
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3. NUMERICAL METHOD 

 
The numerical method is based on a fractional step technique 1, 13 , which allows computing 

time variations of the mean cross section, and the remaining of convective and source terms. The 

overall technique is detailed in référence 21. It is shown therein that the splitting technique is in 

agreement with the whole entropy inequality. Even more, the computation of the PDE’s in frozen duct 

(wrt time) still may be split into two steps : the first one involves the computation of the mass transfer 

term, and the second one deals with the homogeneous non conservative convective effects  14, 32. Due 

to the ratio of the time scale associated with the fast acoustic waves over the time scale θ, which is 

smaller than one in practice, the fractional step approach is not penalized as may occur when 

computing other systems. In reference 21, it is shown that the specific form of the mass transfer term 

enables to ensure the maximum principle for the vapour quality for regular enough solutions. Details 

on numerical implementation of boundary conditions can be found in appendix B (see also 17,20 for 

further details). We thus only focus here on the comparison between three different ways to deal with 

convective terms. Alternative ways to deal with source terms, including a comparison with techniques 

suggested in 36 can be found in reference 20.  

 

The main two steps are the following. Given some time step ∆tn, and initial data Wn at 

time tn , one computes the following ODE for given mean values of Wi
n over cell « i » 

 

( )W Wi
n = ∫ x t dx hn

i
i

,
Ω

 

The time step is chosen in agreement with some CFL condition, and hi is the mesh size of cell « i ». 

Hence : 

 

Step 1 : 
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( ) ( )
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      (3.1) 

 

 provides on each cell « i » of the mesh : 
 

{ }~W Wi k
n= 



∈

ψ1 k Z
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Obviousy, this step is skipped when the cross section does not vary with time (j(x,t)=0). We recall 

that the mean velocity and the specific entropy do not vary through this step. The vapour quality and 

the mean density agree with : 

 

( )

α
ρ

ρ

,

,

t

t
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j
S

=

= −

Γ

 

Once step 1 is solved, the convective system is solved over the time interval [tn , tn +∆tn], given initial 

data ~W i
n on each cell, and suitable boundary conditions : 

 

Step 2 : 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )
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2     (3.2) 

which provides on each cell « i » of the mesh : 

{ }( )W Wi
n 1

k
+

∈= ψ2
~

k Z  

      

Details pertaining to Riemann invariants of the homogeneous part of step 2, on shock relations, and 

on positivity constraints through the one dimensional Riemann problem associated with the latter 

system are recalled in a previous paper 21. The source term may be computed with an extra fractional 

step method. This may be done in the simplest following way (which preserves the maximum 

principle for the vapour quality at a discrete level), by computing α(t+∆t) as a function of α(t) as :  

 

( ) ( ) ( ) ( ) ( )α
θ

α
θ

αt t
t

t
t

t+ =
−





+ −
−



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∆
∆ ∆

exp ( exp )
t t

1      (3.3) 

 

or either using interface values of state variables. We from now on discuss upwinding techniques.  
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4. UPWINDING TECHNIQUES. 

 We will now focus on the computation of the convective system (step 2) using three different 

schemes ; the three of them enable to handle complex thermodynamic laws. The convective system 

(3.2) may be written under a condensed form : 

( )( ), , ,S S St x xW F(W) G(W) 0+ + =    (4.1) 

where W is the physical « convervative » variable. The flux functions are given by :  

( )F(W) t = +ρ α ρ ρ U  U  U U (2, , , )E P     (4.2.a) 

( )G(W)t = 0 0 0, , ,P       (4.2.b) 

The basic idea is then the following. The given section of the duct is discretized, and is 

assumed to be piecewise linear on each interface of control volumes. Besides, we introduce constant 

reconstruction of the ″conservative″ variable : 

( )W t U E= ρα ρ ρ, , ,       (4.3) 

over cell i. Hence :  

 

 

 

 

 

 

 

 

 

 

Given some approximate values of the cross section at the cell centre S at time tn, the cross section at 

the interface is defined using a linear interpolation : 

S
h S h S

h hi
i i i i

i i
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+ +
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1 1

1
/      (4.4) 

 The mean value of S(x)over cell Ωi is given by :  
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(4.5.b) 

All schemes will take the form : 

Si+1/2Si−1 2/

xi-1 xi xi+1 

Wi 1
n
−

Wi
n

Wi 1
n
+

 

Si+1
Si-1 

Si  

hi

Si
n
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( ) ( ) { }h S t S G G t S Si i
n

i i
scheme

i
scheme n

i i
scheme

i i
scheme) )

W W F F 0i
n 1

i
+

+ − + + − −− + − − =~
/ / / / / /∆ ∆1 2 1 2 1 2 1 2 1 2 1 2+

 

We define below various forms of numerical  fluxes Fscheme and Gscheme. These formulas should 

provide consistant and stable approximation  of fluxes in the sense of 19. We use the standard 

notation : 

 

φ
φ φ

i
i i

+
+=

+
1 2

1

2/  

 

4.1 Rusanov scheme 

An extension of the original Rusanov scheme 39 yields : 

  

( ) ( )G PRusanov
i

t
i+ +=1 2 1 20 0 0/ /, , ~ ,     (4.6) 

 

( ) ( ) ( ) ( ){ }F W W F W F W W Wi 1/ 2 i i 1 i i 1 i 1 i
Rusanov

is+ + + + += + − −~ , ~ ~ ~ ~ ~
/

1
2 1 2

)   (4.7) 

where : 

( )) ) )s u c u ci i i i i+ + += + +1 2 1 1/ max ~ ~   ,         (4.8) 

noting the numerical sound velocity : 

$ $
~ ~ ~c Pi i i i

2 = γ τ        (4.9) 

Recall that one of the main advantages of  Rusanov scheme is that it ensures the positivity of the 

density, and  the discrete maximum principle  for the vapour quality provided that some CFL 

condition holds  (see appendix A). 

 

4.2 An approximate form of Roe scheme 

In a somewhat different framework, an extension of the original Roe scheme to the frame of 

non-conservative systems was proposed in 29. This one enables to handle time dependent and 

stationary flows. We use herein a slightly modified version of the scheme (see also 6), which does not 

require consistancy with the integral form of the conservation law -as standard Roe scheme does-, and 

is thus useful when dealing with complex EOS. For convenience, we define : 

( ) ( ) ( )
B W

F W
W

G W
W

= +
∂

∂
∂

∂
     (4.10) 

and introduce : 
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( ) ( ) ( ) ( )( ) ( ){ }F W W F W F W B W Y , Y W Wi 1/ 2 i i 1 i i 1 i i 1 i 1 i
Roe

+ + + + += + − −~ , ~ ~ ~ $ ~ ~ ~ ~1
2

  

(4.11) 

noting : 

( )( ) ( )( ) ( )( ) ( )( )( )B W Y , Y W Y , Y W Y , Y W Y , Yi i 1 i i 1 i i 1 i i 1$ ~ ~ $ ~ ~ $ ~ ~ $ ~ ~
+ + + +

−
= ΩΩΩΩ ΛΛΛΛ ΩΩΩΩ      

1
  

 (4.12) 

and : 

( ) ( ) ( ) ( )( )B W W W W= −ΩΩΩΩ ΛΛΛΛ ΩΩΩΩ      1    (4.13) 

Matrix ( )ΩΩΩΩ W  represents the matrix of right eigenvectors of matrix B(W) introduced in (4.10) ; 

associated matrix ( )ΛΛΛΛ W  is the diagonal matrix containing ordered eigenvalues : 

λ 1 = −U c    λ λ2 3= = U    λ 4 = +U c  

Eventually : ( ) ( )( )ΛΛΛΛ ΛΛΛΛ
) )

W W kk = λ k . The mean value of the conservative state is defined as : 

( )$ ~ ~
~ ~

W Y , Y W
Y Y

i i 1
i i 1

+
+=

+









2
    (4.14) 

where variable Y is defined as ( )Y t = α τ, , ,u P .   Note that G Roe
i+1 2/  is still given as : 

( ) ( )G PRoe
i

t
i+ +=1 2 1 20 0 0/ /, , ~ ,     (4.15) 

This scheme has been extensively used to predict the behaviour of second order turbulent closures in 

single phase flows, when no Roe’s average is available 6. We emphasize that this scheme does not 

ensure the positivity of density and the maximum principle for vapour quality of cell values. We recall 

that the original Roe scheme, which requires satisfying so-called Roe’s condition (or in other words 

consistency with the integral form of the conservation law) only ensures positivity of density and 

mass fraction of vapour on -one dimensional- « staggered grid » (namely fictitious cell [xi, xi+1]), 

whereas exact Godunov scheme enables preservation of :ρ ≥ 0   , 1 0≥ ≥α on cell values, owing to 

the projection of exact solution on the mesh .  

 

4.3 An approximate Godunov scheme : VFRoe scheme with non conservative variable. 

 

The original VFRoe scheme is an approximate Godunov scheme which was first introduced in 
25, 35. VFRoe-ncv scheme is a sequel of the latter which generalizes the approach by requiring some 

invertible change of variable, which provides so-called non conservative variable Y(W). The scheme 

was introduced in 7 , with applications to shallow water equations including comparison with the basic 

Godunov scheme 8, and applications to Euler gas dynamics with arbitrary EOS in 9. Some possible 

extensions to the frame of non conservative hyperbolic systems were defined and discussed in 10-11. 
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Appendix D gives a description which permits straightforward coding of the scheme . A recent note 23 

gives some detailed comparison of capacities of the scheme with comparison with the energy 

relaxation method 30, the Rusanov scheme, and Toro PVRS scheme 41.  It also provides the main 

properties of the scheme when restricting to pure shock waves, steady or unsteady contact 

discontinuities, retaining simple EOS such as perfect gas EOS, Tamman EOS, or more sophisticated 

ones including stiffened gas EOS, Van der Waals EOS, Chemkin database or tabulated laws (see 24). 

The field of practical applications of VFRoe-ncv scheme up to now has mainly concerned gas flows 

in turbines, in laminar and turbulent situations. We recall that fluxes are given by : 

 

( ) ( )G PVFRoencv
i

t
i+ +=1 2 1 20 0 0/ /
*, , ,      (4.16) 

 

( ) ( )F W W F Wi 1/ 2 i i 1
VFRoencv

iY+ + +=~ , ~ ( )/
*

1 2     (4.17) 

 

The starred value at interface Yi+1 2/
* is obtained by solving a linear hyperbolic problem (see 

appendix D). We only provide below specific properties of the scheme when applying for 

( )Y t = α τ, , ,U P  « non conservative » variable. The first one concerns intermediate states of both 

pressure and velocity variables in the linearized Riemann solver at interface. Denoting P1 and P2 

(respectively U1  and U2) values of pressure (respectively velocity) on left side and right side of the 

contact discontinuity associated with eigenvalue U, one may easily check that (see appendix D) : 

 

P P1 2=  

 U U1 2=  

 

 Moreover, we may check that :  

 

α α α α1 2 1= = +i i, . 

 

Thus approximate values of the vapour quality at the interface predicted by VFRoe-ncv scheme are 

« exact » in the sense that they mimic the numerical values predicted by the exact Godunov scheme 

(the 1-wave and the 4-wave are ghost waves for vapour quality in the exact solution of the Riemann 

problem). Obviously the maximum principle for the vapour quality holds true.
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5. NUMERICAL RESULTS 

 System (2.1) admits solutions which may be discontinuous. Moreover time scales associated 

with relaxation mass transfer terms and convective terms may be completely different ; this may 

render computations rather tricky especially when the time scale associated with the relaxation term is 

small compared with the numerical time step imposed by the CFL condition in relation with 

convective effects.  Fortunately, physical effects involved here are in favour of the fractional step 

method. Sudden variations of the cross section (for instance when computing safety valves) may in 

addition penalize accuracy in some configurations. Extensive validation of VFRoe-ncv scheme has 

been previously performed when focusing on real gas flows and considering several EOS 7-11. The 

efficiencies of the Rusanov scheme and the approximate Roe type Riemann solver have been 

investigated in a different framework (see 23 , 6). When restricting to Euler equations of gas dynamics 

with perfect gas EOS, and focusing on the computation of shock tube experiments with so called first-

order scheme, the rate of convergence (measuring error in L1 norm)  is ½ for the concentration of 

pollutant (which does not vary in the Genuinely Non Linear fields), and 1 for velocity and pressure 

(which do not change through the contact discontinuity). Figure 1 shows the evolution of the error for 

the concentration using either « first » order or « second » order scheme (in the latter case, the rate 

grows up to 2/3).  In all cases the discrete error at time T is computed using a regular mesh according 

to : 

φ φ
φ φ

φ
− =

−
=

=

∑

∑
h

h i i
i

N

i
i

Nh T
x T x T

x T
( , )

( , ) ( , )

( , )

1

1

 

The rate of convergence for given value of CFL number is β provided that the error follows the law : 

φ φ φ β− =h h T C T h( , ) ( , )  

 

when h tends to 0 . We below restrict to the first order version of the scheme.   

5.1 Steady flow in a nozzle filled with perfect gas. 

 The fluid is assumed to be represented by perfect gas EOS. Subsonic inlet and outlet 

boundary conditions are imposed so that a shock is present in the divergent part of the nozzle. Initial 

conditions are :  

P = °8 bar,  T = 400 K, , α = 1, U s= 0 m / . 

 

 

Boundary conditions are : 
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           Pinlet = 10 bar ,     α inlet = 1,      ( )ρSU s
inlet

= 1504 kg /  

Poutlet = 8 bar  

 

First three figures (figure 2)  provide the rate of convergence of schemes towards the exact steady  

solution. We focus here on the mean pressure, the Mach number and the mass flow rate. The rate of 

convergence is close to 1- for all variables and for all schemes. Comparing Rusanov and VFRoe 

scheme, it appears that VFRoe provides the same accuracy using a mesh size h instead of  h/8. Other 

examples are available in 20. 

5.2 Steady flow in a nozzle filled with real gas. 

 We use here similar initial and boundary conditions but apply for real gas EOS. Figure 3 

shows that Rusanov scheme does not provide a sharp (steady) shock profile in the divergent part when 

using a coarse mesh with two hundred nodes. The numerical prediction of the steady mass flow rate 

(ρ U S) is much better predicted when using VFRoe scheme. We emphasize that we have plot here 

cell values of mass flow rate but not interface mass  fluxes. Hence, Roe scheme and Rusanov scheme 

predict a slightly different value than expected. These discrepancies tend towards zero when the mesh 

is refined. The small glitch (which tends to 0 when the mesh is refined) around the shock location 

when using VFRoe scheme is due to numerical perturbations coming from subsonic outflow which 

interact with the numerical shock profile ; this is combined with the fact that VFRoe-ncv scheme does 

not satisfy « Roe’s condition » (or in other words consistency with the integral form of the 

conservation law) for complex EOS (see 7,9). We note too that the amplitude of this glitch is small 

compared with the difference between constant values predicted by Roe and Rusanov schemes and 

expected value imposed by user at the inlet boundary. The relative error computed on the basis of the 

mass flow rate at interfaces predicted by VFRoe scheme (see appendix D) is much lower than cell 

values of mass flow rate on given mesh size (which means that the flow is steady at a discrete point of 

view). Similar comments hold for cell values  and interface values for the total enthalpy H=(E+P)/ρ.  

The most accurate prediction is given here by VFRoe scheme. 

 

5.3 SOD shock tube with liquid water. 

 Shock tube tests simulate the solution of the Riemann Problem with constant cross section 

S(x)=S0. Thus they are very useful to study the capabilities of schemes to compute transient flows. 

Physically speaking, they correspond to the following situation : a membrane, which initially 

separates two fluids with different thermodynamic states, is suddenly broken, so that waves start to 

propagate. 
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 Initial conditions for the first shock tube test case are detailed below (subscripts L and R still 

refer to the left hand side and the right hand side of the membrane) : 

PL = 2000 bar ,ρL = 1017.8 kg / m3 , α L = 1 , and u sL = 0 m /  

PL = 100 bar ,ρR = 838.3 kg / m3 , α R = 1, and u sR = 0 m /  

Under these conditions a shock wave travels to the right, followed by a contact discontinuity, while a 

rarefaction wave propagates to the left. 

 

 We have plot L1 error of predicted approximations provided by the three schemes using CFL 

number 0.95 (figure 4). The measured rate of convergence is approximately the same for both velocity 

and pressure variables for both VFRoe-ncv and Roe type schemes : δ δU P= = 085. . It is thus close 

to the expected value of 1 (the « second order » version of the scheme enables to reach rate 1- on 

similar meshes). Part of the discrepancy is linked with the fact that the EOS is complex so that some 

error around the contact discontinuity is introduced (see 24), which slows down the convergence on 

these rather « coarse » meshes. Meanwhile the rate of convergence for the density is around : 

δρ = 0 65. , and thus still a bit greater than expected value of ½ when h tends to 0. This is due to 

occurrence of variations of the density in the 1-rarefaction wave and through the 3-shock wave, which 

contribute to a balance between order ½ and 1 on intermediate mesh sizes. This is confirmed by the 

measured rate of convergence of density for Rusanov scheme which is approximately δρ = 0 52.  

instead of expected ½. Actually, in order to reach the same accuracy, one needs almost twice the 

number of cells when using Rusanov scheme instead of Roe scheme (or VFRoe scheme). 

 

 

5.4 SOD shock tube with vapour. 

 Initial conditions for the second shock tube tests case are given : 

PL = 5 bar ,ρL = 2.215 kg / m3 , α L = 1 , and u sL = 0 m /  

PR = 1 bar ,ρR = 0.435 kg / m3 , α R = 1, and u sR = 0 m /  

The CFL number is still 0.95. Similar comments hold here as in the previous case (figure 5). 

Nonetheless, the performances for complex EOS around the contact discontinuity are better owing to 

the behaviour which in practice is very similar to the one associated with use of perfect gas EOS. The 

measured rate of convergence is still the same for both velocity and pressure for both VFRoe-ncv and 

Roe type schemes, and is around: δ δU P= = 0 9. , instead of expected value 1. The rate of 

convergence for the density is once more : δρ = 0 65.   (instead of ½) . There are indeed very few 

differences between rates of convergence of the three schemes here, but Rusanov scheme is still less 

accurate than the other two on given mesh size.  
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5.5 Flashing flow in a nozzle. 
  

 
Initial conditions in the duct are: 

 

P = 15 bar , T = 470 K , ρ = 874,3 kg / m3 , α = 0 , u s= 0 m / . 

 

At the beginning of the computation, the pressure at the outflow suddenly decreases to : 

 

Pout = 10 bar  

 

The regular mesh contains 1000 nodes (h=10-3m). The CFL number has been set to 0.9. Figure 6 

shows the pressure distribution, the velocity distribution, and the void fraction distribution along the 

pipe due to rarefaction wave travelling to the left. Similar computations involving higher pressure 

ratios are reported in reference 22. The three schemes behave in a similar way, and there is indeed no 

contradiction with previous results, since no shock wave nor contact discontinuity is present in the 

flow field here, unlike in previous cases of unsteady shock tube experiments. Nonetheless we may 

notice some differences between results close to the right boundary condition where the vapour 

quality varies strongly. 
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6. CONCLUSION 

   

Several ways to compute unsteady flashing flows in variable cross section ducts have been 

summarised in this paper, on the basis of an approximate Godunov scheme called VFRoe-ncv, an 

approximate form of Roe ‘s scheme and the early Rusanov scheme. All behave rather well ; 

nonetheless, Rusanov scheme suffers from a rather great amount of diffusion, which penalizes the 

scheme accuracy when computing steady or unsteady flows including shock waves. One of the  main 

contribution concerns investigation of the true rate of convergence and of the level of accuracy for 

given mesh size. Focusing on pressure and velocity variables (respectively the density and the vapour 

quality), standard MUSCL type extension combined with second order Runge-Kutta time integration 

(which was not discussed herein) enables to reach first order convergence rate on rather coarse -or 

industrial- meshes  (respectively rate of convergence of 2/3) when computing unsteady shock tube 

experiments, and second order when predicting regular flows (see 8, 9, 20, 22, 23). The code is currently 

used in our company for practical purposes involving safety valves loaded with pressurised vapour or 

liquid (see  22 ). The field of applications of the Homogeneous Relaxation Model is obviously rather 

wide in the industry. In all cases involving liquid water, or a mixture of vapour and liquid, it was 

noted that requiring sufficient small amount of error results in the use of very fine meshes, even in the 

one dimensional framework. Actually, in some cases, a mesh with approximately ten thousand nodes 

may be compulsory ; otherwise coarser meshes may provide unrealistic prediction which are not 

converged with respect to the mesh size (see 22). Though not totally sufficient from a theoretical point 

of view, this is currently overcome using parallel versions of the code, which turns to be  a rough 

though efficient way to handle the situation (see 2). All computations up to now have benefited from 

the fact that time scales associated with mass transfer terms and convective effects are in favour of the 

use of the fractional step technique. Some difficulties have nonetheless arisen in some cases when 

flashing phenomena occurs close to some boundary condition. The strong coupling between non 

linear effects of convection and sources, but also on the -non linear- computation of local 

thermodynamic properties renders the analysis of encountered slow down of convergence 

cumbersome. The smearing of the -slow- contact discontinuity by upwinding schemes, or in other 

words the poor accuracy around the latter Linearly Degenerate field, which in addition supports the 

jump of the vapour quality and of the mean density, may lead to non linear interactions in EOS, and 

yield  blow up of code when the mesh is too coarse. The only remedy sometimes is obtained by local 

refining of the mesh.  

 

On the whole, these show that the development and progress on algorithm improvements in at 

least three distinct directions are still mandatory. A first point concerns the treatment of contact 
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discontinuities in conservative schemes using upwinding techniques, in order to minimise error 

around the latter, especially when complex EOS are involved. Several attempts in that direction have 

now been already done (see 24, 31 among others). Another tricky problem is related to the different time 

scales associated with velocity of the fluid and the sound speed in almost incompressible fluids ; this 

is indeed clearly related to the standard problem of preconditioning of compressible algorithms in  

flows with low speed patterns (see 12 , 42, 43). A third important point is connected with the coupling of 

source terms in convection dominated flows ; this is particularly important in flows which may 

involve stiff source terms due to mass transfer. Progress has been made in that field too (see 28, 36 for 

instance), but it still deserves more thinking. Up to the authors, the whole means that 3D computations 

of the HRM model with sufficiently fair accuracy are almost beyond the reach of current computer 

facilities provided by local work stations.  
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Appendix A 
 
We examine here whether the maximum principle holds for the approximate values of the vapour 
quality, when using Rusanov scheme. Focusing on mass conservation first, we get : 
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owing to the definition of s(Wi , Wi+1) (maximum value of the spectral radius of Jacobian matrix on 
cell i and « i+1 »), we immediately conclude that the mean density remains positive, for given positive 
values of the density at time tn, provided that : 
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Restricting to a constant cross section profile, the latter condition is the straightforward counterpart of 
the usual CFL condition : 
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If we turn now to the discrete values of the mass fraction of vapour, we note that : 
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Applying condition (A3), we may conclude that the mean vapour quality α remains positive. Even 
more, substracting (A1) from (A4), we get : 
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Hence, condition (A3) also implies that discrete values of ρ(1-α) remain positive, which completes 
the proof since discrete values of density are positive.  
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Appendix B 
 

We focus here on the numerical implementation of subsonic inflow and outflow boundary 
conditions.  

 
Actually, the same method is applied in both cases, and thus we restrict here on the way to 

account for imposed pressure in a subsonic outflow. We assume subscript N refers to the last cell on 
the right of the computational domain and that the fluid flows to the right at the outlet. P1 is set to be 
the imposed pressure level in the outlet section, and the unknowns are thus ρ1, α1 and U1 which 
represent the density , mass fraction of vapour and mean velocity in the outlet section. These are 
simply determined assuming a 1-rarefaction wave (respectively a one shock wave) connects state « 1 » 
with state « N » when PN is greater than P1 (respectively  when PN < P1). We focus on first case : 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sketch of wave distribution at the  
outlet assuming subsonic flow. 

 
Hence , preservation of the 1-Riemann invariants of system gives : 
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Second relation (B2) provides unknown ρ1 in a straightforward way, since both P1 and α1 are 

given , thanks to (B1). Thus, one may compute the integral on the right side of the last relation, which 
provides the last unknown U1. In the opposite case (i.e. when PN < P1), we use a 1-shock 
parametrization of curve : 
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Obviously, in case of supersonic outflow, no condition should be imposed , and the state at the outlet 
interface simply is state « N ». 
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Appendix C 
 
Formulas used to account for mass transfer term are given below. 
  
If : P < 10 bar 
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In above closures, PS(Tin) stands for the saturated pressure corresponding to the inlet temperature and 
PC is the thermodynamic critical pressure.  
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Appendix D 

 
We focus here on VFRoe-ncv scheme with non conservative variable Yt=  (α, τ,  U, P).  

 

We detail how to get starred value W(Y*) .  Starting from a uniform section, we rewrite locally at 

each cell interface the conservative system : 
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
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      (D.1) 

in a straightforward counterpart (for regular solutions ) as follows : 

 

( ) ( )
( ) ( ) ( )( )

( ) ( ) ( )
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     (D.2) 

Hence linearizing around  an average state at interface (i+1/2), we get : 

 

Y C W Y W Y Yt i i x, ,( ( ), ( ))+ =+1 0  

where : 

C(W(Y ), W(Y ))i i 1+

+

=
−



















U
U

U
P U

i

0
0

0 0
0

0 0
0 0

1 2

τ
τ

γ)
/

 

 

We denote rk the basis of right eigenvectors of matrix C(W(Yi),W(Yi+1)). We introduce the numerical 

sound velocity at each interface (i+1/2) : 

$ $/ / / /c Pi i i i+ + + +=1 2
2

1 2 1 2 1 2γ τ       (D.3) 

where : 

( )φ φ φi i i+ += +1 2
1
2 1/       (D.4) 

 

W*
i 1/2+  is then given by : 

( )W* W Yi 1/2 i+ =  if u ci i+ +− >1 2 1 2 0/ /$  

( )W* W Yi 1/2 1+ =  if u ci i+ +− <1 2 1 2 0/ /$  and ui+ >1 2 0/  
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( )W* W Yi 1/2 2+ =  if ui+ <1 2 0/  and u ci i+ ++ >1 2 1 2 0/ /$  

  ( )W* W Yi 1/2 i 1+ +=  if u ci i+ ++ <1 2 1 2 0/ /$        

(D.5) 

Y1 and Y2 are two intermediate states arising when solving the linear hyperbolic problem :  

( )Y Y r1 i 1= + +α1 1 2i /
$       (D.6.a) 

( )Y Y r2 i 1 4= −+ +α4 1 2i /
$      (D.6.b) 

 

 

 

 

 

 

 

 

 

 

with : 

( )$ , , $ , $/ / / /r1
t

i i i ic P= −+ + + +0 1 2 1 2 1 2 1 2τ γ      (D.7.a) 

( )$ , , ,r2 1 0 0 0t =         (D.7.b) 

( )$ , , ,r3 0 1 0 0t =         (D.7.c) 

( )$ , , $ , $/ / / /r4
t = − −+ + + +0 1 2 1 2 1 2 1 2τ γi i i ic P     (D.7.d) 

Coefficients read : 
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( ) ( )α
τ
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Coefficients are obtained solving : 

( )Y Y rii
k

k i k+
=

+
= +∑1

1

4

1 2
α

/
$  

 

z 

t 

Yi 

Y1 
Y2 

Yi+1 

u c− $ u

u c+ $

 Linearized Riemann Problem 
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An entropy correction at sonic points in rarefaction waves is required as usual.  Owing to the previous 

decomposition, one may easily see that the numerical intermediate states are in agreement with exact 

intermediate states since : P P1 2= , and : U U1 2= . Moreover, we check that : α α α α1 2 1= = +i i, . 

 

 

 

 
 


