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Part IAn exact Riemann solver for a multicomponent turbulent ow.Emmanuelle Declercq �y Alain Forestier zx Jean-Marc H�erard {k Xavier Louis��G�erard Poissant yykey words-Multicomponent turbulence model - Entropy characterization - Riemann solver.abstract- This contribution's topic is the resolution of the hyperbolic system which describesa multicomponent turbulent ow. The model is written for an isentropic gas. We compute theexact solution of the Riemann Problem (RP) associated to the hyperbolic system. It is composedof constant states separated by rarefaction waves, or shock waves and a contact discontinuity.The selection of the admissible part of the shock curve is obtained by an entropic criterion.Compressive shock means entropic shock for only one of the two mathematical entropies found.This entropy is the total energy of the system. With these existence and uniqueness properties,we compute the exact solution of (RP) by a Smoller's kind of parameterization.IntroductionThe recent need for computation of complex systems of non linear PDE's such as those arisingwhen investigating turbulent phenomena has motivated the development of adequate solvers.Actually hyperbolic systems arising in the framework of single phase turbulent compressible�C.E.M.I.F., 40 rue du Pelvoux, Courcouronnes, 91020 Evry Cedex (France) declercq@worldonline.fryC.E.A. Saclay, DRN/DMT/SEMT, 91191 Gif-Sur-Yvette Cedex (France) xaviern@semt2.smts.cea.frzC.E.A. Saclay, DRN/DMT/SEMT, 91191 Gif-Sur-Yvette Cedex (France) alain.forestier@cea.frxC.E.M.I.F., 40 rue du Pelvoux, Courcouronnes, 91020 Evry Cedex (France){E.D.F. LNH/DER, 6 quai Watier, 78400 Chatou (France) Jean-Marc.Herard@der.edf.frkC.M.I UMR CNRS 6632, Universit�e de Provence, 39 rue Joliot Curie, 13453 Marseille��C.E.A. Saclay, DRN/DMT/SEMT, 91191 Gif-Sur-Yvette Cedex (France) for@semt2.smts.cea.fryyC.E.M.I.F., I.U.T. G.M.P., 3 cours Mgr Rom�ero, 91020 Evry (France) G.Poissant@iut.univ-evry.fr1



models contain di�erent scales of pressure �elds. The standard mean pressure accounts for mi-croscopic e�ects, whereas the mean turbulent kinetic energy (focusing on K-epsilon type models)stands for some counterpart of the mean pressure at a macroscopic level. This was recentlydemonstrated by several workers (see for instance Coquel and Berthon [1], or [2]) who henceproposed various upwinding schemes for practical purposes. This is true for one or two-equationmodels, but it is even more convincing when turning to so-called second-moment closures. Inthis case, the very small amount of viscous e�ects urges investigating basic solutions of homo-geneous convective systems. Though the decoupled approaches are still often used in industrialcodes, recent examples of computation of impinging jets on wall boundaries have shown thatthe coupled approach should be preferred for stability reasons. We will focus in this work on thetight coupling between the mean pressure �eld and turbulent kinetic energy, when computingmulti-component compressible �rst-order turbulent closures. One of the main objectives here isto derive exact or approximate Riemann solvers for our speci�c problem, and beyond to compareboth e�ciency, accuracy and stability of respective schemes. The paper is thus organized asfollows. In the �rst part, the turbulent model used to describe the ow is briey presented.Since both viscous and source terms may be easily computed applying standard Finite Volumeschemes on structured meshes at least, emphasis is given on the analysis of the convective ho-mogeneous problem, which is hyperbolic but is not under conservative form. Studying Riemanninvariants, entropy inequality and assuming some approximate jump conditions hold, enablesto derive an existence and uniqueness result for the solution of the one-dimensional Riemannproblem associated with the convective problem, provided that the initial data agrees with somecondition. This result is made possible by using the admissible part of the shock curves owingto the entropy inequality. It also requires that the strength of shocks is su�ciently weak.The second part of the paper is devoted to the construction of a Godunov type solver whichaccounts for non-conservative terms, and to comparison with some rough Godunov scheme, andalso with the adaptation to the frame of non conservative systems of the rough but robustRusanov scheme.
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1 A turbulence model to describe multicomponent ows1.1 Governing equationsWe begin with Euler equations for an average compressive multicomponent ow (see [9]). Thegas k = v; l are assumed to be isentropic like in the P-system. We de�ne by � the mean densityof the mixture, � the volume fraction of the v ow in the mixture, P the pressure and U thevelocity of the mixture. We use Favre's average [11] to deal with compressive ows :�kUk = �k ~Uk = �k�k ~Uk k = v; l (1)� = �v ; � = ��v + (1� �)�l; � ~U = ��v ~Uv + (1� �)�l ~Ul (2)We introduce the mass fraction Y , and the relative velocity Vk :Y = Yv = ��v� ; Vk = ~Uk � ~U; Xk YkVk = Y Vv + (1� Y )Vl = 0 (3)Xk YkV 2k = Y V 2v1� Y ) ��v ~U2v + (1� �)�l ~U2l = � ~U2 + �Y V 2v1� Y (4)(S)8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>: @t(�) +r(� ~U) = 0@t(�Y ) +r(�Y ~U) = �r(�Y Vv)@t(� ~U) +r(� ~U2 + 23Ks + P I) = �r(�Y V 2v1� Y ) (5)The kinetic turbulent energy Kv is the trace of the 12Rv tensor. In the two dimensional framewe write : 2Kv = Tr(R) =Xi Rii = �v(u2v + v2v)� ��v(~u2v + ~v2v) (6)Remark that we have noted Ks = Kv +Kl = 12(�vU 02v + �lU 02l )But that is not the turbulence of the melting ow K = 12�U201.2 K model for isentropic multicomponents owsTo close the model we derive a supplementary equation for the kinetic turbulent energy in the vow. To compute this equation we subtract the equation of ��v ~U2v from the equation of �vU2v .3



We introduce the deviator D such that :R = Tr(R)3 I +D (7)Proposition 1The evolution equation of a discontinuous by phases turbulent ow is :@t(Kv) +r:(Kv ~Uv) + 23Kvr ~Uv � 2(rtD) ~Uv +r�vU 03v + U 0vrP + �vU 02v (Uv � vi)ainv = 0Proof : @t(�vU2v ) +r(�vU3v ) + 2Uvr(PI) = 0 (8)@t(�vU2v ) +r(�vU3v ) + 2Uvr(PI) + �vU2v (Uv � vi)ainv = 0 (9)@t(��v ~Uv2) +r(��v ~Uv3) + 2(rtRv) ~Uv + 2� ~Uvr(PI)� 2 ~UvMdv = 0 (10)2Kv = tr(Rv) = �vU 02v = �vU2v � ��v ~Uv2 (11)@t(2Kv) +r(�vU3v � ��v ~Uv3)� 2(rtRv) ~Uv + 2Uvr(PI)� 2� ~Uvr(PI)+�vU2v (Uv � vi)ainv � 2 ~Uv�vUv(Uv � vi)ainv � Pvainv � Pvr� = 0 (12)�vU3v � ��v ~Uv3 = �vU 03v + 3 ~Uv�vU 02v = �vU 03v + 3Tr(Rv) ~Uv (13)UvrP = U 0vrP + ~UrP = U 0vrP + � ~UvrP ~UvPr�+ ~UvPainv (14)�vU2v (Uv � vi)ainv � 2 ~Uv�vUv(Uv � vi)ainv = �vU 02v (Uv � vi)ainv � ~U2v �v(Uv � vi)ainv| {z }�v�0 (15)@t(2Kv) +r(3Tr(Rv) ~Uv)� 2(rtRv)) ~Uv +r�vU 03v + U 0vrP + �vU 02v (Uv � vi)ainv = 0 (16)r(3Tr(Rv) ~Uv)� 2(rtRv)) ~Uv = 3r(Tr(Rv) ~Uv)� 2r(Tr(Rv)3 ): ~Uv � 2(rtD) ~Uv= Tr(Rv)r: ~Uv +r(Tr(Rv) ~Uv + 23Tr(R)r: ~Uv � 2(rtD) ~Uv= r(2Kv ~Uv) + 4Kv3 r: ~Uv � (rtD) ~Uv (17)@t(Kv)+r(Kv ~Uv) + 2Kv3 r: ~Uv � 2(rtD) ~Uv +r�vU 03v +U 0vrP + �vU 02v (Uv � vi)ainv = 0 (18)4



Then we make some simpli�cations to close the system. At �rst we neglect area source terms,and odd correlations. �vU 02v (Uv � vi)ainv � 0 (19)r�vU 03v � 0 (20)After, we assume an isotropic turbulence, so the Reynolds tensor is diagonal and isotropic. It isdescribed through Kv : Rvij = 23Kv�ij (21)In a two dimensional framework we obtain :@t(Kk) +r(Kk ~Uv) + 23Kkr ~Uv + U 0rP = 0 (22)To close the (S) system we add the Ks evolution equation. This one is obtained by summationof Kk over phases. We suppose that the ows have the same velocity. >From now on, weneglect the average symbol, and set K for Ks. We give the system here obtained adding theviscous terms (�t and � are positive quantities depending on the choice of the turbulence model,�eff = �lam+�t). We recall that the melting gas is isentropic, with a pressure law P (�Y ) known." is the turbulent dissipation which is modeled (see for example the one equation turbulencemodel of [16] or [3]).(S)8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
@t�+r:(�U) = 0@t(�Y ) +r:(�Y U) = 0@t(�U) +r:(�U2 + (23K + P )I) = r:(�eff(rU +rU t � 23(r:U)I)@tK +r:(KU) + 23Kr:U = �t((rU +rU t � 23(r:U)I) : rU) +r(�r(K� ))� �"(23)Setting W = (C;K), we are interested in the �rst order convective system (Sc) which is conser-vative in C(�; �Y; �U) variable, but not in K variable:(Sc)8><>: @tC +rF (C;K) = 0@tK +r(KU) + 23KrU = 0 (24)5



2 Exact Riemann solver2.1 From a 3D problem to the 1D Riemann ProblemIt is well known that Finite Volume upwinding schemes are e�cient methods to solve no linearhyperbolic systems. The most natural �nite volume method is the Godunov's method [14]which requires getting the exact solution of the Riemann Problem at the interface between twoneighboring cells. However, unless the initial data for the turbulent kinetic energy K is null, theRiemann solution of the multidimensional (S) system is unknown. Hence one needs to exhibit theone dimensional solution of the Riemann problem associated with the whole convective terms.The 1D associated problem is a di�erential system in the normal direction of the boundaries ofa two dimensional control volume.(Sc) @tW +A@xW +B@yW = 0 (25)Proposition 2The Wn solution of (Sn) is the normal projection of the W solution of the (S) system.(Sn) @tWn +N@nWn = 0 (26)Noting N = (PAP�1):nx + (PBP�1):ny (27)Wn0BBBBBBBBBBBB@ Y�unu�K 1CCCCCCCCCCCCA �!n = 0B@ nxny 1CA �!� = 0B@ �nynx 1CA �!Un = 0B@ un = u:nx + v:nyu� = �u:ny + v:nx 1CAWith ~c the celerity in the multicomponent ow : ~c2 = P 0(�Y ) (28)in the multicomponent ow :A = 0BBBBBBBBBBBBB@ u 0 0 0 00 u � 0 0~c2 Y ~c2� u 0 23�0 0 0 u 00 0 53 0 u 1CCCCCCCCCCCCCA B = 0BBBBBBBBBBBBB@ v 0 0 0 00 v 0 � 00 0 v 0 0~c2 Y ~c2� 0 v 23�0 0 0 53 v 1CCCCCCCCCCCCCA P = 0BBBBBBBBBBBB@ 1 0 0 0 00 1 0 0 00 0 nx ny 00 0 ny �nx 00 0 0 0 1 1CCCCCCCCCCCCA6



Applying the P projector to the (S) system :@tWn + PA@xW + PB@yW = 0 (29)Thus, using the fact that : W = P�1Wn enables to derive :@tWn + PAP�1@x(PW ) + PBP�1@y(PW ) = 0 (30)@tWn + PAP�1@x(Wn) + PBP�1@y(Wn) = 0 (31)8><>: Nnx = PAP�1Nny = PBP�1 (32)N = (PAP�1):nx + (PBP�1):ny = 0BBBBBBBBBBBBB@ un 0 0 0 00 un � 0 0~c2 Y ~c2� un 0 23�0 0 0 un 00 0 5K3 0 un 1CCCCCCCCCCCCCA (33)We eventually obtain a similar one dimensional system :(Sn) = 8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:
@t(�Y ) + @n(�Y un) = 0@t�+ @n(�un) = 0@t(�un) + @n(�u2n + 23K + P ) = 0@t(�u�) + @n(�u�un) = 0@tK + @n(Kun) + 23K@nun = 0 (34)We set by (PR) the (Sn) associated Riemann Problem with the initial constant states Wl andWr on the left and right sides of a the interface.(PR)8>>>>><>>>>>: @tWn +N@nWn = 0 (Sn)Wn(X; t = 0) = Wl if X:n < 0Wn(X; t = 0) = Wr if X:n > 0 I. C. (35)7



2.2 Exact solution of the 1D Riemann Problem with approximate jump con-ditions2.2.1 Mathematical analysis of the hyperbolic systemThe approach given below is quite similar to analysis of hyperbolic systems occurring in themodeling of spray dynamics ([20], [19]), or of a multicomponent ow in velocity disequilibrium([17]), of some gas-solid ow models ([5]), or in [18] for a monocomponent turbulent ow. Inorder to compute the solution of the (PR) problem, we need to investigate the 1D system (Sn).(Sn) @tWn +N@nWn = 0 (36)The (Sn) system is hyperbolic, nonstrictly, because the N matrix is diagonalizable in IR.N = 0BBBBBBBBBBBBB@ un 0 0 0 00 un � 0 0~c2 Y ~c2� un 0 23�0 0 0 un 00 0 5K3 0 un 1CCCCCCCCCCCCCAdet(N � �I5) = (un � �)3(un � �� ~c0)(un � �+ ~c0) (37)We introduce the turbulent celerity in a turbulent multicomponent ow setting:(~c0)2 = Y ~c2 + 109 K� (38)The following eigenvalues quickly arise :�1 = un � ~c0; �2 = �3 = �4 = un; �5 = un + ~c0The associated right eigenvectors span IR5 :rt1 = (0; �;�~c0; 0; 53K); rt2 = (�Y; �; 0; 0; 0); rt3 = (�1; 0; 0; 0; 3�~c22 )rt4 = (0; 0; 0; 1; 0); rt5 = (0; �;~c0; 0; 53K)The �rst and �fth characteristic �elds are Genuinely Non Linear under su�cient conditionthat pressure, for �xed Y , is a convex function of 1� (speci�c volume) :2P 0(�Y ) + �Y P"(�Y ) > 0) r�1:rt1 < 0 and r�5:rt5 > 0 (39)8



The �eld associated with treble eigenvalue is Linearly Degenerated :r�2:rt2 = r�3:rt3 = r�4:rt4 = 0 (40)We are now able to provide the construction of the di�erent smooth waves :- The simple waves are self-similar solutions, Wn(x; t) = s(xt ) with x = X:n, (36) gives :(N � xt I)s0(xt ) = 0 (41)The j simple wave in the domain �j(Wl) � xt � �j(Wr) is the integral curve solution of thesystem : 8><>: s0(xt ) = rj(s(xt ))xt = �j(xt ) (42)It is constructed tangent with the j right eigenvector. Noting Ij a j Riemann invariant, Ij isconstant along the trajectories of the vector �eld rj :8Wn rI(Wn)t:rj(Wn) = 0 (43)Riemann invariants are, with (~c0i(�̂))2 = YiP 0(�̂Yi) + 109 Ki�i 53 :�̂ 23 i = l; r (44)I1 = (Y; un+Z �0 ~c0l(�̂)�̂ d�̂; u� ; K� 53 ) I2 = (�Y; un; u� ; P (�Y )+23K); I3 = (un; u� ; P (�Y )+23K; �)I4 = (Y; �; un; P (�Y ) + 23K); I5(Y; un � Z �0 ~c0r(�̂)�̂ d�̂; u� ; K�5=3)By the way, we note that both un and P + 23K are Riemann invariants through the 2 � 3 � 4wave. The rarefaction curves are thus given by the following relations :R1(Wl) = ((Y; �; un; u� ; K); Y = Yl; u� = u�l; � > 0; K = Kl�5=3�5=3l ; un = unl + Z �l� ~c0l(�̂)�̂ d�̂)(45)R5(Wr) = ((Y; �; un; u� ; K); Y = Yr; u� = u�r; � > 0; K = Kr�5=3�5=3r ; un = unr � Z �r� ~c0r(�̂)�̂ d�̂)(46)- Shock curves are the discontinuous solutions. They must comply with the Rankine-Hugoniot9



jump conditions, noting � the speed of the associated discontinuity:(R-H)8>>>>>>>>>>>><>>>>>>>>>>>>: [�Y (un � �)] = 0[�(un � �)] = 0[�un(un � �) + P + 23K] = 0[�u�(un � �)] = 0[K(un � �) + 23Kun] = 0 (47)For the nonconservative equation we have an approximate jump relation depending of the choiceof the integration's path �(s). We refer to [6] for the theory of the nonconservative hyperbolicsystems (see also [10], [18]) Here for simplicity we use the straight line's path, in terms of the~W = (�; Y; un; u� ; K) variables :�(s; ~Wl; ~Wr) = ~Wl + s( ~Wr � ~Wl) (48)ZIRK@xudx = Z 10 K(�(s; ~Wl; ~Wr))@su(�(s; ~Wl; ~Wr))ds = Z 10 (Kl + s(Kr �Kl))(ur � ul)ds (49)ZIRK@xudx = K[u] with K = Kl +Kr2 (50)The associated shock curves are :S1( ~Wl) = ((�; Y; un; u� ; K); � > 0; Y = Yl; u� = u�l; K = 4�� �l4�l � �Kl;un = unl �vuuut(�� �l)[23(K �Kl) + P � Pl])��l ) (51)S5( ~Wr) = ((�; Y; un; u� ; K); � > 0; Y = Yr ; u� = u�r; K = 4�� �r4�r � �Kr;un = unr +vuuut(�� �r)[23(K �Kr) + (P � Pr)]��r ) (52)The selection among the solutions, of the curve that admits the right sign is obtained by Laxinequalities. The choice of [un] � 0 will also be justi�ed by the entropy characterization in thefollowing section.In these solutions we only keep the part of the solution curves where the turbulence is positive,thus we obtain conditions which are exactly similar to the realizability conditions :~Wn 2 S1( ~Wl) : �l < � < 4�l (53)~Wn 2 S5( ~Wr) : �r < � < 4�r10



- We emphasize that in the case of a "contact discontinuity", these approximate Rankine-Hugoniot conditions and the rarefaction curves provide the same relations between states on eachside of this contact discontinuity, which must be related to the frame of systems of conservativelaws (see tests cases in [8]). [un]21 = 0 and [2K3 + P ]21 = 0 (54)Note also that provided Wl and Wr such that ul = ur and (P + 2K3 )l = (P + 2K3 )r then thesolution of the one dimensional Riemann problem is an unsteady contact discontinuity travelingwith velocity � = unl = unr : W (x; t) = Wl if x < �t and W (x; t) = Wr if x > �t2.2.2 Scalar resolution of a multidimensional systemThis section is devoted to the computation of an exact solution of (RP). We know that thesolution of (PR) is self-similar Wn(x; t) =W �(xt ;Wl;Wr) and consists in at most four constantstates separated by shock waves, (and-or) rarefaction waves and a contact discontinuity [13].Using Smoller's kind of parameterization [21] of the solution waves, we connect the externalstates Wl, Wr to the intermediate ones W1 and W2. In order to agree with the positivity of K,Xi describes the following domain :For a shock : Xi 2]14 ; 1], for a rarefaction wave : Xi 2]1;1[From left to 1 state : From 2 to right state :�1 = �lX1 �2 = �rX3u1 = ul + h1(X1) u2 = ur + h3(X3)Y1 = Yl Y2 = YrK1 = g(X1)Kl K2 = g(X3)Kr (55)To connect the states W1 and W2, we have to solve :8>>>>><>>>>>: [23K + P ]21 = 0 ) F1(X1; X3) = 0[u]21 = 0 ) F2(X1; X3) = 0 (56)11



F1(X1; X3) = g(X1)Kl + 32(P (Yl �lX1 )� P (Yr �rX3 ))� g(X3)KrF2(X1; X3) = h1(X1)� h3(X3) + ul � ur (57)g(X) = 8>>>>><>>>>>: ( 1X )5=3 if X � 14�X4X � 1 if 14 � X � 1 (58)h1(X1) = 8>>>>>>>>><>>>>>>>>>: �vuuut (1�X1)[23Kl(g(X1)� 1) + P (Yl �lX1 )� P (Yl�l)]�l if 14 < X1 < 1Z �l�lX1 ~c0l(�̂)�̂ d�̂ if X1 > 1 (59)h3(X3) = 8>>>>>>>>><>>>>>>>>>: vuuut(1�X3)[23Kr(g(X3)� 1) + P (Yr �rX3 )� P (Yr�r)]�r if 14 < X3 < 1� Z �r�rX3 ~c0r(�̂)�̂ d� if X3 > 1 (60)To V.N.L. �elds may correspond an approximate shock solution or an exact rarefaction wave.Proposition 3 Assume that approximate jump conditions (47) hold. Then the one dimen-sional Riemann problem associated with the nonconservative convective system (Sc) has a uniqueentropy-consistent solution with no vacuum occurrence provided that :unr � unl < Zl + Zr with Zi = Z �i0 ~c0i(�̂)�̂ d�̂ (61)Sketch of proof :By the strict monotonicity of F2(X1; X3), which is a growing function of X1, we deduce that ifh3(X3)+ur�ul > Zl, there exists X1 = '(X3). The ' function is a strictly nongrowing functionof X3; thus X1(X3) is unique. Moreover, F1(X1(X3); X3) is a strictly growing function of X3,12



and, as �h3(X3) < Zr we conclude by this computation that we get a unique couple (X1; X3) ifand only if unr � unl < Zl + Zr.This result is exact if the connection between states is a rarefaction wave or a contactdiscontinuity. If to V.N.L. �elds corresponds a shock solution, we have to assume that the jump'samplitude remains weak. The positivity of �, K, Y and 1�Y is checked by the parameterization(55), (58) and the realizability (53).In regular waves, since Riemann invariants are preserved, the following behavior of theturbulent Mach number holds: Mturb � (KP )12 � (�) 5�36 (62)where the exponent is usually positive since  < 53 in most practical applications. Thus, thisnumber is decreasing in low density regions.In the following section, we assess the choice of density variations through shock waves, onthe basis of an entropy inequality.3 Entropy functions and uniqueness of the solution3.1 Entropy functionsFor the conservative system (Sc), a convex function ' : 
 ! IR is an entropy if there exists aux function f' : 
! IR so that :8><>: @tU +r(G(U)) = 0 (Sc)(r'(U))tdG(U)dU = (rf'(U))t 8U 2 
 (63)The piecewise C1 function U is an entropy solution of (Sc) if U is a classical solution of (Sc)where U is C1 and satis�es the Rankine-Hugoniot conditions in the discontinuities, and furthermore satis�es for each entropy function ' the jump inequality :�['(U)]� [f'(U)] (64)So, we have to �nd a new variable ', that is a combination of K and the other variables, suchthat its evolution equation would be conservative. As we can see in the following propositionwe have a conservative formulation of the convective part our (S) system.13



Proposition 4' = K�2=3 is an entropy function of (S) : @t( K�2=3) +r( K�2=3U) = 0@t( K�2=3 ) = 1�2=3@tK � 23 K�5=3@t�= � 1�2=3r(KU)� 2K3�2=3rU + 2K3�5=3r(�U) = �r( K�2=3U) (65)We note this entropy-entropy ux pair F = K�2=3 , fF = Ku�2=3 .(S) is conservative in U = (�; �Y; �U; K�2=3 ) : (Sc) @tU +r(G(U)) = 0(Sc)8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
@t�+r(�U) = 0@t(�Y ) +r(�Y U) = 0@t(�U) +r(�U2 + 23K + PI) = 0@t( K�2=3) +r( K�2=3u) = 0 (66)Theorem 1 The generic formulation of the ' entropies of (S) is :' = C1(�U22 + � Z P (�Y )�2 d�+K) + C2�+ C3�Y + C4�U + C5 K�2=3 + C6 (67)' is a combination of the conservative variables of (Sc).Further more, we have found a new entropy E, that is the total energy of the mean ow.E = �U22 +K + � Z P (�Y )�2 d� (68)Proof Hence, to identify all the entropies ' of (S), we use the propriety applied to (Sc) thatD2'dGdU must be a symmetrical matrix. See [7] for details.Proposition 5 The associated entropy ux function fE of E is :fE = �U32 + 53KU + �U Z P (�Y )�2 d�+ UP (69)14



Proof@t(� Z P�2d�) = Z P�2d�@t�+ P� @t�+ � Z @P@Y 1�2d�@tY= �r(�u)(Z P�2d�+ P� )�r(�Y u) Z @P@Y 1�2d�+ Yr(�u) Z @P@Y 1�2d�= �r(�u Z P�2d�)� Pru � Yr(�u) Z @P@Y 1�2d�+r(�u)Y Z @P@Y 1�2d�= �r(�u Z P�2d�)� Pru (70)@t(�U22 +K) = �Ur(�U2 + 23K + PI) + U22 r(�U)� r(KU)� 23KrU (71)@t(�U22 +K + � Z P�2d�) +r(�U32 + 53KU + �U Z P (�Y )�2 d�+ PU) = 0 (72)Remark : It is not possible to symmetrize the system with the variable @E@W . One should thusconsider other variables for numerical purposes involving Petrov-Galerkin approach (see [16] forinstance).3.2 A unique physical entropyThanks to the vanishing viscosity method, we can show that the mathematical entropy E isconsistant with the viscous terms of the convective-di�usive system (S). Then, for our system,we proof the equivalence between the Lax inequalities and the compressive shock. At last, weshow that the growing on shocks of the entropy F implies incompressive shock and then, F hasno physical sense.3.2.1 E is a physical entropyKeeping in mind the second principle of thermodynamics, a ' convex entropy is growing on aphysical shock. �['(U)]� [f'(U)] (73)We will show that we have this inequality for the entropy-entropy ux pair (E ; fE).Theorem 2 The entropy-entropy ux pair (E ; fE) is consistent with the viscous terms of (S)15



Proof :Let us consider the (S) system written as follow, in 1D frame :@tW +A(W )@xW = @x(C(W )@xW ) +D(W; @xW )�E(W ) (74)W = (�; �Y; �u;K)t D(W; @xW ) = (0; 0; 0; 43�t(@xu)2)t E(w) = (0; 0; 0; �")t (75)A = 0BBBBBBBBB@ 0 0 1 0�Y u u Y 0�u2 P 0(�Y ) 2u 23�53Ku 0 53K� u 1CCCCCCCCCA C = 0BBBBBBBBB@ 0 0 0 00 0 0 0��e� 43 u� 0 �e� 43 1� 0��K�2 0 0 �� 1CCCCCCCCCAE(W) = �u22 +K + � Z P (�Y )�2 d� (76)fE(W ) = �u32 + 53Ku+ �u Z P (�Y )�2 d�+ UP (77)By the following computation, we obtain the equation veri�ed by the entropy :(@E(W )@W )t(@tW +A(W )@xW ) = (@E(W )@W )t(@x(C(W )@xW ) +D(W; @xW )�E(W )) (78)@t(E(W )) + @x(fE(W )) = (�u2; P 0(�Y ) � 1 ; u; 1)(0; 0; 43@x(�eff@xu); 43�t(@xu)2 + @x(�@x(K� )� �")t= 43(u@x(�eff@xu) + �t(@xu)2) + @x(�@x(K� ))� �"= 43(�eff@x(u@xu) + (�t � �eff )(@xu)2) + @x(�@x(K� ))� �"= @x(43�effu@xu+ �@x(K� ))� 43�lam(@xu)2 � �" (79)Using traveling waves W (x; t) = W (�) = W (x� �t) we have :��E 0(W )(�) + f 0E(W )(�) = (43�effu@xu+ �@x(K� ))0(�)� 43�lam(@xu)2(�)� �"(�) (80)Integrating between left and right states, with lim�!�1W = Wl and lim�!+1W = Wr :��[E(W )] + [fE(W )] = [43�effu@xu+ �@x(K� )]� 43�lam ZIR(@xu)2(�)d� � ZIR �"(�)d� (81)As lim�1 @xu = lim+1 @xu = 0 and lim�1 @x(K� ) = lim+1 @x(K� ) = 0 :��[E(W )] + [fE(W )] = �43�lam ZIR(@xu)2d� � ZIR �"(�)d� � 0 (82)16



Assuming that �lam and also that the turbulent dissipation remains positives, we conclude that�[E(W )] � [fE(W )] (83)We should notice that the entropic dissipation of our system is very weak. It just depends onthe laminar viscosity, which is quite negligible compared with the turbulent viscosity �t (see[12], [15] for somewhat similar entropic considerations.). We should remark too, that both con-tributions of (79) �lam(@xu)2 and ��" are proportional to �lam. Even more, their sum exactlycorresponds to the average of the instantaneous dissipation, so this sum disappears as soon as�lam vanishes. Thus we have obtained a physically relevant entropy inequality. Straightforwardthough tedious algebra manipulations enable to conclude that [un] � 0 using entropy inequalityand inserting approximate jump conditions inside.3.2.2 The F entropy has no physical senseWith same considerations on the entropy F , we can't easily conclude on the sign of the entropicdissipation.��[F(W )] + [fF(W )] = ZIR 1�2=3(@x(�@x( K�2=3) + 43�t(@xu)2)(�)d� � ZIR �1=3"(�)d� (84)So, we use others arguments to come to the conclusion that the no entropy inequality arisesfrom the latter.� Lax inequalities and compressive shockWe demonstrate the equivalence, for our system, between the Lax inequalities (which selectthe entropic solution) and the growing of density on shock curves (in the positive travelsense).We recall the Lax inequalities on a 1-shock curve between the states 1 and 2, settingvi = ui � �: 8><>: � < u2u2 � c02 < � < u1 � c01 , 8><>: v2 < c02; v2 > 0v1 > c01 , 8><>: c022 > v22v21 > c021Theorem 3 On a 1-shock curve we have the equivalence :8><>: c022 > v22v21 > c021 , �2 > �1 (85)17



We have the opposite direction in a 4-shock curve : �2 < �1- We begin with the implication on a 1-shock curve : 8><>: c022 > v22v21 > c021 ) �2 > �1By a reductio ad absurdum, we suppose �1 > �2 :c02 > v22 and with the jump relation [�v] = 0) v22 = �21�22v21v21 > c012 ) c02 > �21�22 c012c022 = (@P@� )(�2) + 10K29�2(@P@� )(�2) + 10K29�2 > �21�22 (@P@� )(�1) + 10K19�1 )(@P@� )(�2)[1� �21(@P@� )(�1)�22(@P@� )(�2) ] > �10K29�2 [1� �1K1�2K2 ] (86)We have the negativity of the �rst member because of the P growth. But, the secondmember is positive by realizability :K1 �K2 = 5(�1 � �2)4�2 � �1 K14�2 � �1 > 0) K1 > K2 ) 1� �1K1�2K2 > 0By a same reasoning we conclude for a 4-shock curve that :8><>: v22 > c022v21 < c021 ) �1 > �2 (87)- Then we show the reverse : For a 1-shock �2 > �1 ) c022 > v22 v21 > c021�1 = u1 �s�2(23(K2 �K1) + P2 � P1)�1(�2 � �1)�1 = u2 �s�1(23(K2 �K1) + P2 � P1)�2(�2 � �1)18



�1�2 c021 < (23(K2 �K1) + P2 � P1)�2(�2 � �1) < �2�1 c022 (88)We have to demonstrate the two inequalities :�2c022 (�2 � �1)� 23�1(K2 �K1)� �1(P2 � P1) > 0 (89)�1(c01)2(�2 � �1)� 23�2(K2 �K1)� �2(P2 � P1) < 0 (90)We use the propriety of Y constant on shock curves, so c02 = @P@� + 10K9�We show separately :(89)8>><>>: (89� 1) �2(�2 � �1)@P@� (�2)� �1(P2 � P1) > 0(89� 2) 109 K2(�2 � �1)� 23�1(K2 �K1) > 0(90)8>><>>: (90� 1) �1(�2 � �1)(@P@� )(�1)� �2(P2 � P1) < 0(90� 2) 109 K1(�2 � �1)� 23�2(K2 �K1) < 0Setting f1(�1; �) = �(�� �1)@P@� (�)� �1(P2 � P1), then f1(�1; �1) = 0@f1@� (�1; �) = (�� �1) (2@P@� (�) + �@2P@�2 )| {z }>0 ) (�� �1)@f1@� (�1; �) > 0And for �2 > �1, f1 is growing, so is positive on �2. With �2 > �1 we get (89� 1).It is the same for (90� 1)K1 �K2 = 5(�1 � �2)4�2 � �1 K1 ) K2 = (4�2 � �1)K14�1 � �2109 K2(�2 � �1)� 23�1(K2 �K1) = 10(�2� �1)2K19(4�2� �1) > 0It is the same for (90�2), so we conclude on the equivalence between Lax inequalities andcompressive shock.� The shock growing of the entropy F implies incompressive shockTheorem 4The shock growing of the entropy F = K� 23 implies incompressive shock. So F has nophysical sense. 19



K2v2�2=32 � K1v1�2=31 = K1[K2K1 v2�2=32 � v1�2=31 ] (91)= K1�2=31 [K2v5=32K1v2=31 � v1] (92)(93)Using the fact that K2 = K14v1 � v24v2 � v1 :K2v2�2=32 � K1v1�21 = K1�2=31 [ (4v1 � v2)v5=32 � v5=31 (4v2 � v1)v2=31 (4v2 � v1) ] (94)Setting x = v2v1 : [Kv�23 ] = K1v21�2=31 (4v2 � v1)(�x8=3 + 4x5=3 � 4x+ 1)On a 1-shock curve v1 > 0; v2 > 0 and by realizability 4v2 � v1 > 0, so, we are interestedby the variations on [0;1[ of the f function :f(x) = �x8=3 + 4x5=3 � 4x+ 1f is a nongrowing function, positive on [0; 1] and negative on [1;1] thus :[Kv�2=3 ] has the sign of [�v]And [Kv�2=3 ] < 0, �[ K�2=3 ] > [Ku�2=3 ] and �[v] < 0, [�] < 0�[ K�2=3 ] > [Ku�2=3 ], [�] < 0To conclude, we note that E is growing on 1-shock curve, like �, whereas the second math-ematical entropy F does not. Hence E = �U22 + K + � Z P (�Y )�2 d� is the unique physicallyrelevant entropy of our system.When focusing on the standard K � " model, we emphasize that Coquel and Berthon recentlyproposed ([1], [2]) the use of this "physical entropy" to develop convenient numerical schemesfor nonconservative integration systems.4 Exact Riemann solution on a shock tube problemIn this example we give the exact Riemann solution of the following shock test case. Theinitial states are (�l; Yl; ul; Kl) = (1; 0:1; 10; 1000) and (�r; Yr; ur; Kr) = (1; 0:9; 10; 1000) with20



the pressure law P = c(�Y )5=3 and Pl = 100000Pa. The solution presented (�g.1) is theprojection in (x; t) frame of the exact Riemann solution. The intermediate states obtained bythe exact Riemann solver are : (�1; Y1; u1; K1) = (1:965; 0:1;�950; 843995) and (�2; Y2; u2; K2) =(0:668; 0:9;�950; 2987:79). This solution depends of the approximate jump relation chosen (50).In part II we will present the solutions obtained by means of Godunov scheme and a comparisonwith some approximate Godunov schemes. We can notice the creation of turbulence on shockand the weak loss of turbulence in the rarefaction wave.
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Figure 1: Density, pressure, velocity and turbulence pro�les at t=0.01 sConclusionThis paper was devoted to the solution of the one dimensional Riemann problem associated withthe convective part of a model describing a turbulent multicomponent ow. This was achievedthanks to a physically relevant entropy inequality, which enables to select the unique entropicsolution in shock curves, provided some approximate jump conditions hold. The exhibited so-lution ful�lls the realizability requirements, both through rarefaction waves and approximate21



shock curves.A similar work has been reported when investigating the convective part of the K-epsilonmodel focusing on compressible ows ([12]), or when dealing with second-moment compressibleclosures([4]). The whole shows that these models arising from statistical approach of turbulencecontain two distinct pressure �elds. In all cases, the solution of the Riemann problem requiresanalysis of a coupled set of four equations (the remaining components -if meaningful- are simplyobtained by deduction afterwards), which eventually results in solving a non-linear set of twoequations with two unknowns, which can be rather easily done using some Newton algorithm.The ratio of these two pressures represents the square of what is usually called the turbulentMach number by workers in the turbulent community. Though it is often assumed that thisnumber is negligible in practice, it appears that this hypothesis no longer holds when approachingthe wall boundaries, or in shear wakes. As a result, rough application of Euler type schemes tothe frame of these complex 'two-pressure' models may generate strong oscillations close to wallboundaries, or in strong rarefaction waves.As a straightforward consequence of the present approach, Godunov type solvers may beconstructed and approximate Riemann solvers may be exhibited, the solutions of which may becompared with exact solution of the Riemann problem. This is achieved in a companion paper[8].References[1] Berthon, C., (1999) Contribution �a l'analyse num�erique des �equations de Navier-Stokescompressibles �a deux entropies sp�eci�ques. Applications �a la turbulence compressible, PhDThesis, University of Paris VI, Paris, France.[2] Berthon, C., Coquel, F., Convection di�usion system with �rst and second order in non-conservation form, in preparation.[3] Baldwin, B. S., Barth, T. J. (1990) A one equation turbulence model for high Reynoldsnumber wall-bounded ows., NASA tec. memorandum no 102847.22
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