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Part 1

An exact Riemann solver for a multicomponent turbulent flow.

Emmanuelle Declercq ' Alain Forestier ¥  Jean-Marc Hérard W Xavier Louis™

Gérard Poissant Tt

key words- Multicomponent turbulence model - Entropy characterization - Riemann solver.

abstract- This contribution’s topic is the resolution of the hyperbolic system which describes
a multicomponent turbulent flow. The model is written for an isentropic gas. We compute the
exact solution of the Riemann Problem (RP) associated to the hyperbolic system. It is composed
of constant states separated by rarefaction waves, or shock waves and a contact discontinuity.
The selection of the admissible part of the shock curve is obtained by an entropic criterion.
Compressive shock means entropic shock for only one of the two mathematical entropies found.
This entropy is the total energy of the system. With these existence and uniqueness properties,

we compute the exact solution of (RP) by a Smoller’s kind of parameterization.

Introduction

The recent need for computation of complex systems of non linear PDE’s such as those arising
when investigating turbulent phenomena has motivated the development of adequate solvers.

Actually hyperbolic systems arising in the framework of single phase turbulent compressible
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models contain different scales of pressure fields. The standard mean pressure accounts for mi-
croscopic effects, whereas the mean turbulent kinetic energy (focusing on K-epsilon type models)
stands for some counterpart of the mean pressure at a macroscopic level. This was recently
demonstrated by several workers (see for instance Coquel and Berthon [1], or [2]) who hence
proposed various upwinding schemes for practical purposes. This is true for one or two-equation
models, but it is even more convincing when turning to so-called second-moment closures. In
this case, the very small amount of viscous effects urges investigating basic solutions of homo-
geneous convective systems. Though the decoupled approaches are still often used in industrial
codes, recent examples of computation of impinging jets on wall boundaries have shown that
the coupled approach should be preferred for stability reasons. We will focus in this work on the
tight coupling between the mean pressure field and turbulent kinetic energy, when computing
multi-component compressible first-order turbulent closures. One of the main objectives here is
to derive exact or approximate Riemann solvers for our specific problem, and beyond to compare
both efficiency, accuracy and stability of respective schemes. The paper is thus organized as
follows. In the first part, the turbulent model used to describe the flow is briefly presented.
Since both viscous and source terms may be easily computed applying standard Finite Volume
schemes on structured meshes at least, emphasis is given on the analysis of the convective ho-
mogeneous problem, which is hyperbolic but is not under conservative form. Studying Riemann
invariants, entropy inequality and assuming some approximate jump conditions hold, enables
to derive an existence and uniqueness result for the solution of the one-dimensional Riemann
problem associated with the convective problem, provided that the initial data agrees with some
condition. This result is made possible by using the admissible part of the shock curves owing
to the entropy inequality. It also requires that the strength of shocks is sufficiently weak.

The second part of the paper is devoted to the construction of a Godunov type solver which
accounts for non-conservative terms, and to comparison with some rough Godunov scheme, and
also with the adaptation to the frame of non conservative systems of the rough but robust

Rusanov scheme.



1 A turbulence model to describe multicomponent flows

1.1 Governing equations

We begin with Euler equations for an average compressive multicomponent flow (see [9]). The
gas k = v, [ are assumed to be isentropic like in the P-system. We define by p the mean density
of the mixture, o the volume fraction of the v flow in the mixture, P the pressure and U the

velocity of the mixture. We use Favre’s average [11] to deal with compressive flows :
prUx = iUy = caup U, k= v, (1)

=0y, p= O‘ﬁv + (1 - O‘)ﬁlv ﬁﬁ = O‘ﬁuﬁv + (1 - O‘)ﬁlﬁl (2)

We introduce the mass fraction Y, and the relative velocity Vj :

YzYuzo‘g”, Vi= U =0, S ViVi=YV,+(1-Y)Vi=0 (3)
k
2 V2 72 72 72 ;
Y, Ve=Y 2 2. U 1—a)p, U =pU 7y —4 4
Zk:kk 1_V = ap, v+( a)pll P —I_p 1Y ()

d:(p) + V(pU) =0

(pY )+ V(pYU) = -V (pY'V,)

. . 9 S 2
0.(pU) +V (U + ZK* + P T) = —V(ﬁYl‘i“Y)

1:
The kinetic turbulent energy K" is the trace of the §R“ tensor. In the two dimensional frame

we write :

2KY = Tr(R) = 3 R = p,(ul + v2) — apy (2 + 02) (6)

l — 7
Remark that we have noted K* = KV 4+ K' = 5(,0UUU2 + pU}%)

l——7
But that is not the turbulence of the melting flow K = §pU2

1.2 K model for isentropic multicomponents flows

To close the model we derive a supplementary equation for the kinetic turbulent energy in the v

flow. To compute this equation we subtract the equation of oep:Uf]UQ from the equation of p,UZ2.



We introduce the deviator D such that :

Tr(R)
3

~Il
Sl

—~

-

R=

_I_

Proposition 1

The evolution equation of a discontinuous by phases turbulent flow is :

- 9 N - . -
O(K") + V.(K'0,) + 5KV U, = 2V D)0, + Vo, UP + UV P + p U (U, — viain, = 0

Proof :

D (pU3) + V(puU2) + 20,V (PT) = 0 (8)
0(puU2) + V(puU3) + 20,V (PT) + p U2 (U, = vi)ain, =0 (9)
0:(apU,0) + V(aiU,) + 2(VIR) U, + 20U,V (PT) — 20, M2 = 0 (10)
2KY = tr(RY) = p,U2 = p,U2 — a5,.U,° (11)

0 (2KY) + V(0 U2 — ap2U,) — 2(VIR YU, + 2U,V(PT) — 2aU,V (PT)
+p, U2(U, — v;)ain, — QﬁUpUUU(UU — v)a;n, — Pyan, — ﬁVoe =0 (12)
m — oap:UUUS = p, U + SﬁupUUéz = p, U + 3Tr(§v)(~fv (13)
UNP=UNP+UVP=UNP+ alU,VPU,PVa+ U,Pan, (14)

vag(Uv - Ui)ainv - QﬁvlovUv(Uv - Ui)ainv = va;;z(Uv - Ui)ainv - (73 pv(Uv - Ui)ainv (15)
—_—
I'ya0

8(2K") + V(3Tr(RY)U,) — 2(V'R,))Uy 4+ Vp,UB + UINP + p,U2(U, — vi)agn, =0  (16)

Tr(R?)

VETHRY),) — 2(VIRY)U, = 3V(Tr(RY)U,) — 2V(

).U, — 2(VD)U,

p— ~ p— ~ 2 p— ~ p— ~
= TR0, + V(T (@)U, + ST (R)V.O, — 2V D),
AK?

; V.U, — (V'D)U, (17)

= V(2K'U,) +

2K"
3

(K +V(K'U,) + V.0, = 2(V'D)U, + Vp UP + TN P+ p,U2(U, — vi)ain, = 0 (18)



Then we make some simplifications to close the system. At first we neglect area source terms,

and odd correlations.

po U2 (U, — vi)an, =0 (19)

Vp,UP =0 (20)
After, we assume an isotropic turbulence, so the Reynolds tensor is diagonal and isotropic. It is
described through K" :
RY = %Kv(sij (21)
In a two dimensional framework we obtain :

(K" + V(K*U,) + %K’“Vﬁv +UVP=0 (22)

To close the (S) system we add the K* evolution equation. This one is obtained by summation
of K* over phases. We suppose that the flows have the same velocity. ;From now on, we
neglect the average symbol, and set K for K?. We give the system here obtained adding the
viscous terms (u; and n are positive quantities depending on the choice of the turbulence model,
Peff = Hiamte). Werecall that the melting gas is isentropic, with a pressure law P(pY’) known.
¢ is the turbulent dissipation which is modeled (see for example the one equation turbulence

model of [16] or [3]).

d(pY)+ V.(pYU) =0
2 = 2 =
Ou(pU) +V.(pU + (5K + P)T) = V(s f(VU + VU = Z(V.U)]T)

) V) +v<nv<§>> e
(23)

2 2
MWK +V.(KU) + SEV.U = (VU + VU — g(V.U)

Setting W = (C, K'), we are interested in the first order convective system (S.) which is conser-

vative in C'(p, pY, pU) variable, but not in K variable:

9:C+VF(C,K)=0
2
K +V(KU)+ 3 KVU =0



2 Exact Riemann solver

2.1 From a 3D problem to the 1D Riemann Problem

It is well known that Finite Volume upwinding schemes are efficient methods to solve no linear
hyperbolic systems. The most natural finite volume method is the Godunov’s method [14]
which requires getting the exact solution of the Riemann Problem at the interface between two
neighboring cells. However, unless the initial data for the turbulent kinetic energy K is null, the
Riemann solution of the multidimensional (S) system is unknown. Hence one needs to exhibit the
one dimensional solution of the Riemann problem associated with the whole convective terms.
The 1D associated problem is a differential system in the normal direction of the boundaries of

a two dimensional control volume.
(S.) W + A9, W + Bo,W =0 (25)

Proposition 2

The W,, solution of (S,) is the normal projection of the W solution of the (S) system.

(Sp) OW,+ NI, W, =0 (26)
Noting N = (PAP™Y).n, + (PBP™').n, (27)
Y
’ +
Ny -n Up = UNg + V.1
Wol w, | 7= e I 7 ’
Ny Ny Ur = —UNy + VN
Ur
K
With ¢ the celerity in the multicomponent flow : ¢ = P/(pY) (28)
in the multicomponent flow :
u 0 0 0 0 v 0 0 0 0 1 0 0 0 0
0 w p 0 0 0 v 0 0 01 0 0 0
Yé? 2
A:~2_Cu()3_ B=]10 0 w» 0 0 P=100 n, n, 0
P P - Y62 2
ooguo 7025 00 ny —my O
0 0 3 0 wu 0 0 0 3 v 00 0 0 1




Applying the P projector to the (S) system :
oW, + PAO, W + PBO,W =0
Thus, using the fact that : W = P=1W, enables to derive :
W, + PAP™Y0,(PW) 4+ PBP™'0,(PW) =0

W, + PAP™ 0, (W™) + PBP~'0,(W") =0

Nn, = PAP™!
Nn, = PBP™!
u, 0 0 0 0
0 uy P 0 0
Y é? 2
N = (PAP Yng+ (PBP Ymy=| & —— w, 0 —
P 3p
0 0 0 wu, O
5K

We eventually obtain a similar one dimensional system :

Ft(pY) + On(pY un) = 0
2
(Sn) =\ Oelpun) + Onlpuz + 3K+ P) =0

di(pur) + On(ptizu,) =0

2
K + 0, (Kuy,) + gKanun =0

(33)

We set by (PR) the (S,,) associated Riemann Problem with the initial constant states W; and

W, on the left and right sides of a the interface.

W, + NOW, =0 (S,)

(PR) S W,(X,t=0)=W, if Xn <0 Lo

W, (X, t=0)=W, if X.n>0

(35)



2.2 Exact solution of the 1D Riemann Problem with approximate jump con-

ditions
2.2.1 Mathematical analysis of the hyperbolic system

The approach given below is quite similar to analysis of hyperbolic systems occurring in the
modeling of spray dynamics ([20], [19]), or of a multicomponent flow in velocity disequilibrium
([17]), of some gas-solid flow models ([5]), or in [18] for a monocomponent turbulent flow. In

order to compute the solution of the (PR) problem, we need to investigate the 1D system (S,,).
(Sn) W, + NO,W, =0 (36)

The (S,,) system is hyperbolic, nonstrictly, because the N matrix is diagonalizable in R.

U, O 0 0 0
0 uy P 0 0
=2
N = 2 Y_C U, 0 3
P 3p
0 0 0 wu, O
K
0 0 ok 0 u,
3
det(N — M5) = (up — N (uy — X — &) (u, — A+ &) (37)

We introduce the turbulent celerity in a turbulent multicomponent flow setting:

10K
=Y 4 —— 38
@ =ves 5o (38)

The following eigenvalues quickly arise :
M=, =&, A=A=X=u,, As=u,+7

The associated right eigenvectors span R® :

5 3 ~2
T‘i = (07/07 _6/707 51()7 T‘é = (_Y7P707070)7 T‘é = (_17070707 pQC

)
t t ~! 5 -
ry=(0,0,0,1,0), 1§ =(0,p.7,0,5K)

The first and fifth characteristic fields are Genuinely Non Linear under sufficient condition

1
that pressure, for fixed Y, is a convex function of — (specific volume) :

2P'(pY) + pY P"(pY) > 0= VA;.ry < 0and VAs.ri >0 (39)



The field associated with treble eigenvalue is Linearly Degenerated :
Vgrh = Vsl = VAuri =0 (40)

We are now able to provide the construction of the different smooth waves :

- The simple waves are self-similar solutions, W, (z,t) = s(%) with z = X.n, (36) gives :

]

(N — %1)5'(—) =0 (41)

o~

The j simple wave in the domain A;(W;) < % < X;(W,) is the integral curve solution of the

system :
)=o) )
T = A3

It is constructed tangent with the j right eigenvector. Noting I; a j Riemann invariant, [; is

constant along the trajectories of the vector field r; :

YW, VIW,) r;(W,) =0 (43)
. . . i1 a2 L 10K, 2 .
Riemann invariants are, with (¢;(p))° = Y; P'(pY;) + 5 T i= Lr (44)
pi®
relp) . K 2 2
L = (Y7 un—l_/ l;p) dp7 Ur, _5) L= (PY7 U, Ur, P(pY)—FgK), I3 = (un7 Ur, P(PY)‘|‘§K7P)
0 pe
L= (Y, pyun, P(pY) + 2K),  Is(Y /p &) g, K
= Up, 9 ) y Un — . ap, Ur, 3
4 » P P 3 5 o p P p5/3

2
By the way, we note that both u, and P + §K are Riemann invariants through the 2 —3 — 4

wave. The rarefaction curves are thus given by the following relations :

I(’ 5/3 L (A
Rl(Wl) = {(vavumuﬂl()vy =Y, ur =ty p >0, K= %7“71 = Un] ‘I’/ Cl(p)dﬁ}
Pr P
(4

I(,,,OE)/S Pr (
RE)(Wr): (vavunvuﬂ'vl()vyz)/;’vuﬂ':u7r7p>07[(:Tvun:um’_/ — dﬁ
Pr P P

- Shock curves are the discontinuous solutions. They must comply with the Rankine-Hugoniot



jump conditions, noting o the speed of the associated discontinuity:
[pY (up — 0)] =0
[p(un — )] = 0
2
(R-H) § [pun(u, — o) + P+ §K] =0 (47)

[pur(un — )] =0

K (0, — o) + %mn] —0

For the nonconservative equation we have an approximate jump relation depending of the choice
of the integration’s path ¢(s). We refer to [6] for the theory of the nonconservative hyperbolic
systems (see also [10], [18]) Here for simplicity we use the straight line’s path, in terms of the

W = (p,Y, up, ur, K) variables :
(b(sv VNVlv VNVT’) = Wl + S(WT - Wl) (48)

1 - . L. 1
Ko,ude = / K (s, Wi, W,))Dsu((s, Wi, W) )ds = / (K1 + 5K, — 7)) (uy — w))ds (49)
R 0 0

_ — K+ K,
Koyude = K[u] with K = % (50)
R
The associated shock curves are :
. 4o —
SSW) =9 (p,Y,unur, K),p>0,Y =Y, ur =ury, K = MKI,
dpr—p
2, . .
(0 MK ~ i)+ P~ )
Uy = Up] — (51)
ppi
T . _ _ - Ap—pr
Ss(Wo) =< (p, Y up,ur, K),p>0Y =Y, ur = upp, K = 1 K,,
Pr—p
2, . .
(p— pr’)[g(K - K.)+(P-F)]
Uy, = Upy + (52)
PPr

The selection among the solutions, of the curve that admits the right sign is obtained by Lax
inequalities. The choice of [u,] < 0 will also be justified by the entropy characterization in the
following section.

In these solutions we only keep the part of the solution curves where the turbulence is positive,

thus we obtain conditions which are exactly similar to the realizability conditions :

Wn € Sl(Wl) o< p<Ap (53)

W, € 85(171/,,) o< p<Adp,

10



- We emphasize that in the case of a ”"contact discontinuity”, these approximate Rankine-
Hugoniot conditions and the rarefaction curves provide the same relations between states on each
side of this contact discontinuity, which must be related to the frame of systems of conservative

laws (see tests cases in [8]).

[u)i =0 and [—+P]]=0 (54)

Note also that provided W; and W, such that w; = u, and (P + %)l =(P+ %)r then the

solution of the one dimensional Riemann problem is an unsteady contact discontinuity traveling

with velocity 0 = up = wp, : Wi, t) =W, if ¢ < ot and W(z,t) = W, if 2 > ot

2.2.2 Scalar resolution of a multidimensional system

This section is devoted to the computation of an exact solution of (RP). We know that the
solution of (PR) is self-similar W, (z,t) = VV*(%7 Wi, W,) and consists in at most four constant
states separated by shock waves, (and-or) rarefaction waves and a contact discontinuity [13].
Using Smoller’s kind of parameterization [21] of the solution waves, we connect the external
states Wi, W, to the intermediate ones W; and Ws. In order to agree with the positivity of K,
X; describes the following domain :

1
For a shock : X; E]Z, 1], for a rarefaction wave : X; €]1, oo

From left to 1 state : | From 2 to right state :
_ 1 _ P
p1 = X, P2 X,
uy = ug + h (Xy) ug = u, + h3(X3) (55)
Yi=Y Yo=Y,
I(l = g(Xl)I([ I(Q = g(Xg)I(r

To connect the states Wy and W5, we have to solve :

2
[gK +Pi=0 = F(X1,X3)=0
(56)

[u]? =0 = F(X1,X3)=0

11



Fi(X1,X3) = g(X1)K; + ;(P(Y LUy Py )y - g(X9)K,

le TXS
(57)
FQ(X17X3) = hl(Xl) - hg(Xg) + U] — Up
(3)5/3 if X >1
< >
9(X) = (58)
4-X 1
if — < <
X 1 if 15 X <1
2
(1= X)[Ki(g(X1) = 1)+ P(YigH) = P(Yip1)]
— L if - <X, <1
Pl 4
hi(X) = (59)
Pr i p
/lcl(j”)d,a it X > 1
aop
X1
2 . r
(1= XK (9(Xs) = 1) + PG RS = PG
if —<X3<1
Pr 4
h3(X3) = (60)
or 7 (h
—/ &), i X5 > 1
o p
X3

To V.N.L. fields may correspond an approximate shock solution or an exact rarefaction wave.

Proposition 3 Assume that approximate jump conditions (47) hold. Then the one dimen-
stonal Riemann problem associated with the nonconservative convective system (S.) has a unique

entropy-consistent solution with no vacuum occurrence provided that :
] LA
Upyp — Uy < L1+ 7,  with Z; = / ﬁdp (61)
o P

Sketch of proof :
By the strict monotonicity of Fz(Xy, X3), which is a growing function of Xy, we deduce that if
hs(Xs)+u, —u; > 7, there exists X1 = ¢(X3). The ¢ function is a strictly nongrowing function

of X3; thus X1(X3) is unique. Moreover, F1(X1(X3), X3) is a strictly growing function of Xs,

12



and, as —h3(X3) < Z, we conclude by this computation that we get a unique couple (X1, X3) if
and only if ., — uy < 21+ Z,.

This result is exact if the connection between states is a rarefaction wave or a contact
discontinuity. If to V.N.L. fields corresponds a shock solution, we have to assume that the jump’s
amplitude remains weak. The positivity of p, K, Y and 1Y is checked by the parameterization
(55), (58) and the realizability (53).

In regular waves, since Riemann invariants are preserved, the following behavior of the

turbulent Mach number holds:

Mun = (35) = (o) (62)

where the exponent is usually positive since v < % in most practical applications. Thus, this
number is decreasing in low density regions.
In the following section, we assess the choice of density variations through shock waves, on

the basis of an entropy inequality.

3 Entropy functions and uniqueness of the solution

3.1 Entropy functions

For the conservative system (S.), a convex function ¢ : © — R is an entropy if there exists a

flux function f, : € — R so that :

O + YV (GU)) =0 (S2)
dG(U) . (63)
(VQP(U))LLW = (V/. )" YU eQ

The piecewise C; function I is an entropy solution of (S;) if ¢ is a classical solution of (S,)
where Uf is C; and satisfies the Rankine-Hugoniot conditions in the discontinuities, and further

more satisfies for each entropy function ¢ the jump inequality :

ale)] = [f ()] (64)

So, we have to find a new variable ¢, that is a combination of K and the other variables, such
that its evolution equation would be conservative. As we can see in the following proposition

we have a conservative formulation of the convective part our (S) system.

13



Proposition 4

K . K v
= W is an entropy function of (S) : I ( 2/3) + V( 2/3U) =0
K 2 K
8’5(,02/3) = 2/3@[( 3@8”0
1 ] 2K 2K K
= —WV(K U) — mVU+ WV(/)U) = _V(WU) (65)
K Ku

We note this entropy-entropy flux pair F = POYER Ir= —73
p p

(S) is conservative in U = (p, pY, plU, 2;3) L (S) AU+ V(GU) =0
dip+VpU)=0

Fe(pY) + V(pYU) =0

8, (pU) + V(pU? + %K + P =0

K K
04 2/3)—|—V( 2/3 ¢ u) =0

Theorem 1 The generic formulation of the ¢ entropies of (S) is :
pU :
p=C(E ) / POY) 4y 4 K) 4 Cop + CopY + Capll + s 2/3+06 (67)

@ is a combination of the conservative variables of (S.).

Further more, we have found a new entropy £, that is the total energy of the mean flow.

2
e="

(68)

Proof Hence, to identify all the entropies ¢ of (S), we use the propriety applied to (S.) that

D%p— must be a symmetrical matrix. See [7] for details.

di
Proposition 5 The associated entropy flux function fe of £ is :

pU3

Je = (69)

14



Proof

P P P 0P 1
8t(p/p_2dp) = /ﬁdpatp—l- ;&:P-I—P/a—yp—zdpaty
P P 0P 1 0P 1
= —V(pu)(/ de—l_ ;) — V(pYu)/a—Yp—zdp—l—YV(pu) G_Yp_zdp

P oP 1 aP 1
= ~Vlpn [ S3do) = PYu =YV (pw) [ Somzdp+ Vipu)y [ 5o dp

P
= —V(pu/p—de) — PVu (70)
U2 2 = 2 2
0=+ K) = —UV(pU? + K + PI) + —V(pU) = V(KU) = ZKVU (7]
U P Us 5 . P(pY
3t('07_|_[( _|_p/p_2dp)_|_v(’07—|-§lﬁU—|—pU/ (52 )d,O-I-PU):O (72)

o€
Remark : It is not possible to symmetrize the system with the variable ——. One should thus

ow

consider other variables for numerical purposes involving Petrov-Galerkin approach (see [16] for

instance).

3.2 A unique physical entropy

Thanks to the vanishing viscosity method, we can show that the mathematical entropy & is
consistant with the viscous terms of the convective-diffusive system (&). Then, for our system,
we proof the equivalence between the Lax inequalities and the compressive shock. At last, we
show that the growing on shocks of the entropy F implies incompressive shock and then, F has

no physical sense.

3.2.1 ¢ is a physical entropy

Keeping in mind the second principle of thermodynamics, a ¢ convex entropy is growing on a

physical shock.
ole@)] = [f(U)] (73)

We will show that we have this inequality for the entropy-entropy flux pair (&, fe).

Theorem 2 The entropy-entropy flux pair (£, fe) is consistent with the viscous terms of (S)
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Proof :

Let us consider the (S) system written as follow, in 1D frame :
OW + AW)0W = 0,(C(W)0. W) + D(W,0,W) — E(W) (74)

W = (p, pY, pu, )" D(W,@xW):(0,0,0éut(@xu)z)t E(w) = (0,0,0,p2)!  (75)

0 0 1 0 0 0 0 0
—Yu U Y 0 0 0 0 0
A= 2 = 4y 41
—u? P/(pY) 2u g _Meff§; ,ueﬁ“§; 0
5. 5K K "
——Ku 0 -— u -n— 0 0 N
3 3p p p
2 P(pY
EOV) = % + K +p/ %dlo (76)
w5 P(pY
fg(W):pT—l—gku—l—pu/ (52 )dp—|—UP (77)

By the following computation, we obtain the equation verified by the entropy :

@ + agmiaw) = CEED @) + Do) - Ev) (@)
W) + 0 feV)) = (s T ) 0,050 nc 0], G000 + 0005 = )
= 00,y 00) + (00®) + 0,000 7)) — e
= e 70u(00,0) 1 = g ) (0210 + 0ul0 () — g2
= Ou(Gpesrudu 10u( ) = S (B0)?  pe (79)
Using traveling waves W (z,t) = W (€) = W(z — ot) we have :
€ WY€)+ SOV = (Gresradi+ 00a (V) = G (0:0*(6) = p=(€) (80)

Integrating between left and right states, with glim W =W, and glim W=w,:
——00

—+oo

~aE (V)] + e V)] = [gnespudon + 10u (5] = gt [ @0 (€)de = [ pei@)de  (s1)
P R R
) ) ) K . K
As 1_1& Jru = L{g Jdru =0 and 1_1& 81,(;) = L{g 895(?) =0:
ol W)+ e = =g [ @ods - [ pei€)de <0 (82)
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Assuming that p,,, and also that the turbulent dissipation remains positives, we conclude that
alE(W)] > [fe(W)] (83)

We should notice that the entropic dissipation of our system is very weak. It just depends on
the laminar viscosity, which is quite negligible compared with the turbulent viscosity ju; (see
[12], [15] for somewhat similar entropic considerations.). We should remark too, that both con-
tributions of (79) fyap (0zu)? and —pe are proportional to p.m,. Even more, their sum exactly
corresponds to the average of the instantaneous dissipation, so this sum disappears as soon as
tiam vanishes. Thus we have obtained a physically relevant entropy inequality. Straightforward
though tedious algebra manipulations enable to conclude that [u,] < 0 using entropy inequality

and inserting approximate jump conditions inside.

3.2.2 The F entropy has no physical sense

With same considerations on the entropy F, we can’t easily conclude on the sign of the entropic
dissipation.
1 K 4 9 1/3
—o[FW)]+UrW)] = | —75(0:(n0:(—=7) + 2m(0eu))(§)dE — | pe()dS (84)
R p2/3 p2/3 3 R
So, we use others arguments to come to the conclusion that the no entropy inequality arises

from the latter.

e Lax inequalities and compressive shock

We demonstrate the equivalence, for our system, between the Lax inequalities (which select
the entropic solution) and the growing of density on shock curves (in the positive travel
sense).

We recall the Lax inequalities on a 1-shock curve between the states 1 and 2, setting

v, = U; — O

o < Uy vy < ¢y vg >0 e > vl
= =

Uy — ¢y < o< up— v >} v} > ¢
Theorem 3 On a I-shock curve we have the equivalence :
Z >l
P2 > M1 (85)

2.
vy > cf
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We have the opposite direction in a 4-shock curve : py < p1

2> 2
- We begin with the implication on a 1-shock curve : ? o P2 > p1
v >
By a reductio ad absurdum, we suppose p; > ps :
2
¢h, > v3  and with the jump relation [pv] =0 = v5 = —évf
2
2 pi 2
vf > =y > =
2
apP 10K
2 _ YL 2
= (G + g
P 10K, _ p? OP 10K,
- +— > =55 +
()2 + = pg(ap)(”l) op;
P
2
8P pl(a_p)(pl) 10[(2 pll(l
— 1- > — 1- 86
(G ool ~ —gh—] > ~ 22 - P (56)
ri(5,)r2)

We have the negativity of the first member because of the P growth. But, the second

member is positive by realizability :

5(py —
K — Ky = MI&]
4p2 — p1
K
dpy—p1 > 0= K > Ky=1- 2121 5 g
p2lis
By a same reasoning we conclude for a 4-shock curve that :
v3 >
= p1 > p2 (87)
vF < cf?
- Then we show the reverse : For a 1-shock py > p; = ¢ > v3 v > cf

\/pg(%([(g — I(l) —|— P2 — Pl)
oy = Uy —
p1(p2 — p1)

¢P1(%(Kz - Ky)+P-PF)
g1 = Uy —
/02(/02_101)
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2(Ky— K P,— P
PLee o G- K)+PR-P) P22 (88)
P2 ,02(/02 - ,01) P1

We have to demonstrate the two inequalities :

2 . .
P25 (p2 — p1) — 5,01([(2 —Ki)—pi(P2—P1) >0 (89)
2 . .
pi(c1)*(p2 = p1) = 3p2(Ky = K1) = pa(Py = 1) <0 (90)
JP 10K
We use the propriety of Y constant on shock curves, so ¢ = — + —
dp 9p
We show separately :
oP
(59) (89—1) ,02(,02—,01)8—,0(,02)—,01(132—131) >0
10 . 2 . .
(89 — 2) ?I(Q(pg — ,01) — gpl(lﬁz — I(l) >0
oP
(90) (90-1)  pip2 - Pl)(a—p)(m) —p2(Py— P1) <0
10 2
(90 — 2) 51(1 (p2 — ,01) — gpg (I(g — I(l) <0

) oP
Setting fi(p1,p) = plp — Pl)a—p(P) — p1(Py — Py), then fi(p1,p1) =0
p

9 oP 9*pP 0
T o) = (o= ) (25 00) + 9 55) = (0= 1) (o1 p) > 0

>0
And for pz > p1, f1 is growing, so is positive on py. With py > p1 we get (89 — 1).

It is the same for (90 — 1)

5 — 4pg — K
e Ol Bt ) O N G B AV LS
4pz — p1 4p1 — p2
10 B 2 B B 10(p2 — pl)Ql(l
—K — — —p(Ky — Kq{) =
5 2(p2 — p1) 3,01( 2 1) 9(dps — p1) >0

It is the same for (90 — 2), so we conclude on the equivalence between Lax inequalities and

compressive shock.

e The shock growing of the entropy F implies incompressive shock

Theorem 4
(

The shock growing of the entropy F = — implies incompressive shock. So F has no
p3

physical sense.
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K K K
2U2_ 101 _ Kl[—2 V2 _ U1] (91)

p> pl? Ky pyl® pil?
I(l I(QUE)/
= 2/3[m Ul] (92)
1v
(93)
4?]1 — U9 .

Using the fact that Ky = K3 :
4?]2 — O

1(21]2 1(11]1 I(l (4?]1 — UQ) 5/3 5/3(4?]2 — Ul)

- = <7l ] (94)
p3l” P e 2/ (dvz — v1)
Setting « = el
U1
K Kyv?
()= e o e e )
p§ (4?]2 — Ul)

On a 1-shock curve vy > 0, vy > 0 and by realizability 4vy — vy > 0, so, we are interested

by the variations on [0, oo[ of the f function :
flz)= —g8/3 —|—4965/3 —4x+1

f is a nongrowing function, positive on [0, 1] and negative on [1, oc] thus :

[I;/UB] has the sign of [—v]
Kv K Ku
And | 2/3] <0< 0| 2/3] > [W] and —[v] <0< [p] <0

K Ku
U[W] > [W] < [p] <0

To conclude, we note that & is growing on 1-shock curve, like p, whereas the second math-

pU : )
ematical entropy F does not. Hence £ = — + K 4+ p

dp is the unique physically
relevant entropy of our system.

When focusing on the standard K — ¢ model, we emphasize that Coquel and Berthon recently
proposed ([1], [2]) the use of this ”physical entropy” to develop convenient numerical schemes

for nonconservative integration systems.

4 Exact Riemann solution on a shock tube problem

In this example we give the exact Riemann solution of the following shock test case. The

initial states are (p;, i, u;, K;) = (1,0.1,10,1000) and (p,,Y,, u., K,) = (1,0.9,10,1000) with
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the pressure law P = ¢(pY)*? and P, = 100000Pa. The solution presented (fig.1) is the
projection in (z,¢) frame of the exact Riemann solution. The intermediate states obtained by
the exact Riemann solver are : (pq, Y1, u1, K1) = (1.965,0.1, =950, 843995) and (p3, Y2, uz, K3) =
(0.668,0.9, —950,2987.79). This solution depends of the approximate jump relation chosen (50).
In part 11 we will present the solutions obtained by means of Godunov scheme and a comparison
with some approximate Godunov schemes. We can notice the creation of turbulence on shock

and the weak loss of turbulence in the rarefaction wave.

density pressure
2.1 w w : : ;
3800000 r
16 | ] 2800000
1800000
11 :
I 800000 |
0.6 ‘ ‘ ‘ ‘ ~200000 -
-40.0 -20.0 0.0 20.0 40.0 60.0 -40.0 -20.0 0.0 20.0 40.0 60.0
velocity turbulence
900000 e ‘
100 | 700000 |
500000 r
-490.0
300000 r
m990.0 100000 t
-1490.0 : : : : —100000 : : ‘ ‘
-40 -20 0.0 2.0 4.0 -40.0 -20.0 0.0 20.0 40.0 60.0
Figure 1: Density, pressure, velocity and turbulence profiles at t=0.01 s
Conclusion

This paper was devoted to the solution of the one dimensional Riemann problem associated with
the convective part of a model describing a turbulent multicomponent flow. This was achieved
thanks to a physically relevant entropy inequality, which enables to select the unique entropic
solution in shock curves, provided some approximate jump conditions hold. The exhibited so-

lution fulfills the realizability requirements, both through rarefaction waves and approximate

21



shock curves.

A similar work has been reported when investigating the convective part of the K-epsilon
model focusing on compressible flows ([12]), or when dealing with second-moment compressible
closures([4]). The whole shows that these models arising from statistical approach of turbulence
contain two distinct pressure fields. In all cases, the solution of the Riemann problem requires
analysis of a coupled set of four equations (the remaining components -if meaningful- are simply
obtained by deduction afterwards), which eventually results in solving a non-linear set of two
equations with two unknowns, which can be rather easily done using some Newton algorithm.
The ratio of these two pressures represents the square of what is usually called the turbulent
Mach number by workers in the turbulent community. Though it is often assumed that this
number is negligible in practice, it appears that this hypothesis no longer holds when approaching
the wall boundaries, or in shear wakes. As a result, rough application of Euler type schemes to
the frame of these complex two-pressure’ models may generate strong oscillations close to wall
boundaries, or in strong rarefaction waves.

As a straightforward consequence of the present approach, Godunov type solvers may be
constructed and approximate Riemann solvers may be exhibited, the solutions of which may be

compared with exact solution of the Riemann problem. This is achieved in a companion paper

8.
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