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Abstract

A realizable, objective second-moment turbulence closure, allowing for an entropy carac-
terisation, is analyzed with respect to its convective subset. The distinct characteristic wave
system of these equations in non-conservation form is exposed. An approximate solution to
the associated one-dimensional Riemann problem is constructed making use of approximate
jump conditions obtained by assuming a linear path across shock waves. A numerical in-
tegration method based on a new approximate Riemann solver (flux-difference-splitting) is
proposed for use in conjunction with either unstructured or structured grids. Test calculations
of quasi one-dimensional flow cases demonstrate the feasibility of the current technique even
where Euler-based approaches fail.

1 Introduction

Second order modelling of the Reynolds stress tensor has received growing attention over the past
two decades. This particular closure technique has considerably matured so that today, Reynolds
stress transport models are in use over a broad range of turbulent flow types in engineering
applications [1, 2, 3].

In the compressible flow regime, one has to deal with wavelike phenomena including disconti-
nuities (e.g. shock waves) due to the hyperbolic character of the convective subset of the governing
equations. These specific flow features constitute a major challenge to any type of numerical sim-
ulation. In the past, characteristics based methods have proven very useful notably for solving the
equations of gas dynamics [4, 5]. The underlying idea of this class of numerical techniques is to in-
corporate as much as possible of the physics of the analytical problem into the discrete treatment.
An important building block in this respect has been the one-dimensional Riemann problem which
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exhibits the essential features of characteristic wave propagation in the presence of discontinuities.
In the case of the well-known Euler equations, an analytical solution to the Riemann problem can
be found making use of the conservation form of the system (Rankine-Hugoniot relations). When
dealing with Reynolds averaged transport equations in conjunction with a second order closure,
the hyperbolic subset is not in conservation form due mainly to production terms (a similar situ-
ation arises in two-phase flows [6]). The fact that no classical analytical solution can be found for
this system in the presence of discontinuities hinders the construction of a numerical method.

In past applications of second-moment closures to compressible flow problems this difficulty
has sometimes been circumvented resorting to the gas dynamics case as a model for physical
propagation properties thus effectively neglecting the influence of turbulence on the characteristic
wave system [7, 8]. However, recent work suggests that this simplified approach violates ther-
modynamic realizability properties [9] and can lead to non-physical or even unstable numerical
solutions [10, 11].

An analysis of the complete hyperbolic subset in the framework of two-equation turbulence
models (k-e type closures) has been carried out by Louis [12] and Forestier et al. [13]. These
authors made use of the assumption of a linear path of a particular set of dependent variables
across shock waves in order to derive an approximate analytical solution of the Riemann problem,
eventually leading to an appropriate numerical method. The aim of the present article is to
extend that technique upon systems issuing from second-moment closures. However, the tensorial
character of the Reynolds stress further complicates the task through supplementary constraints
of realizability which are strongly tied to the hyperbolicity of the underlying system. Before even
directing ones attention on the hyperbolic subset, it is thus important to assure that the closed set
of (modelled) equations meets the entire criteria that can be set forth from the exact equations of
motion.

The outline of the present article is as follows. In section one we present a class of second-
moment closures that exhibit the desired realizability properties and allows for a clear entropy
caracterisation. We then focus on the analysis of the associated hyperbolic subset which is de-
scribed in section two. Approximate jump conditions are proposed for the non-conservative system.
We then go on to construct the solution to the one-dimensional Riemann problem, applying the
entropy inequality and restricting to weak shocks. The presented solution fulfills realizability re-
quirements. These results enable us to propose in section 4 a simple but efficient way to compute
time-dependent solutions including rarefaction waves, shocks and contact discontinuities, either
using structured or unstructured meshes. The fourth section is devoted to the presentation of
sample computational results of turbulent shock tube experiments, which confirm the capabilities
of the scheme, even for high values of the turbulent Mach number.

2 The second moment closure

2.1 Governing equations

In this paper, we resort to Favre averaging of the instanteneous Navier-Stokes equations [14] while
neglecting fluctuations of “molecular” quantities (viscosity and heat conductivity). Two supple-
mentary hypotheses are applied: the turbulent mass flux and temperature-density correlations are
neglected when appearing in conjunction with viscosity; the turbulent heat flux is expressed by a
gradient transport type model for simplicity. The resulting set of equations can then be written



as follows (for more details on the derivation we refer to [15, 16, 11]):

(p).t + (pUj)), = 0

(Ui)e  + (pUiUj +6ijp + pRij) = (%) -
(PE)  + (pEU; + Ui (pdij + pRij)) ; = (Ui +om(®),) T - («7») ;
(PRij)e + (pRijUp) g + pRiUj, + pRixUs,, = @i — 505508 + Tijr,, — ulf pj — uf ps

(1)
Tilde, overbar and primes have been dropped in (1) except where needed for clarity. p stands for
the mean density, U is the density weighted mean velocity vector, R the Reynolds stress tensor
Rij = uf u;.’ , E the mean specific total energy and p the mean pressure which can be expressed
via the ideal gas law (with 7 being the ratio of specific heats), viz.:

1 1
p=—-1(pE - §PUkUk - §kak)- (2)
The mean viscous stress X is defined as:
2
Bij = wUi; +Uj, = 50iUk,), 3)

where p is the dynamic molecular viscosity. op is the (positive) coefficient of total heat flux
(including a turbulent and a mean contribution); 7;;x regroups all turbulent transport terms of
the Reynolds stress; u_;’ represents the turbulent mass flux, corresponding to the difference between
density weighted and Reynolds averaged mean velocity. ® stands for the sum of the pressure-strain
correlation and the non-isotropic part of the dissipation tensor [17]; € is the turbulent mechanical

dissipation rate which can be obtained by a standard model equation (e.g. [18]).

2.2 Realizability properties

We now recall the basic conditions to be fulfilled a priori by our second moment closure. Admissible
states for the Reynolds stress tensor are such that the following inequality holds for any unit vector
n in IR3:

n’-R(x,t) -n >0, (4)

which expresses that fluctuating velocities must be real. As a direct consequence of (4) one obtains
a set of constraints:

fZO (f:{(sivé%aéé} 7':173)7 (5)

where f designates any one amongst the fundamental minors of the Reynolds stress:
8% = Roa, 05 = RgpRyy — R3,, 03 =det(R). (6)
As a further criterion, mean density and pressure need to be positive, viz:

p(x,1)
p(x,1)

(A\VARAY]

We thus define:

A closed set of equations that assures solutions complying with inequalities (5), (7)
and (8) is called weakly realizable.

Considering the exact limiting behaviour of the Reynolds stress tensor, one can go further and
formulate the following requirement of strong realizability [17, 19, 20, 21, 22, 23, 24, 25]:

f20 U f=0 = (&(f)=0 U du(f)>0), 9)



with f = {6¢,6%,05} and di = 0;() + Uk() 1. the material derivative and dy f = d¢(d¢ f).

For the sake of completeness, we call Reynolds stress closures that do not allow the solution
to approach the limiting state, i.e. such systems that verify

f>20 U f=0 = d(f) >0, (10)

over-realizable.

Finally, it has been shown by Speziale [26] that the exact individual terms of the Reynolds stress
transport equation (with the exception of production) are invariant under arbitrary accelerations
of the frame of reference. Respective models should thus be formultated in a manner corresponding
to this so-called objectivity requirement.

In the absence of a full proof of realizability for non-gaussian closures [22] we restrict our scope
in the following to gaussian closures (71 = 0).

Lumley [17] proposed a model for the slow part of the pressure-strain correlation ® which is
in agreement with previous constraints (weak realizability, strong realizability, objectivity) and
allows for a return-to-isotropy mechanism [24]. It must be pointed out that more recently strongly
realizable models for the rapid part of pressure-strain have been put forth [20, 21] which however
do not fulfil the objectivity requirement. We thus focus herein on Lumley’s proposal which reads

|
® = —a(l, 11,111, Re;) - pe - (gki — gfsij), (11)

where «(I,II,II1,Re;) is a dimensionless function of the three invariants I, II, III of the
Reynolds stress tensor and a turbulent Reynolds number Re;.

Moreover, we refrain from the practice of including an explicit model for the trace of pressure-
strain, the so-called pressure-dilatation correlation, since algebraic expressions that have been used
in the past [27, 28, 29, 30, 31] are in conflict with the constraints of strong realizability (cf. [11]).

The turbulent mass flux u_;’ is assumed to be modelled by a generalized gradient transport
expression as proposed by Zeman [32] and Ristorcelli [33]:

R
ui = XT’ZM, (12)

where x designates a characteristic time scale of the energetic eddies.

2.3 Entropy inequality

The system of equations (1) in conjunction with our modelling assumptions of the preceding
paragraph enables us to derive an entropy inequality analogous to the case of the instantaneous
Navier-Stokes equations (cf. e.g. [34]). Introducing a vector W3 of “pseudo-conservative” vari-
ables

WSD = (pa pU7 pVa pWa pEa pRlla PR22, pRSSa pRl?a pR137 pR?B)ta (13)

and the entropy function
n(W?*P) = —plog(p/p), (14)
we obtain:
PROPOSITION 1: Regular solutions of the set (1) are such that
ne + V. [y (WD) + V. f1(W3P YW?P) = S, (W?P YW?P) <0, (15)
where the fluxes are defined as (T = p/p):
o= U, (16)

= —(XBupi(y=1) , + ((7 - 1)UE%> ’ "
k



and the source term may be written as:

vy—1/0E R;;
Sn =" (?T% +pe + Zij - Uz’,,-) -(r- 1)X7jﬂ,iﬂ,j- (18)
This clear inequality of the full set of model equations becomes useful in the inviscid limit where
the following property holds across a discontinuity of speed o:

—om] +[f;*]1 <0. (19)

With the help of inequality (19) the physically correct jump condition in the case of a shock wave
can be selected amongst mathematically possible candidates. This is a prerequisite for the unique
solution of the Riemann problem in section 3.3.

3 The convective subset

3.1 Introduction

The convective subset of our second-moment closure is obtained by setting all viscosity and conduc-
tivity related terms to zero in equations (1) and retaining only first order differential expressions.
Alternatively, one can start off with the inviscid instantaneous equations (Euler) and carry out the
statistical treatment. After introducing the above mentioned modelling assumptions the result is
the following system:

(p).t +  (pUj) =0

(pUi)e  + (pUiUj + 6i5p + pRij) =0 (20)
(pE)e  + (pEU; +Ui(pdij +pRy)) ; = 0

(pRij)e + (pRij Uk)k = —pRuUj, — pR;1U;,

Equations (20) cannot be put into conservation form due to the presence of the turbulence produc-
tion term on the right hand side. From this fact stems the main difficulty in analyzing and solving
the equations issuing from second-moment closure: classic results from the theory of hyperbolic
systems of conservation laws (cf. e.g. [35, 34]) cannot be simply “applied” to this non-conservative
system.

In the following we restrict our investigation to statistically two-dimensional turbulent flow
(not to be confused with the extreme state of two-dimensional turbulence) in order to keep alge-
braic manipulations tractable. An extension to three dimensions should be straightforward but
cumbersome. We thus assume that

Riz=Ry3 =W =0, (21)
and
$3=0 (22)

whatever ¢ stands for. With the new vector of state variables

W = (p, pU, pV, pE, pRu1, pRas, pRas, pR1»)" (23)
the convection-production subset (20) now reads

W, + (F;(W)), =H(W, VW) i=12 , (24)

where F;(W) are the convective fluxes and H(W, VW) the production term. We can assemble a
system matrix A;(W)

OF;(W)

+ C(W) 1=1,2 (25)



where
Ci*(W) - W; =-H(W, VW), (26)

so that equation (24) takes on the following familiar form:

W’t + A; - W,i =0. (27)

3.2 Hyperbolicity
Once more resorting to a unit vector n we define
U, =Ulx,t)n, Rp, =n'R(x,t)n. (28)

Since the system of equations is invariant under rotation, it suffices to investigate its characteristics
in a single arbitrary direction n. We obtain with respect to the eigenvalues:

PROPOSITION 2: The convective subset (27) is a non strictly hyperbolic system of
equations if conditions (5), (7) and (8) of weak realizability hold. Eigenvalues are (in
ascending order):

M o= Up—a

X = U,—c

A3 = M =X = X = Uy (29)
A = Up+co

s = Up+ca

with

c = p/p+ 3R, (30)
Cy = \/m - (31)

It is important to note that the hyperbolicity of the system of equations is strongly tied to the re-
quirement of weak realizability, a fact that has already been noticed with respect to incompressible
fluids [22, 24]. As to what concerns the convective subset (27) alone, weak realizability is auto-
matically satisfied for regular (C!) solutions. Moreover, the Reynolds stress stays over-realizable
if the initial state is over-realizable (see appendix A) so that eigenvalues A> and A7 do not coincide
with A3_g (this property ensures the existence of a diagonal form of matrix A(W)).

The set of eigenvalues differs visibly from the familiar case of gas dynamics. Waves associated
with A\; and Ag are of acoustic nature, where ¢; signifies the celerity of isentropic density or pressure
waves. This speed, however, depends on the (directional) turbulence intensity R, in the present
case.

The distinct speed of the 2- and 7-wave is a particular feature of the second-moment closure,
¢o playing a purely cinematic role. We are confronted with a system that permits the definition
of two Mach numbers:

Un MEuler
M, = 2= _Puer | 32
! o BM; 1 (32)

Un MEuler

M = _— =
2 co M, ' (33)

where Mpuier = Un/+/yp/p is the classical speed of sound and M; = v/R,.//vp/p is a (di-
rectional) turbulent Mach number. The flow is supersonic (i.e. all waves have same sign) when

|M1| > 1.
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Figure 1: a) Quasi one-dimensional flow in the two dimensional plane (n,7) at an instant ¢ > 0.
b) Wave propagation in space and time (n,t).

3.3 The Riemann problem

In the following we wish to analyze the one-dimensional Riemann problem which describes the
flow developping from two semi-infinite states that have been separated initially by a discontinuity.
Since we allow all components of the two-dimensional state vector to be non-zero a priori (but
uniform in the tangential direction), the flow should really be termed “quasi one-dimensional”.
It is useful to work in local coordinates (n,T) perpendicular and tangential respectively to the
discontinuity (see figure 1) so that we deal with the set of transformed variables

Z= (pa pUnapUtapEapRnnprttapRssapRnt)t ) (34)
where
U, = Uln, R,, = n'Rn, R; = n'Rt (35)
Ut = UtT: Rtt = TtRT7 Rss = R33 )

The set of equations (27) can now be rewritten as follows:

OF
Zi+A, -Z,=0, A, = 8Zn +Cl(z) , (36)
with initial data
Zn< 0,6 =0)=2Zp, Z(n>0,t=0)=Zp. (37)

3.3.1 Genuinely non-linear and linearly degenerate waves

In order to test for linearity of the different characteristic fields, the differential of the respective
wave speed A; needs to be projected upon the corresponding right eigenvector r* [34]:

onN { =0 = linearly degenerate field i (38)

07 r #0 = genuinely non-linear field 7.

Eigenvectors r’ of our present system of equations are given in appendix B. It is straightforward
to verify that the 1- and 8-wave are genuinely non-linear (GNL), others are linearly degenerate
(LD).



3.3.2 Riemann invariants

Riemann invariants I associated with the ith field (satisfying (0I%/0Z)-r' = 0) are the following:

_ _ c 2c1 R, d
[}1% = {pp 7, Rpnp 27 Un +/;1dp, (RnnRtt _Rit)/p2a Ui +/ﬁ7p, Ry,
1 nn
1 [+ Ry dp
Rss, Ryt - exp <_§ / C%_iRZZF (39)
R
[}2{ = {,07 Una b, Rnna Uy + \/]_;—;na Ryn Ry — R%ta Rss}
Iyt = {Un,p+pRm, U, /)Rnt}
7 Ry 2

IR - P, Un; D, Rnna Ut - \/R—nn, RnnRtt - Rnt7 Rss

_ _ c 2c1 R, d
‘[18% = {pp ’Y, Rnnp 27 Un _/idpa (RnnRtt - R?z,t)/an Ut - / ﬁ_p, Rssa

1 Rnndp
1 [+ Ry,
fine - ex0 (‘§/Tf> }
1 nn

3.3.3 Approximate jump conditions

While deriving the exact jump conditions across discontinuities of familiar hyperbolic systems
of conservation laws, e.g. in gas dynamics (Rankine-Hugoniot relations), extensive use of the
conservation principle is made. It is not possible to proceed in an analogous way in the present case
of a non-conservative set of equations. Instead, we resort to results from the theory of distributions.
Le Floch [36] and Le Floch and Liu [37] have constructed a generalized Rankine-Hugoniot relation
that depends on the path in state-space taken by the variables of the problem as a discontinuity
is crossed. This approach is strictly valid only in the limit of weak shocks. Herein we suppose a
linear path for variables V. = (p=1, U, Uz, p, pRun, pRit, pRss, pRnt)! (see also references [36, 13]),
which leads to the following set of approximated jump conditions (appendix C for details):

—alp] + [pUn] =0

—olpUn]  + [pU; + pRan + p| =0

—O'[pUt] + [pUnUt + pRnt] = 0

—o[pE] + [Un(pE + pRpn +p) + UipRpt] = 0

—0[pRpn] +  [UnpRun] = —2(pRnn)[Un] (40)
—0[pRy] + [UnpRy) = =2(pRnt)[U4]

_U[pRss] + [UnpRss] = 0

—o[pRnt]  +  [UnpRni] = —(pRun)[Ui] = (pRnt)[Un] -

We use standard notation for jumps [¢] = ¢, — ¢ and arithmetic means ¢ = (¢, + ¢;)/2 of a
variable ¢ where ¢, and ¢; are states to the right and to the left of the respective discontinuity.

When dealing with LD fields the solution of the above jump conditions is equivalent to the
corresponding Riemann invariants, i.e. [T5P] = 0, as is the case for conservation laws (cf. [34, 36]).
Furthermore, our approximate jump conditions are consistent with the classical Rankine-Hugoniot
relations in the non-turbulent limit, which can easily be verified by setting all components of R
to zero in (40). As to what concerns the GNL fields, shocks are described by the following
parametrization (8 = (y+ 1)/(y — 1)):

% = 2, (41)
Dr ﬂz -1
E = ﬁ — 2 i (42)



(Rnn)r 2z —1

(Run)i - 2(2—2)’ (43)
_ (Z - 1) 27pl 3(Rnn)l
ol =2 \/pm—l>w—z>+ 27 “
and
5 AUn)r = Un) (45)

z—1
The sign of the velocity jump in equation (44) can be selected using the inviscid entropy inequality
of section 2.3. By introducing (45) and (42) into relation (19) it is a simple matter to show that
[Un] < 0. Thus, in equation (44) the negative sign corresponds to a 1-shock (z > 1) and the
positive sign to a 8-shock (z < 1). The remaining solutions for jumps of variables Ry, Rss, Rnt
and U, are given in appendix D.

3.3.4 Approximate analytical solution

Using the above results, the quasi one-dimensional Riemann problem may be solved by connecting
left and right states Zr, and Zg across the five distinct characteristic waves (cf. [34] for the basic
method). We obtain the following solution:

ProproSITION 3: The one-dimensional Riemann problem associated with the non-
conservative system (36), approximate jump conditions (40) and initial data (37) has
a unique, realizable solution provided that the following condition holds

Un)r — (Un)r < X1 + Xg, (46)
where o 12
N1/2 B 11 ) ) 3—xy
X, = (’sz> / (g) 1+ 3pz(Rnn)z (g) @’ (47)
Pi , Pi YPi pi a

and provided that initial states Z; and Zr comply with weak realizability constraints

(5), (7) and (8).

A proof for proposition 3 has been established in reference [38].

We remark that the upper limit for the initial velocity difference (46) is quite similar to the
one encountered in the case of a first order closure (k- model, cf. [13]) and that this limit reduces
to the expression known from gas dynamics (cf. [34]) if turbulence is set to zero. The integration
in (47) can be carried out for the particular case of v = 3 where X;(y =3) = 2/(y — 1)(¢1);. As
can be seen from the solution of the jump conditions, the strength of a shock wave is limited when
using the hypothesis of a linear path. The admissible maximum, beyond which normal stresses
become negative (equation (43)), is

max (pi, pr)

i (o1, pr) = min (3,2). (48)

We emphasize once again that even for subcritical shock strengths, the analytical solution is an
approximation owing to the jump conditions. For regular solutions, however, the above results
(Riemann invariants) are exact; moreover, the given relations across LD fields are valid in any
case.

Finally, we point out that the positivity of density and pressure is preserved throughout the
solution and that the Reynolds stress tensor remains realizable at all times (cf. [38]).



4 An approximate numerical Riemann solver

4.1 Introduction

Most numerical solution strategies for flow problems of mixed hyperbolic-elliptic type are centered
around the treatment of the hyperbolic part of the governing equations. It is our purpose in this
section to present one such method for dealing with second-moment closures of the type defined
in section 2.1. With the above presented analytical solution of the Riemann problem, it would in
principle be possible and straightforward to construct a Godunov-type scheme as has been done
successfully in the case of the k-e model [12]. However, the computational overhead produced by
the solution of the non-linear problem (36) does in general not pay off in terms of physical realism.
We will thus content ourselves with an approximate Riemann solver that is built upon the analytic
solution to a linearized form of equation (36) similar to Roe’s method [5]. Before presenting the
flux formulation and integration method for the non-conservative system we quickly recall the
basic method that has been created for conservation laws.

4.2 Roe’s scheme for systems of conservation laws

Let us consider a hyperbolic system of conservation laws, viz

F
Zy+A(Z) Z,=0, A" = ea)_z . (49)

An approximate Riemann solver is such that the exact solution to the linearized problem
Z:+AlZr,Zgr)-Z,=0 , (50)

is calculated which consists of five simple waves since all fields are LD. The corresponding numerical
flux function is thus expressed by the well-known formula

1 1
J;Roe:i(FL+FR)_§|A(ZL,ZR)|-(ZR—ZL) . (51)

The problem of finding a sensible linearization A(Zr, Z ) has been translated into three conditions
of consistency by Roe [5]:

(i) A(Zr,,ZR) is hyperbolic and a diagonal form exists,
(i) A(Z,Z) = A*"*(Z),
(i) A(Z1,Z5) (2] = [F].

In the case of the Euler equations of gas dynamics, it turns out that the linearized system matrix
is equal to the original system matrix under a transformation of variables that has been termed

Roe’s average:
AEuler — AEuler(ZRoe(ZL, ZR)) . (52)

In the past, some authors have forced the hyperbolic part of the second-moment closure equations
to take a conservative form by eliminating from equation (20) the production term and the action
of the Reynolds stress in the conservative flux of momentum and total energy [7, 11]. In the
resulting truncated system turbulence is only felt via the pressure that is defined by equation (2).
This simplified approach enables to simply use Roe’s flux formulation (51) in conjunction with
Roe’s average for all variables (cf. [11] for details). For future reference, we term this procedure
the ‘decoupled approach’.

10



4.3 Roe-type scheme for non-conservative systems

We focus once again on a non-conservative system of transport equations

s

Z,+A,Z)-Z, =0, A, = 77

: +C(Z) . (53)
As will be explained in the following (see section 4.4) we discretize the source term C°(Z)Z ,, in a
simple, centered manner. As a consequence, applying Roe’s flux-difference-splitting gives formally
the same numerical flux formula as in the above case of conservation laws [11]:

1
FONC = ~(F1 +Fr) = 3| A(Z1,Zr)| - (Zr —Z1) - (54)

DN | =

Similarly, we require the linearization A to fulfil the following two fundamental constraints:

(i) A(Zr,,ZR) is hyperbolic and a diagonal form exists,
(i) A(Z,Z)=A,(Z).

In a straightforward extension of Roe’s above idea (iii), i.e. that the numerical flux be exact in
the case of a shock wave being located between two nodes, one would write as the third condition

(i) A(Zp,Zg)[Z] = [F] + C(Z1,ZR) [Z].

The jump conditions of the non-conservative source term C"¢[Z] are the approximate ones based
on the assumption of a linear path (i.e. equation (40) for the present system).

In the case of k-¢ type closures [9, 39] and in the context of two-phase flows [6], conditions (i),
(ii) and (iii), again lead to a linearized matrix resembling the original system matrix

A(Z1,Zr) = A(Z(Z1,,ZR)) (55)

where Z is a particular average that differs from Roe’s averaging.

In the present case, however, the linearized matrix A obtained from the above relations (i), (ii)
and (iii), cannot be recast into the form of the system matrix A(Z(Zr,,Zg)) since a corresponding
average Z does not exist [11]:

A

A 2(ZiZr) | AD)[2] = [F)+ T2, Zr)[Z) (56)

The matrix A that issues from condition (iii), is thus in a form not suitable for numerical purposes,
in particular its diagonalization is very complicated. Consequently, we have relaxed this condition
and replaced it by the following simple expression based on an arithmetic average:

(ii)y A(Zr,Zr) = A(Z(Y)),

where Y = (p, Uy, Uy, Hy, Ry, Rit, Rss, Rnt)t and total enthalpy being defined as H; = E + p/p.
Our numerical flux function can finally be written as (“RNC” designating “Roe Non Conserva-
tive”):
1 1 —
FANC = ~(F1 +Fr) = 5|AZY))| - (Zrn - 71) - (57
The “absolute value” of the system matrix is calculated through the following relation
|A(Z(Y))] = R(Z(Y)) - INZ(Y))| - RTHZ(Y)) (58)
where diagonalization matrices R and R ! are given in appendix B and A is the diagonal eigenvalue

matrix.

11



4.4 Integration method

Since in most finite volume methods multidimensional flows are treated as a succession of quasi
one-dimensional problems for each cell face, it suffices in the following to present a one-dimensional
discretization, keeping the notation of section 3.3.

Integrating equation (53) over a finite volume Q; (Vq, being the cell volume, T'; designating
the cell surface, At the time step, superscript n indexing time steps) we obtain:

Vo, - (ZIT —Z7) + At ¢ FRNC(Z™)dT; + Si(Z™) p =0 . (59)
I

The source terms S; are expressed by a centered difference, so that

S; = /C”C(Z) -Z,dQ = C"(ZY}) - / Z,dQ = C"(Z}) - %Zp(Z”)dI‘i , (60)
Qi Qi Fi
where 70 4+ 7
Zrr(Z") = % (61)

with Z; being the local neighbouring node at the respective partial cell face I';; € T';.

5 Some numerical experiments

5.1 Generalities

In the following we present some numerical results of quasi one-dimensional flow problems that
demonstrate important properties of the proposed method. We consider two Riemann problems
with different initial states as detailled in table I . These give rise to a turbulent shock-tube flow and
a symmetrical double shock configuration respectively. At this point, two features of the chosen
initial values should be noted. Firstly, turbulence intensity is high enough for the particularities
of the system of equations to be felt (with respect to the Euler equations). Secondly, the Reynolds
stresses Ry, and Ry are in an anisotropic state since otherwise the “new” pair of waves Ay and A7
would be “invisible” as a consequence of the form of the respective invariants (cf. (39)).

The length of the domain L, the position of the diaphragm zo and total integration time #;y,
are given in table IT . A number of 500 grid nodes are equally spaced over the distance L in all
examples shown below. This spatial resolution suffices for the present investigation of numerical
wave propagation (in an engineering application a higher order extension of the scheme, e.g.
references [40, 41], should be used). The time step used for the computations obeys the condition
of non-interaction of waves originating from neighboring cell faces [4], thus

% cmax () < 0.5 . (62)

All calculations are performed with the ratio of specific heats + taking a value of 7/5.

5.2 Turbulent shock-tube flow

This case is identical to Sod’s problem [42] as far as initial values of mean quantities are concerned.
The flow does develop in a way that is similar to the laminar or gas dynamics counterpart with a
rarefaction wave moving to the left and a shock wave propagating to the right followed by three
distinct LD waves of which the wave in the center corresponds to the contact discontinuity. In
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o L] [o 121 [ 121 o [ ] [ o [22] [ e (2] [ e [25] [ e [22] [ o
case 1 — turbulent shock-tube flow

1 0 0 10° 210° 210° L10° 210° | £ |0.69

R| 3 0 0 10* $100 | 2100 | 2-10° | 2 -10° | § {022
case 2 — double shock configuration

1 100 0 10° 210 2 10 1+ 10t 210" | & |0.22

R| 1 -100 0 10° 210 210 T 10t 210" | § |0.22

Table 1: Initial conditions for quasi one-dimensional test problems. Tangential anisotropy is
indicated by byt = Rt/ Ri;.

case 1 case 2
L[m)] 30 30
xo [m)] 14 14
trin [1072 5] 2.1 2.3

Table 2: Some physical details concerning the simulation: length of the domain of integration L,
position of the diaphragm zy and final integration time ¢z;,.

figure 2 all five waves are visible through the variation of tangential momentum pU;. Density p
and normal velocity U, (see figures 3 and 4) behave qualitatively in the same manner as in Sod’s
original shock-tube flow with variations only across the 1-, 3-4-5-6- and 8-fields (1- and 8-fields
respectively).

Figure 5 shows that the mean pressure changes considerably in the present case as the contact
discontinuity is crossed due to non-negligible turbulence intensity. In accordance with theory
(equations (39)) the sum of the normal stresses p + pR,, remains constant across all LD fields.

As a consequence of the coupling between Reynolds steresses and mean quantities, the tan-
gential velocity U; takes on considerable values in the flow field (figure 6). On the same graph,
we can clearly identify the location of the particular 2- and 7-waves (however smeared they might
be) by comparing the behaviour of U; with the one of its corresponding invariants U + Ryt /v/ Rnn
that are also included.

All four Reynolds stress components are shown in figure 7. The direct effect of production on
R,, and R,; can be observed as well as the purely passive role of the spanwise normal stress R
(justifying the designation as ‘contact discontinuity’ for the 3-4-5-6-wave).

Finally, figure 8 allows us to verify the correct numerical representation of other invariant
expressions. We note the positivity of the determinant 63 throughout the domain as well as the
monotonous results for the two entropy-like ratios p/p? and Ry, /p>.

5.3 Symmetrical double shock configuration
In the second case, two shock waves, one left-running and one right-running, form due to initially

impacting velocities (Uy,)r, and (Uy,)g as can be seen from the distribution of normal velocity in
figure 9. This configuration is of particular relevance to engineering problems in as far as it is an
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idealization of the transient state near a wall during the initial phase of a numerical simulation.
The 3-4-5-6 contact discontinuity remains stationary in this case of symmetrical flow. Its position
is marked by a localized loss of monotony of most variables in figures 11 to 14, e.g. density,
pressure, Reynolds stress components. This feature of the numerical solution is not due to the
current flux formulation (RNC) since it is also observed in similar symmetrical flow cases when
using Godunov’s method to solve the equations of gas dynamics or in conjunction with a k-¢ type
closure [12]. The small ‘glitch’ is due to the fact that an initially created perturbation at the point
xo is not smoothed out since the eigenvalues A3_g vanish there.

Once again invariants U; + Ryt /v/Rnn (figure 14) indicate the position of the 2- and 7-waves
which propagate in opposite directions.

Figures 15 to 18 show results obtained using the simple ‘decoupled approach’ (section 4.2) based
on artificially rendering the hyperbolic subsystem conservative. Using this numerical solution
method, dramatic oscillations occur for those variables that are subject to variation across waves
2 and 7, i.e. Uy, Ry and R,;. Corresponding invariants are not preserved, as can be seen from
figure 16. This non-physical bahaviour is a direct consequence of ignoring the particular form of
the characteristics of the second-moment closure equations. The decoupled scheme is effectively
“blind” with respect to the 2- and 7-wave. Hence, whenever these waves occur in the solution,
no upwind contribution is introduced into the numerical flux by the scheme leading to instability
(see appendix E for an explanation of this behaviour via von Neumann analysis).

6 Conclusion

We have investigated a class of simple second-moment closures for the turbulent stress tensor
ensuring a realizable, objective system of modelled equations and allowing for a clear entropy
inequality. The associated first order differential subset (containing convection and production
mechanisms) cannot be cast into conservation form. Its hyperbolicity is assured for over-realizable
initial fields. The system of characteristic waves is found to be quite distinct from the case of pure
gas dynamics with a pair of additional LD waves appearing and a modification of the speed of
sound due to turbulence.

Our analysis of the Riemann problem leads to a majority of exact partial solutions, i.e. across
all LD waves and across regular GNL fields (Riemann invariants). These theoretical ingredients
enable subsequent scrutinization of numerical results. In order to solve for variations across shock
waves, we have resorted to approximate jump conditions based on a linear path in state-space. The
resulting analytical solution of the complete Riemann problem is thus an approximation whose
validity is limited to weak shocks.

We have proposed an approximate numerical Riemann solver of the flux-difference-splitting
type to be used in finite volume simulation codes. For practical reasons it was not possible to
enforce Roe’s condition of consistency for stationary shock waves in our numerical flux function for
the non-conservative system (RNC). Our results of quasi one-dimensional test calculations docu-
ment the potential of the present method: solutions behave in the expected monotonous manner
even in the presence of strong shocks, high turbulence intensity and anisotropy; theoretically
deduced invariant expressions are numerically respected.

On the other hand, our calculations using an essentially Euler-based ‘decoupled approach’
lead to spurious oscillations at high turbulent Mach numbers. Simplifying the numerical task
by neglecting to a large extent the influence of turbulence on the propagation properties of the
second-order system should thus not be considered as an alternative. Use of the full, coupled,
non-conservative subset is advised for accurate and stable time-dependent numerical simulations
of the second-moment equations.
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Figure 2: Turbulent shock tube problem, case 1; obtained distribution of tangential momentum
pU; through which all five distinct waves of the problem become visible.
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Figure 3: Case 1; distribution of density p obtained with the present scheme (RNC).
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Figure 4: Case 1; distribution of normal velocity U, obtained with the present scheme (RNC).
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Figure 5: Case 1; distribution of pressure p and total normal stress p + pR,,, the latter being
invariant with respect to the contact discontinuity in the center (3-4-5-6-wave).
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Figure 6: Case 1; distribution of tangential velocity U; and invariants U; &+ Ry, /+/Ryy allowing to
identify the location of the 2- and 7-wave.
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Figure 11: Case 2; distribution of density p obtained with the present scheme (RNC).

160000

140000

130000

p+rho* Rnn

120000

pl

110000 r 8

100000 —/} \\—

0 5 10 15 20 25 30
X

Figure 12: Case 2; distribution of pressure p and total normal stress p + pR,, obtained with the
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A Over-realizability of the Reynolds stress in the hyper-
bolic subset

We wish to verify that the 2- and 7-wave do not coincide with the 3-4-5-6-wave ensuring the
existence of a diagonal form of the system of equations (27). For this purpose we examine the
Reynolds stress normal component R,,, rewriting it as a function of Reynolds stress eigenvalues
A(a) and a new unitary vector n/,

R,, = n't, |: A(l) 0 :| n = )\(1) TL;2 + )\(2) n;2

63

Since components n}, and n, cannot be zero simultaneously, at least one of the eigenvalues A,

must vanish in order for R,, to vanish, implying in turn a zero value for the determinant 85 =
A1) A2)- Using the conservation law of mass (20), Reynolds stress transport can be expressed as

(Rij) ; + Uk (Rij) y + Bar (Uj) ), + Rjr (Us) , =0, (64)
so that we obtain the following evolution equation for the determinant
(53) , + Ui (83) , = 283 Ui, . (65)

Integration for regular solutions gives
¢
53(x,8) = 8(0,t0) - exp (2 / Uk,,cdt> , (66)
to

so that 43 cannot vanish over finite intervals if its initial value is non-zero. Hence, over-realisability
of the convective subset (20) (positivity of Ry,;) is assured for initially over-realizable states.

B Diagonalization of the hyperbolic subset

It is of practical use to work with the following set of “primitive” variables
P = (p,Un,Us,p, Rpn, Rty Rss, Rut)' (67)
transforming system (36) into
P,+A-P,=0, A=M-A,- M | (68)

where the transformation matrices are

1 0 0 0 0 0 0 O
u p 0 0 00 00
v O p 0 00 0 0
. S_IZ) _ UZ;UQ + BantRutRee  py py == 5 5 50 | )
Ron 0O 0 0 p 0 0 0
Ry 0 0 0 0 p 0 O
R, 0 0 0 0 0 p O
R O 0 0 00 0 p
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and

1 0 0 0 0 0 0
—% p ! 0 0 0 0 0
-1
—% 0 p 0 0 0
2+ 2 ( _1) _ _ _
— (u ”2) v uly—1) —v(y—1) (y—1) (721) (721) (721)
—R;;n 0 0 0 p~! 0 0
—fin 0 0 0 0 p~! 0
— flas 0 0 0 0 0 pt
— Lt 0 0 0 0 0 0
The system matrix takes the following simple form
Un p 0 0 0 0 0 0
Run 1
T U, 0 5 1 0 0 0
flar Un 0 0 0 1 0
- 0 vYp 0 U, 0 0 0 0 ,
0 2R,n 0 0O U, O 0 0
0 0 2R,; O 0o U, O 0
0 0 0 0 0 0o U, 0
allowing for a diagonalization A = L - A - L™! with
p(c1=Ru)
ﬁ 0 2Rnn c12 _Rnnlcl 0 0
—2£ o (3 0 0 0 0
_0(012*%%”)61 VRnnp (12— Run) 0 0 00
o 0 — e 300
L= 2¢12 2¢12 c12
By 0 — Bnp =2 00
c12p 5 c12 c1?p
2 Ry’ _ 2 Ry +Rnn)Ru® 4R, R-20
p c12(c12—Rnun) pRun (c12—Rnn) RZ2,c1? R2, . pci? nn
0 0 0 0 1
(e1?+Rnn) Rt 1 (1>~ Rpn) R R 00
2p c12(c12—Rnn) _p(clsznn) 2Rnn c12 pRunc1?
0 7o
0 2/)1(,‘1
_ 1 R
VERpnp(c12=Rnn) p(c12—Rnn)c1
2
0 Tt
Rnn )
0 %
_ 2 R 2 R’
p Rnn (c12—Rnn) p c12(c12—Rnn)
0 0
1 (612+Rnn)Rm
_0(012*Rnn) 2p Clz(clsznn)
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Ryp —C1p 0 1 p 00 0

2_ 2
_Rnécz_\/Rnantp w RntpRnt 0 O_I)(CI27R“”)

s 0 0 0 -1 00 0
_pc
L!— 0 0 0 Ryn—25 0 0 0 , (73)
0 0 0 0 Rn®>R2,0 —2Ry; Ry
0 0 0 0 0 01 0
Ronp(ci?—Run c12—Run
B SRR p ~ ) gy Ry 0 02l )
and A = diag(\1,...,As). Right eigenvectors are simply columns of matrix L, i.e. ri = Ly;.

Finally, the diagonalization matrices of the original system (36) are obtained through the following

relations:
R=M-L, Rt=rt-M1! . (74)

C Derivation of the approximate jump conditions

Let us consider a system of equations under non-conservative form:
V,+D-V, =0 . (75)

A generalized Rankine-Hugoniot relation has been established by Le Floch [36] in the context of
the theory of distributions. This relation is developped in the limit of infinitesimally weak shocks
and represents an approximation for non-zero shock strengths. It can be written as:

1 a¢ B
/0{—o-I+D(¢>> Fede=0 . (76)

where ¢ = ¢(£,Vy, V) represents the path connecting states to the left and to the right of the
discontinuity in state-space (see figure 19). Choosing a linear path, i.e. ¢ = [V]-£ + V|, we obtain

o [V] + [V]/0 D(¢)de = 0 . (77)

We need to choose a set of variables V upon which this linear path is imposed. Inspired by the
choice of Forestier et al. in the case of a two-equation model [9] we select

1 t
V = (;7 Una Uta b, Pan pRtta pRssa pRnt) . (78)

The matrix D appearing in equation (77) is calculated via the transformation D = B~'AB,
where B = 9Z/0V. Since components D;; are linear functions of components of the vector V,
the integration in (77) results in arithmetic means, viz:

—o [V] +[V]'D(V) =0 . (79)
Retransformation into our original variables Z finally yields

—o [Z] + [F] + C™*(Z,Z,) [Z] = 0 (80)
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Figure 19: a) Discontinuity of the variable V in the plane (x, V). b) Connection of left and right

states by a linear path ¢ in the plane (£, V).

where the matrix C”¢ contains the following elements:

0 0 0 0 0 O
0 0 0 0 0 O
0 0 0 0 0 O
0 0 0 0 0 O
Cre = _ 20y (Ran) plefan) g g 0 0
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(81)

We remark that the above theory based on a linear path fulfils two important conditions of consis-
tency. Firstly, it reduces to the exact Rankine-Hugoniot relations in the limit of zero turbulence,
as is obvious from equation (80) and the definition (81). Secondly, it is easily verified that for
LD fields the above approximate jump conditions (80) are equivalent to the Riemann invariants

of section 3.3.2 which are exact.

D Solution to remaining jump conditions

For the remaining variables of the set, not treated in section 3.3.3, the approximate jump relations

across shock waves are the following:

(Bnt)i o1 [Un] 525 (2 = B)

Gl = B L =B =)

4= Dz = B)(Ru)i )
Rtt = 5" 1—=z 4z —1
e 26— 1 B) + p(e—9) {0401

3(z—1)
FoRui2 -1 -8 -1 (1+ 223

[RSS] = 0,

PR )2y = 1)(z = B) (C0EZ=2) 4 piy (= 1) (2 + 1)
[Rnt] = _(Rnt)l

2 (p1(Rnn)i2(y — 1)(z = B) + pry(z — 3))
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Figure 20: Configuration of the characteristic wave system in the case of a symmetrical double
shock. Zone “C” indicates the region where {p, p, Ry, Uy} are constant and the convective system
of equations simplifies considerably.

E Instability of the ‘decoupled approach’ in the case of a
symmetrical problem

Focussing on case 2 of section 5.3, we note that due to the symmetry of the problem all variables
have a zero jump across the centered discontinuity (3-4-5-6-wave) and that the normal velocity
U, is zero in the center. Furthermore, the set of variables {p, p, Rnn, Uy, } is invariant with respect
to the 2- and 7-wave, such that

pr=prr, Pr=prr, Unr=Unir =0, Ruynr= Rupngr. (86)

Consequently, between the 1-shock and the 8-shock (zone “C” in figure 20) the convective system
of equations (36) then reduces to the following simple form:

U + (Rut)n =0
(Rnt)ﬂt + Rnn(Ut),n = 0 (87)
(Rtt)7t + 2Rnt(Ut),n = 0 .

It can be seen that Ry plays a passive role in this zone such that the subsystem consisting of the
respective equations for U; and R,; — being linear — will be considered separately in the following.

Since the simple ‘decoupled approach’ (cf. section 4.2) is based on a characteristic wave system
that is essentially equivalent to the Euler waves — not containing waves 2 and 7 of the present
system — the numerical flux within zone “C” does not contain an upwind contribution. Applying
this explicit central scheme to (87) leads to the following discrete system:

Uti 1 Uti + m (Rnti+1 - Rnti—l) - 0
At
Rt — Rpe + AL Ron (U —U:y) = 0. (88)
The von Neumann analysis (e.g. [43, I,p.296]) of the above system, i.e. inserting a single harmonic
Ut? = Uf -eli? ) Rnt? = Rﬁt -eli® ) (89)

with ¢ being the phase angle and I = y/—1, we obtain the following system describing the propa-
gation of the error:

[ ~atsino) | [ 07 |
L |7 | Rudtene) 1 | (90)
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The eigenvalues A\ » of the amplification matrix G(¢),

A
)\172 =141 sm(qﬁ) A—i vV Rnn 5 (91)

lead to the following expression for the spectral radius p:

p(G(9)) = mas il = \/1+sin2<¢) (%) Buw > 1. (92)

1=

The ‘decoupled approach’ is thus susceptible to temporal oscillations and eventual instability for
all finite time steps At and spatial resolutions Az.
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